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Simple Summary: Worldwide, honeybees (Apis mellifera L.) are involved in pollinating both wild and
economically useful plants, while their products are also used by the food and pharmaceutical indus-
tries. But currently, apiculture is encountering the adverse effects of global climate change, including
more variable rainfall, shifting seasonal precipitation, and increasing temperature averages. These
changes threaten the sustainable future of apiculture as these anomalies have already contributed
significantly to the economic downturn of the apiculture industry in recent years. In this review, we
provide an overview of the current challenges faced by apiculture due to climate change, as well
as artificial intelligence (AI) applications in apiculture that can assist to address them. AI has been
utilized in various scientific aspects of apiculture, such as managing hives, maintaining health, detect-
ing pests and diseases, monitoring habitats, and managing population distribution. This is achieved
by analyzing data objects such as text, audio, images, videos, sensor readings, and numerical values
to investigate, model, predict, and make supporting decisions. Several shortcomings of the existing
AI application are identified in this review, and the knowledge gaps regarding the development of
autonomous intelligent systems for sustainable beekeeping are also highlighted.

Abstract: Honeybees (Apis mellifera L.) are important for agriculture and ecosystems; however, they
are threatened by the changing climate. In order to adapt and respond to emerging difficulties,
beekeepers require the ability to continuously monitor their beehives. To carry out this, the utilization
of advanced machine learning techniques proves to be an exceptional tool. This review provides a
comprehensive analysis of the available research on the different applications of artificial intelligence
(AI) in beekeeping that are relevant to climate change. Presented studies have shown that AI can be
used in various scientific aspects of beekeeping and can work with several data types (e.g., sound,
sensor readings, images) to investigate, model, predict, and help make decisions in apiaries. Research
articles related to various aspects of apiculture, e.g., managing hives, maintaining their health,
detecting pests and diseases, and climate and habitat management, were analyzed. It was found that
several environmental, behavioral, and physical attributes needed to be monitored in real-time to be
able to understand and fully predict the state of the hives. Finally, it could be concluded that even if
there is not yet a full-scale monitoring method for apiculture, the already available approaches (even
with their identified shortcomings) can help maintain sustainability in the changing apiculture.
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1. Introduction

The honeybee (Apis mellifera L.) possesses significant economic value in both agricul-
tural and natural ecosystems due to its role as a natural pollinator. The species’ charac-
teristics and geographic spread are significantly influenced by climatic factors, such as
variations in rainfall and temperature across the seasons [1]. Currently, we are witnessing
substantial shifts in global climate patterns, and these changes are projected to persist in the
future. It is anticipated that these changes will impact the diversity of plants and animals [2],
including bees, as has been simulated by many researchers from various climatic conditions
under numerous climatic change scenarios [3–5]. A study conducted by Pardee et al. [6]
highlighted that climate change might induce the shift in distribution and decline in the
population of the bee pollinator community, resulting in a shifting of genetic diversity,
e.g., in Latin America, it was estimated to be reduced by 65% by 2050 [7]. Furthermore,
this situation will lead to further implications of the primary factors contributing to the
decline in bee biodiversity, such as habitat loss or fragmentation, the emergence of invasive
species, the spread of diseases, and the use of pesticides [8]. Furthermore, bees exhibit
certain changing behaviors that help in maintaining homeostatic circumstances in the face
of climate change, both at the individual and colony levels. This poses additional challenges
for the practice of apiculture management [9].

In order to develop effective management strategies, it is crucial to understand the
adaptations that bees experience in response to climate change. Nevertheless, as the world-
wide climate change phenomena intensify and become less predictable, comprehending
the adverse consequences of climate change and developing an effective plan to alleviate
them gets increasingly complicated. Artificial intelligence (AI) and machine learning (ML)
could be some of the options. AI refers to the capacity of machines to acquire knowledge
from past experiences, adapt to new information, and carry out tasks that resemble human
abilities. It also offers innovative opportunities for identifying patterns in a vast amount of
unstructured data, including the implementation of self-learning new algorithms [10]. In
this review, we compile the recent AI studies in apiculture to help guide how to improve
beekeeping management and gather around the cause of sustainable apiculture in the face
of climate change.

We conducted a literature review, which aims to offer a comprehensive summary of the
present collection of the literature related to AI application in beekeeping without any strict
and predefined methodology. However, for easier literature collection, we implemented
a systematic search strategy to identify the relevant literature across electronic databases,
including Google Scholar, PubMed, Scopus, and Web of Science. The search was conducted
without the specification of a time frame. It included variations and combinations of key-
words related to artificial intelligence (e.g., “machine learning”, “deep learning”, “neural
networks”) and apiculture (e.g., “Apis mellifera”, “beekeeping”, “honeybees”). The Boolean
operator “AND” was used to combine search terms appropriately.

The inclusion criteria for studies were as follows: (1) studies focusing on applying arti-
ficial intelligence techniques in apiculture practices or beekeeping management; (2) studies
examining the impact of artificial intelligence on sustainability outcomes in apiculture,
including environmental, economic, and social dimensions; (3) studies published in peer-
reviewed journals or conference proceedings; (4) the article is in a form of an original
article, not a review. The exclusion criteria were as follows: (1) studies not directly related
to artificial intelligence applications in apiculture or sustainability outcomes; (2) studies
published in languages other than English; (3) studies lacking full-text availability or access
to sufficient data for review.

2. Apiculture and Its Challenges
2.1. Population Reduction and Distribution

The global honeybee population is at risk due to the impacts of climate change, which
include more frequent and severe extreme weather events such as heatwaves, droughts,
and unpredictable rainfall [11]. Increased temperatures during warm and arid summers
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can lead to higher mortality rates among bee populations, particularly if the temperatures
exceed the thermoregulation threshold specific to each bee species [12]. The genotype
and environment significantly affect colony development and adaptation, according to
Hatjina et al. [13], as Apis mellifera L. bee colonies found in warmer regions of southern
Europe have fewer worker bees compared to colonies in colder regions. Similarly, colonies
in colder areas have smaller brood populations, indicating that bees have shorter lifespans
in warmer climates and a shorter period of raising broods in colder climates. Moreover,
the preceding year’s warmer and drier climatic conditions are linked to a rise in winter
honeybee colony mortality.

In addition to honeybee colony mortality, climate imposes a more significant influence
on vegetation, hence impacting the honeybee foraging season, colony development, and
overall vitality of the colony. Drought reduces soil moisture, causing water stress in
plants. Consequently, flower production is diminished, resulting in limited availability
of nectar and pollen resources for honeybees [12,14]. For example, a case was reported
from Mediterranean areas during the drought season in 2016 and 2017 by Flores et al. [15]
and reveals a significant decrease in field availability of food, which in turn increases
stress levels owing to food scarcity and ultimately leads to starvation-related deaths of
the A. mellifera L. honeybee colonies. Furthermore, they discovered a 15% reduction in
the amount of Eucalyptus pollen grains in the honey, accompanied by an increase in the
quantity of pollen from drought-tolerant flowers. Consequently, this resulted in a decline
in the market value of the honey.

2.2. Genetic Diversity Reduction

Gene flow and, ultimately, shifting subspecies ranges in an area are caused by adap-
tation to climatic conditions. According to a study conducted in Serbia published by
Tanasković et al. [16], it has long been known that warmer regions of the country are occu-
pied mainly by A. m. macedonica and colder regions by A. m. carnica due to its adaptability.
However, recent findings indicate that A. m. macedonica is not anymore present in Serbia.
Through the examination of 14 microsatellite loci, it has been determined that Serbia now
possesses a distinct hybrid honeybee population, resulting in genetic homogeneity and the
formation of an admixture population. These conditions are harmful since, in honeybees, a
high level of genetic diversity within a colony is necessary to boost its fitness, making it
more productive, better able to maintain homeostasis, and less susceptible to disease [17].
Hungarian beekeepers have also documented this type of genetic admixture; in the past,
A. m. carnica was considered as their indigenous subspecies. However, mitochondrial DNA
and microsatellite analyses revealed a small amount of genetic introgression from other
subspecies, including A. m. mellifera and A. m. ligustica [18]. In addition, the hybridization
with African bees has become a growing concern for European beekeepers. It is quite
alarming, as we can witness the events that occurred on the American continent. In 1956,
bees (A. m. scutellata) imported from East Africa began to spread from southern Brazil
and hybridize with already established European subspecies, leading to the emergence
of a highly invasive and aggressive honeybee hybrid population [19]. Similar incidents
can occur in Europe due to the consistent fluctuations in climate and changing patterns
of subspecies migration. Evidence was reported in the Iberian Peninsula that shared
haplotypes between bees from the African and European lines (M79 and M79a) and was
detected using molecular genomics tools [20], while in another case in East–Central Europe,
Oleksa et al. [21] reported that 1.64% of their bees had African mitochondrial DNA in their
genetic background.

The climatic aspects can affect the distribution of the different Africanized subspecies,
as they reported in Argentina; European morphotypes were found in central and southern
regions, while the northern region mostly contained bees with African morphotypes [22].
This indicates that the exchange of genes between the two honeybee species is imbalanced,
perhaps due to the dominance of African genetic material over European genetic material.



Insects 2024, 15, 418 4 of 17

Additionally, the African honeybees were more capable of adapting to the climate of
concern [23].

2.3. Pest and Disease Occurrence

Parasitic, nonparasitic, omnivorous, and pollen-feeding mites are all possible inhabi-
tants of honeybee colonies, and the prevalence of this risk increases due to unpredictable
weather conditions. The honey beekeeping sector is vulnerable to infestation by several
mite species, the most economically relevant of which are Varroa destructor, Acarapis woodi,
Tropilaelaps clareae [24], Paenibacillus larvae [25], and Nosema ceranae [26]. Several cases and
investigations have been documented regarding changing patterns of occurrence of various
diseases as a result of global climate change. Beekeepers in Piedmont, northwest Italy, have
reported about the high infestation and continuing V. destructor reproduction caused by
mild winters, as reported in the study by Vercelli et al. [27]. The investigation conducted by
Rowland et al. [28] on the climatic influences affecting prevalent honeybee pathogens in
England and Wales indicates a positive correlation between the prevalence of V. destructor
and associated diseases and increasing temperatures while suggesting a negative corre-
lation with higher levels of rainfall and wind. As temperatures rose, the likelihood of
the sacbrood virus also increased, as well as the chalkbrood disease that is caused by a
fungal pathogen. Interestingly, this disease has an inverse correlation with temperature,
meaning that it is more likely to occur as temperatures decrease. The modeling of the
potential global distribution of the Galleria mellonella pest by Hosni et al. [29] indicates that
the annual mean temperature and temperature annual range account for 64.2% and 19% of
the distribution of pests, respectively. According to their predictions, the climate anomalies’
phenomena will cause the spread of the event to further locations and result in a more
substantial financial impact on the honeybee industry in the future. Another significant
threat to honeybee colony health is the small hive beetle, Aethina tumida, originating from
southern and Central Africa but progressively spreading to all continents. The species
emerged in North Africa and South Europe, and its distribution appears to be linked to
climate change. The increasing temperature could potentially foster a favorable habitat for
its proliferation [30]. Because of this, a study [31] predicted these climate change effects
with the shared socio-economic pathways to see where they will spread with the pre-
dicted temperature changes. The countries are strongly encouraged to develop monitoring
systems for A. tumida to prevent the further spread of the infection.

3. Machine Learning

Currently, we live in the Fourth Industrial Revolution (4IR) [32], wherein a vast
quantity of information is accessible to us via technologies [33]. ML algorithms are effective
tools for generating decision trees, rules, or statistics as they are employed to teach machines
how to effectively process large databases. ML algorithms utilize a training dataset to
generate rules that form a predictive model, which is validated later with a separate test
dataset [34]. The outcome of the model will improve with each iteration, as it benefits from
the repetition and learning process. The datasets for the algorithms can originate from many
sources (e.g., IoT devices, databases) in different forms, and the outcomes of the algorithms
can be evaluated using various metrics such as accuracy, precision, and speed. Furthermore,
deep learning (DL) is a subset of ML that originated from the artificial neural network
(ANN) but has outperformed it and is capable of performing more complex operations [35].
Several ML algorithms and models have been developed and are currently in use, each with
its own specific applications in apiculture (Table 1). The following subsections concentrate
on some of the primary applications of AI or ML in apiculture that address the issue of
climate change. They provide a short and precise description of the experimental results,
their interpretation, and the experimental conclusions that may be taken.
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Table 1. Summary of the machine learning algorithms used in the beekeeping studies used in this review.

Model Short Description Usage in Honeybee Research

Artificial Neural Network (ANN)
and Neural Networks (NNs)

As computational models inspired by the structure and function of the human
brain, ANNs and NNs comprise interconnected nodes, or neurons, arranged in
layers. ANNs are renowned for their capacity to discern intricate patterns and
relationships within data, rendering them applicable across diverse domains

[36]. NNs require less formal statistical training, can detect complex nonlinear
relationships between dependent and independent variables, have all possible
interactions between predictor variables, and have the availability of multiple

training algorithms [37].

Monitoring of pesticide effect on bee behavior [38]. Modelling the flight
activity of workers at the hive entrance [39]. Classification of honey [40].
Unraveling associations between the environment and oxidative stress
biomarkers in honeybees [41]. Determining daily performance of colony

based on weather [42]. Classifying bee colony acoustic patterns [43].
Characterizing seasonal patterns of colony development [44].

Convolutional Neural
Network (CNN)

It is widely employed in image and video recognition tasks, which
automatically learn relevant features from raw input data, making them highly

effective in tasks such as image classification, object detection, and image
segmentation [45].

Estimation of honeybee density in hives [46]. Decoding waggle
dances [47]. Honeybee subspecies determination using image

recognition for honeybee wing analysis [48].

Extremely Randomized Trees (ETs)

A type of ensemble learning method that constructs several decision trees to
perform classification or regression tasks, with the aim to provide additional

randomness into the process of constructing trees in order to enhance
generalization and mitigate overfitting [49].

Bee sound classification for hives management [50]. Queen bee
detection from audio recording [51].

Validated Counter-Propagation
Artificial Neural Network (CPANN)

A specialized variant of ANNs that integrate elements of counter-propagation
networks with validation techniques, and typically comprises two layers: an
input layer and a competitive layer. This process enables CPANN to cluster

data into meaningful groups or classes based on similarities in input patterns; it
also incorporates validation procedures to optimize network performance and

enhance generalization capabilities [52].

Classification models for substances exhibiting acute toxicity for
honeybees [53].

Gradient Boosting Regressor (GBR)
Mainly used for regression problems, by making predictions using outputs

from multiple decision trees. GBR constructs one tree at a time and corrects the
errors of the preceding trees [54].

Identifying factors influencing queen body mass [55]. Prediction of
honey harvest [56]. Revealing the relationship between number of bees

in the beehive and temperature [57].

K-Nearest Neighbor (KNN)

A straightforward ML algorithm utilized for classification and clustering tasks
by assessing the proximity of data points to categorize or predict the grouping

of individual observations. For each new observation, KNN determines
classification by computing its distance from all known observations. The
majority class of the K-nearest neighbors then determines the classification

outcome [58].

Discrimination of unifloral honeys [59]. Classifying bee colony acoustic
patterns [43].

Logistic Regression (LR)

Used for modeling binary or categorical outcomes by predicting the probability
of a categorical outcome based on one or more predictor variables. It can be

used for both classification and regression problems, but it is more commonly
used for classification [60].

Classifying honeybee sounds with spectrogram features [61].
Classifying bee colony acoustic patterns [43].
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Table 1. Cont.

Model Short Description Usage in Honeybee Research

Long Short-Term Memory (LSTM)

A type of ANN designed to process sequential data by maintaining an internal
state or memory. It can handle long time-series data, can avoid vanishing

gradient problems, can handle variable-length sequences, has a memory cell
that can store and retrieve information, and has gradient flow control [62].

Detection of queenlessness in beehives [63]. Forecasting sudden drops
of temperature in pre-overwintering honeybee colonies [64].

Naive Bayes (NB)
NB classifier is based on the Bayes Theorem to generate the predictions for each
observation by classifying a sample into a group that is most likely to have its

attributes [65].
Selecting features for honeybee subspecies determination [66].

High-Dimensional Discriminant
Analysis (HDDA)

Used for discriminant analysis when there are a large number of variables
(features) compared to the number of observations (samples) [67]. Classification of unifloral honey [59].

Partial Least Square (PLS)

Enables the comparison of numerous response variables and multiple
explanatory variables in a multivariate setting. PLS is a covariance-based

statistical method that is commonly known as structural equation modeling or
SEM [68].

Mineral content detection in honey [69] and bee pollen [70]. Identify
honey based on its various entomological origins [71]. Honey quality

prediction [72].

Penalized Discriminant Analysis
(PDA) and Shrinkage Discriminant

Analysis (SDA)

PDA and SDA are employed in the field of classification and pattern
recognition. It is a continuation of Linear Discriminant Analysis (LDA). The
primary objective of PDA is to enhance the efficacy of LDA, particularly in

scenarios where there is an imbalance between the number of variables
(features) and observations (samples), or when the data are affected by

multicollinearity [73]. SDA aims to enhance the estimate of the covariance
matrix utilized in LDA by implementing a shrinkage strategy on the sample

covariance matrix [74].

Classification of unifloral honey [59].

Polynomial Regression Algorithm
(PR)

A form of linear regression in which the relationship between the input variable
x and the output variable y is modeled as a polynomial and considered to be a

special case of linear regression [75].
Bee foraging behaviors [76].

Random Forest (RF)

Based on a group (or forest) of decision trees used to generate the classifications.
Decision trees are structures that are based on decision rules to branch out into
possibilities and create a path. At the end of the path is the rating assigned to

the entry [77].

Predicting overwintering survival [78]. Predicting honey harvest [56].
Chemical toxicity to honeybee assessment [79]. Classifying bee colony

acoustic patterns [43].

Support Vector Machine (SVM)
It can be used for classification, regression, or other tasks. It is good for

producing high-quality results with interpretability and flexibility; it does not
require too much memory, and is effective in high-dimensional spaces [80].

Classifying bee colony acoustic patterns [43,81]. Detecting bee queen
presence [82]. Developing real-time bee counting radar [83].

Discrimination of honeybee subspecies based on wing images [84].

Support Vector Regressor (SVR) The SVR is the regression algorithm of SVM. It can find the best fit line, which
is the hyperplane that has the maximum number of points [85]. Real-time radar for bee count activity [83].
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4. AI Application in Apiculture Studies
4.1. AI in Beekeeping Management/Hive Monitoring

An important issue in apiculture is the significant loss of bees due to colony col-
lapse disorder (CCD) and the serious consequences of declining bee numbers. It could
be attributed to factors such as inadequate nutrition, increased stress from ecto- and en-
doparasites, elevated bacterial and/or viral loads, and the combined effects of pesticides,
which may ultimately be linked to climate change [86]. Comprehending the dynamics
of bee colonies is intricate, and relying solely on manual inspections will not yield good
outcomes for the beehives. AI technology has facilitated monitoring of beehives through
several techniques such as an audio analysis [87], camera-based visual observation [88],
monitoring movement [89], and analyzing physical attributes of the hives [19] (Figure 1).
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Figure 1. An ML-based predictive model of an AI system, with its general structure, showing the
training and testing phases (1. training database; 2. ML algorithm; 3. predictive model; 4. monitoring
tools; 5. test dataset; 6. practical/developmental usage of outcome).

Flores et al. [15] employed the Wbee system to remotely monitor the weight of beehives
at fifteen-minute intervals in order to investigate the correlation between environmental
conditions and hive weight. The system is structured in a three-tiered hierarchical model
and relies on wireless communication. Researchers observed a correlation between de-
creased weight of beehives and days characterized by low temperatures, cloudiness, and
rain. This suggests that the bees had limited access to food during such weather conditions.
A more advanced study by Anwar et al. [90] used a hybrid deep learning model (8-sensor
system—NB-IoT, LSTM) for time series forecasting and soft sensing to convert the daily
variation in hive weight into predictive daily hive weight. Their result is quite sophisti-
cated, with 83.5% of the days having mistakes of less than 25 g per frame, according to the
daily estimations.

Kulyukin et al. [91] employed the BeePi system (Utah, United States of America), which
monitors beehives using audio by comparing several DL and traditional ML techniques to
identify audio samples from microphones positioned about 10 cm above the landing pads
of Langstroth beehives. A 30 s audio file was recorded every 15 min for classification using
four different ML algorithms: LR; KNN, with a linear kernel one vs. rest (SVM OVR); and RF.
LR demonstrated the highest performance among others, indicating that a less complex raw
audio CNN yielded the most accurate classification of the audio samples and also showed
a high potential for practical use. In another study, Di et al. [87] suggested utilizing the
VGGish embedding, a model for audio classification similar to the visual geometry group,
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in conjunction with the KNN model for audio classification in beehive audio monitoring.
Additionally, Zgank [92] introduced a system that uses IoT technology based on acoustic
signals to classify bee swarm activity. The system utilized feature extraction techniques
such as Mel-frequency cepstral coefficients (MFCCs) and linear predictive coding (LPC) to
analyze the input audio signal and monitor this significant occurrence in beehives.

In image classification, using various models of deep learning classification,
Berkaya et al. [93] identified different conditions using honeybee photos captured at bee-
hives with Deep Neural Networks (DNNs) and SVM algorithms. A variety of conditions
can be identified by the suggested models, including healthy bees, pollen-bearing bees,
and abnormalities including ant difficulties, small hive beetles, hive robberies, and Varroa
parasites, all with a remarkably high accuracy of 99.07% and a relatively quick classification
time. A recent study conducted by Williams et al. [88] examined the enhancement in
thermal cameras using machine learning techniques (KNN, neural networks/NNs, RF, and
SVM). Despite having inferior baseline specs compared to a competitive optical camera,
these cameras were able to attain the same degree of efficiency in monitoring the activity at
the entrance of a beehive. The thermal camera provides the benefit of functioning efficiently
in all circumstances without requiring adequate lighting conditions. In the case of thermal
data, the KNN and NN algorithms were the most efficient, while the feature specificity
was the best in the case of SVM and RF. Their analysis confirms that the thermal camera
effectively captured and accurately identified the flight. In their subsequent investigation,
Williams et al. [83] conducted experiments to evaluate the efficacy of this thermal camera
in implementing a real-time radar signal classification system with SVR algorithms for
monitoring and quantifying bee activity at the hive’s entrance.

Furthermore, Alves et al. [94] developed DeepBee© software using imaging data,
which can identify cells in comb photos and classify their contents into seven categories:
eggs, larvae, capped brood, pollen, nectar, honey, and others. The objective is to assist
beekeepers in evaluating the quantities of comb cells containing brood and food reserves,
allowing the evaluation of the colony’s nutritional and health condition, queen quality,
and honey production potential. By employing the Circle Hough Transform and semantic
segmentation technique, a cell detection rate of 98.7% was achieved. Among 13 different
CNN algorithms evaluated for comb cell classification, MobileNet emerged as the optimal
option, achieving a balance between training cost and accuracy, with processing time
averaging approximately 9 s per comb image and an F1-Score of 94.3%.

4.2. AI in Bee Health and Disease Monitoring

For effective disease management and mitigation, it is important to comprehend the
patterns of dispersion and how climatic conditions impact them. By considering multiple
recorded parameters, modeling systems can assist in predicting it. Using the Maximum
Entropy model’s algorithm, Hosni et al. [29] forecasted the dispersal of Galleria mellonella
pests by building the model using 19 components of bioclimatic data and the reported
disease occurrence. The most effective climatological parameters that affect the dispersion
of this pest were determined to be the annual temperature range and mean, along with
yearly precipitation. Slovenia, Slovakia, France, Italy, Belgium, the United Kingdom, the
Mediterranean coast, and a few other countries on other continents were on the list of the
high-potential future habitats for this pest. The same research approach and results were
employed to investigate the distribution of A. tumida, Galleria mellonella, and Oplostomus
haroldi, besides Varroa destructor in Kenya [95] and Tanzania [96]. They forecasted a growing
likelihood of suitable habitats for these pests in various regions of these countries in
the future.

Monitoring the infestation of pests and determining their level is an important and
challenging duty for beekeepers, as early detection is a high determinant in disease manage-
ment. Research utilizing videos of honeybee behaviors, which are subsequently converted
into image patches [97–99], was able to detect the parasite infection in beehives. The input
photos underwent classification using diverse methodologies, such as the Bayesian theo-
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rem, statistical learning theory, and a combination of decision trees, to detect the presence
of mites. The outcome revealed a high categorization accuracy exceeding 70% and resulted
in time savings of over 50% compared to manually observing mite presence. In another
example, Wachowicz et al. [100] propose a method for the real-time monitoring and detec-
tion of pests by analyzing a combination of various detection methods (camera-based IoT
devices, pre-trained CNN approach) and a cloud data center for monitoring and notifica-
tion. The study demonstrates a significant enhancement in accuracy, reaching up to 90% of
parameters from the video stream of hive conditions using IoT devices, and edge-based
V. destructor, by employing a convolutional neural network methodology. However, it is
important to clarify that the detection capability of the device is limited to the mites specifi-
cally within honeybee cells, and does not extend to the mites present on the bodies of bees.
Besides this, Mrozek et al. [101] used another monitoring IoT device with optical recordings
(20 pictures from a video stream). The collected data were analyzed with a CNN algorithm,
while the resulting information (bee and V. destructor identification) was stored/transferred
using a cloud that the beekeeper can reach. The precision (70%) and sensitivity (90%) of
the Varroa detection rate were high, as well as the honeybee identification (100% and 70%),
which means that this method is also useable to prevent a strong infection of the colonies.
Some other multi-sensor bee health monitoring systems have also been developed, such as
IndusBee4.0 [102] and the BeePi system [103].

An ML model can also accurately assess and forecast temperature declines within hon-
eybee colonies, a crucial determinant of colony well-being. In research by Braga et al. [64],
they measured six aspects of the hive, internal temperature, internal humidity, mean fan-
ning, mean noise, mass, and external temperature, with the Arnia system that has three
sensors inside the hive: temperature, humidity, and sound sensors; besides these, there
is a digital scale under the hive. The gathered data were analyzed using an ML model
that employed an LSTM technique. This proposed remote hive monitoring system could
predict the temperature one day in advance, with a 0.5% root mean square error (RMSE).

A study by Robles-Guerrero et al. [43] compared five different ML models, to be able
to automatically assess the health status of the hive, by analyzing their acoustic data. The
following were the mostly used models: the KNN, the LR, the NN, the RF, and the SVM.
These are simpler than the DL models, resulting in faster and easier training, but still
require computer resources. They gathered acoustic data (by Rpi microphones) from five
Carniola honeybee colonies, of which two were strong colonies, two were weaker, and one
colony was queenless with the lowest bee population. It was determined that NN and
SVM were the optimal alternatives due to their efficient classification time and excellent
performance metrics.

4.3. AI in Bee’s Habitat and Climate Management

In the field of apiculture, bees and their interactions with the natural environment
are integrated into social–ecological systems. Gaining a comprehensive understanding
of the many interrelationships within this system has become more important for effec-
tive environmental management and the implementation of innovative interdisciplinary
methods that promote sustainable beekeeping [104]. Braga et al. [98] proposed a clustering
and classification algorithm (Naive Bayes, KNN, and RF) to detect seasonal patterns in
honeybee behavior. The weekly and monthly meteorological data, along with the beehive
weight data, were combined to detect the occurrence of swarming, determine the optimal
moment for seasonal management, and assess the prevalence of pathologies. In the classifi-
cation stage, they discovered six distinct seasonal honeybee patterns, each with hit rates
reaching as high as 99.67%. Later, Patel et al. [105], with more complex data, utilized a
spatially explicit modeling technique, a machine learning algorithm, and an agent-based
model to simulate the migration of beehives in relation to the geographic distribution of bee
food supply in western Australian apiculture. They effectively illustrated the variations in
spatial distributions of the primary bee food species, both on a seasonal and monthly basis,
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as well as the overall species diversity. Based on that, they predicted the future migration
pattern and recommended a change in the hives towards the east part.

It is well known that bees are not only found in their natural habitats, but they are
also utilized for pollination, such as in crop fields. This is why beekeepers relocate their
honeybees to these areas. However, there is an ongoing disagreement between farmers and
beekeepers around the world. One of the reasons is due to frequent bee poisoning (e.g.,
neonicotinoids), which is usually caused by using sprays before the end of the foraging ac-
tivity of the bees, leading to significant losses to the beekeeping community every year [106].
Therefore, it is important to accurately forecast the remaining duration of time that bees
allocate to foraging in the fields. To overcome this issue, Torresani et al. [107] developed
a non-invasive IoT-based machine learning model that considered real-time bee activity,
weather, and sunset time to forecast this foraging time. The researchers demonstrated
that the GBR was the best suitable regression model for effectively differentiating between
foraging and other behaviors in bees. This model can be utilized by farmers to determine
optimal spraying timings that are safe for honeybees. Another study [76] investigated the
periods of time when bees were collecting food, measuring the number of bees foraging
every half hour between 5:00 am and 4:00 pm. The aim of this was not only to determine
the number of foraging insects but also the relationship between the number of these bees
and the time of the day. A polynomial regression algorithm was used for data processing
in this case as part of the machine learning process. The generated model was suitable for
testing the inter-day variability of the data obtained, and the gained conclusions can be
integrated into future research on bees as well as being possibly applicable in the field.

In a study, real colored Red–Green–Blue (RGB) images were taken by an Unmanned
Aerial Vehicle (UAV) to measure flower cover and diversity by association, bee abundance,
and diversity. There, Torresani et al. [108] discovered a standardized, large-scale, and cost-
effective way to monitor bee habitat remotely (e.g., ‘flower cover data’). They suggested
that optical pictures with a better spatial resolution yield more accurate results when using
RF machine learning algorithms instead of NN and SVM. The environment of bees can
influence the composition of the royal jelly they produce, as demonstrated in scientific
research released in 2023 [105]. Because of this, ML methods can even be used to monitor
the quality of royal jelly production, as demonstrated in this study. Here, they showed
that combining stable isotopes with artificial ANN models (excellent accuracy, sensitivity,
and specificity) and considering the unique proven correlation between stable isotopes and
environmental factors (temperature, precipitation, sunlight) can provide promising ideas
for monitoring the authenticity of royal jelly.

4.4. AI in Subspecies Distribution and Population Management

There are different kinds of A. mellifera L. subspecies, such as previously mentioned
A. m. ligustica (Italian honeybee), A. m. carnica (Carniolan honeybee), A. m. mellifera (dark
European honeybee), and A. m. scutellata (African honeybee). New methods based on
genetics can help to study their geographic distribution more accurately, but it is still
mainly performed based on morphometry [22]. Conventional approaches of taxonomic
examination are laborious and time-consuming, encouraging people to seek a more efficient
solution. In a publication by De Nart et al. [48], they researched the use of AI with ML
techniques based on CNN to recognize honeybee subspecies. The research was conducted
using four CNN models, utilizing a collection of 9887 wing pictures from seven subspecies
and the commonly used Buckfast hybrid. From them, the Inception ResNet V2 performed
the best (higher than 98% for accuracy, precision, and specificity), which also surpassed
the performance of the traditional method. This demonstrated that an automatic image
recognition (with only wing pictures) and ML technology is definitely a promising solution
for bee species recognition, promoting the preservation of the biodiversity of honeybee
species and to preserve pure lines for the market.

With a similar aim, Rodrigues et al. [84] developed DeepWings© software, which
analyzed 19 landmarks in a right forewing image, to make a fully automated morphometric-



Insects 2024, 15, 418 11 of 17

based assessment of honeybee subspecies. They started to work with a smaller but richer
dataset including 7634 forewing images, containing pictures of 26 subspecies. In this study,
they also used CNN as a wing detector, but for detecting the 19 features, they applied
U-Net DLtool, and SVM to classify subspecies. Eventually, they successfully processed 10
images within a time frame of 14 s, which is the minimum acceptable duration. Initially, the
accuracy rate was 86.6%. However, after training with just five subspecies, the precision
improved to 95.8%. It is possible that this percentage might have further risen with further
training over time. This software has 19 comprehensive features, which can also make
a significant addition to other similar investigations. This same software was used in
another study [109], with 14,816 wing images from 2601 colonies that belonged to three
Apis mellifera subspecies. The results were somewhat similar to the first accuracy of the
previous paper, with 89.7% for the A.m. iberiensis (Iberian honeybee), and 88.3% for the
Carniolan honeybee, but in the case of the dark honeybee, they only received a 41.1%
match. It has been demonstrated that while the DeepWings© software is a valuable tool for
identifying subspecies, it can still cause confusion in identifying subspecies, particularly
when the honeybees have genetic impurities.

In addition to a remote optical analysis, acoustic signals can also be utilized for
population management by automating the identification of colonies that are ready to
swarm. Dimitrios et al. [110] made a comparison between three different classification
algorithms: the KNN and SVM, and their new U-Net CNN. The acoustic data that were
studied from five colonies, for 5 months, twice a day, for 6–6 h, were acquired by IoT
devices specifically designed for this research, which include microphones, temperature
sensors, and humidity sensors. Among the various ML models used, KNN and SVM
demonstrated the highest accuracy in identifying early and late swarming. However, when
it came to early detection specifically, SVM outperformed the rest, with the U-Net CNN
method performing similarly.

Certain research endeavors to build a hybrid insect society, in which honeybees and
autonomous robots engage in mutual interaction. In order to carry out this, the robots
must be fine-tuned using evolutionary algorithms, which necessitate the evaluation of
population density and behavioral data. To be able to carry out this, Salem et al. [111]
used Combined Actuator Sensor Units (CASUs), which include different sensors, and
could communicate with the bees through their heat, movement, etc. They used three
new algorithms (J48 Decision Tree—C4.5 based on ID3; JRip Rules Classifier—RIPPER;
PART—developed version of C4.5 and RIPPER algorithms) with different setups to learn
from the detected information. At the end of the study, the PART model performed the best
in both accuracy and ruleset size, while the worst was the JRip. With this, they were able
to estimate the bee density accurately. This method can be an option to be used in other
future experiments with bee–robot interactions, allowing for control over the colonies.

5. Conclusions and Direction towards Sustainable Agriculture

This review provides an in-depth survey of techniques based on AI and ML that are
being used to overcome the difficulties that beekeepers face in coping with climate change.
In the current era of the Fourth Industrial Revolution, machine learning algorithms have
become increasingly accessible. These algorithms undergo continual training using the data
they receive, and they have a diverse variety of applications. Due to this capability, they
are able to process a wide range of data, as demonstrated in the setting of apiaries. These
data can encompass various factors such as temperature, sound, pictures, video, weather
conditions outside the hive, humidity, air circulation, weight, bee activity, and numerous
other variables. Hence, the data can be utilized for the purpose of training and refining
algorithms, or for evaluating models that have already been validated and approved. The
data in the examined research were often gathered using a non-invasive technology based
on the Internet of Things (IoT) or an instrument equipped with a specialized sensor or were
derived from an existing dataset.
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When comparing methodologies, SVM and NN algorithms are frequently utilized and
generally considered the most suitable, with CNN being one among them. The NN models
usually had an accuracy of over 95%, and they were used mostly in studies too. Besides
these, they are the basis for DL technologies. When the ideal database had been discovered
and the logarithm was effectively chosen and tested, numerous investigations employed a
completely automated monitoring system utilizing ML, such as BeePi (monitoring beehives
through audio), the DeepBee© system (monitoring the quality of combs by pictures), and
the DeepWings© software (monitoring the morphology by pictures). Therefore, the ML
tools are currently functional, albeit not as a comprehensive monitoring technology of the
apiculture, due to their ongoing development. These methods can help in maintaining
sustainability in the hives despite our changing environment, by monitoring the colonies
for a possible early intervention of the beekeeper.

Despite the numerous approaches developed by researchers, the continuous advance-
ment in technology necessitates the processing of larger volumes of data within increasingly
shorter timeframes. According to the studied publications, it has been seen that in some
cases, the amount of data being processed is still low, and there are still inaccuracies in
certain algorithms, especially with genetic purity. Thus, this can provide a challenge as
increasingly intricate approaches necessitate the utilization of many algorithms for ML-
based solutions (e.g., CNN and SVN in DeepWings software). In addition, the training
dataset needs to be enriched and augmented to allow the algorithm to start with a sufficient
reference, thus achieving faster process time, higher precision, and minimal computational
consumption in the first use. Consequently, it is necessary to enhance and optimize the
monitoring devices in order to obtain a wide range of data, enabling a comprehensive
evaluation of the colonies. But in the end, every ML monitor system development needs to
be tested faster in farm-setting conditions preferably in an apiary to ensure its accessibility
and applicability to the beekeepers.
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