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Simple Summary: Many mosquito species not only serve as a nuisance but also pose a threat to
public health by transmitting diseases to both humans and animals. We report an updated list of all
known mosquito species identified in Arizona to date. It replaces the most recent lists published about
50 years ago. We also report their collection years, methods, areas/locations, feeding preferences,
and the diseases they can or may carry or transmit.

Abstract: Arizona is home to many mosquito species, some of which are known vectors of infectious
diseases that harm both humans and animals. Here, we provide an overview of the 56 mosquito
species that have been identified in the State to date, but also discuss their known feeding preference
and the diseases they can (potentially) transmit to humans and animals. This list is unlikely to be
complete for several reasons: (i) Arizona’s mosquitoes are not systematically surveyed in many areas,
(ii) surveillance efforts often target specific species of interest, and (iii) doubts have been raised by one
or more scientists about the accuracy of some collection records, which has been noted in this article.
There needs to be an integrated and multifaceted surveillance approach that involves entomologists
and epidemiologists, but also social scientists, wildlife ecologists, ornithologists, representatives
from the agricultural department, and irrigation and drainage districts. This will allow public health
officials to (i) monitor changes in current mosquito species diversity and abundance, (ii) monitor the
introduction of new or invasive species, (iii) identify locations or specific populations that are more at
risk for mosquito-borne diseases, and (iv) effectively guide vector control.

Keywords: Sonoran desert; medical and veterinary entomology; animal reservoirs; spillover effect;
decision making

1. Introduction

Mosquitoes are arthropod vectors that belong to the family Culicidae, comprising
3899 species categorized into 54 genera [1]. Many mosquito species are of medical impor-
tance as they can transmit mosquito-borne diseases (MBDs). MBDs pose an enormous
threat to global human health worldwide, accounting for about 700 million cases and
over 1 million deaths annually [2]. They are caused by parasites (e.g., malaria), viruses
(e.g., West Nile and dengue), and worms (lymphatic filariases, heartworm), which are all
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transmitted by an adult female mosquito to their human or animal host. For example,
arboviral diseases such as dengue, Zika, and chikungunya are typically transmitted by
Aedes species, West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV) by Culex
species, and the malaria parasite by Anopheles species. Some of these diseases (e.g., Zika)
can also be transmitted through other routes, such as from female mosquitoes to their
offspring (vertical transmission) [3] or via human-to-human interactions through sexual
contact [4].

Presently, in Arizona, WNV, SLEV, and dengue are circulating or have been transmitted
to humans. In 2021 alone, there were 615 confirmed and 1095 probable human WNV cases,
and 127 people who died from the disease in Arizona [5]. The occurrence of SLEV in
Arizona is rare, but there was an outbreak in Maricopa County in 2015, which led to 19
confirmed and 3 probable human cases [6]. While autochthonous Zika, chikungunya, and
malaria have not been detected in the State recently, locally acquired dengue was reported
in Maricopa County in 2022 [7]. Outside Arizona, the local transmission of dengue has
been reported in Texas, Hawaii, and Florida [8], Zika in Florida [9] and Texas [10], and
more recently (2023), malaria in Florida, Texas, Maryland, and Arkansas [11]. Mosquitoes
can also transmit a range of animal diseases, some of which are or have been circulating
in Arizona. Examples include WNV in birds (house sparrow, great-tailed grackle, and
house finch), which are predominant amplifying hosts for WNV in the State [12,13], Eastern
Equine Encephalitis (EEE) in a horse [14], and heartworm in dogs [15].

Some MBDs may currently only circulate in local animal reservoirs [16,17], but could
at one point spill-over to humans. A notable example was the human Keystone virus case
in Florida in 2016, which is a disease that is normally only found in, e.g., local deer, raccoon,
and squirrel populations [16]. Humans (e.g., through tourism, recreational travel, and
immigration) can also serve as reservoirs for MBDs when they move between regions when
they are infected [18].

While many MBDs have not yet been identified in Arizona, it is important to note that
they may circulate but go unnoticed in the State because of (i) an incorrect diagnosis, and
(ii) infected individuals not seeking treatment as they are asymptomatic or believe they
have a common disease such as the flu [19]. Therefore, it is important to have adequate and
comprehensive surveillance systems in place, whereby all key players (animal reservoirs,
mosquito vectors, and human hosts) are monitored regularly and where timely information
is shared between stakeholders. Here we present a first step in that direction and identify
the mosquito species (organized alphabetically by genus) that have been found in Arizona
to date, as well as the (potential) risk they pose to both human and animal health. The last
comprehensive list of mosquito species in Arizona was published approximately 50 years
ago [20]. By presenting this inventory of historic and current records of mosquito species,
we aim to enhance the understanding of mosquito biodiversity in Arizona and guide the
development of more effective mosquito surveillance and control strategies.

2. Materials and Methods

References used in this review were selected from reading peer-reviewed publications
identified from searches of PubMed, NCBI, and Google Scholar, from database inception
up to 16 February 2024. The search terms used included “mosquito” in conjunction with
“Arizona”. Each species identified in Arizona was paired with additional search terms,
such as “feeding preference” and “vector competence”, with no language limitations.
The taxonomic and nomenclatural conventions for the species listed in this review paper
follow [21]. The data records of the species list in this review are from the following sources:

AZDHS—Arizona Department of Health Services. This indicates mosquito collections
reported to AZDHS by local vector control agencies across the state.

JB—John Burger. Student in the University of Arizona Department of Entomology in
the 1960s. He collected mosquitoes in the State and became a specialist in their taxonomy.
He identified many specimens in the University of Arizona Insect Collection (UAIC).
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NEON—National Ecological Observatory Network. The NEON Biorepository is
operated by Arizona State University in Tempe, AZ [22].

UAIC—University of Arizona Insect Collection. This indicates that at least one
mosquito specimen is housed in this collection, and includes records mentioned in [23].
The collection also contains mosquito specimens that JB and others collected.

3. Results: Checklist and Review of the Culicidae of Arizona (Insecta: Diptera)
3.1. Genus Aedes Meigen 1818

There have been 23 species of Aedes identified in Arizona (Table 6). Aedes aegypti
(Linnaeus) and Aedes albopictus (Skuse) can vector a range of arboviruses to humans,
including Zika, dengue, and chikungunya (Table 6).

In Arizona, the most common Aedes species of medical importance is Aedes aegypti
(Table 6). Over the years, Aedes aegypti has also been the most abundant Aedes species
reported to AZDHS by local vector control agencies. The collection of Aedes albopictus (also
known as the Asian tiger mosquito) in 2008 in Maricopa County is noteworthy since this
is the most invasive mosquito species in the world [24]. This collection was because of a
complaint about mosquitoes in an office in Chandler, which led to an investigation. It was
discovered that an employee brought back a ‘volcano plant’ from Hawaii to the office, and
Aedes albopictus was being produced from eggs laid on the volcanic rock attached to the
plant. The Maricopa County Environmental Services Department Vector Control Division
confiscated the plant, contained and isolated the eggs, and ultimately reared about 60 Aedes
albopictus (personal communication, James B. Will and John Townsend, Maricopa County
Environmental Services Department). Aedes albopictus is a competent vector for various
arboviruses, including Chikungunya virus [25], dengue virus [26], and Zika virus [27].
While this invasive species has not recently been found in Arizona, it has established itself
in several counties in the neighboring State of California [28].

Interestingly, while Culex Linnaeus species are typically held responsible for the
transmission of WNV (see below), Aedes albopictus can be a competent vector of the disease
under laboratory conditions [29]. WNV has also been isolated from field-collected (i) Aedes
albopictus in Baltimore, MD, in 2015 and 2017 [30], (ii) Aedes aegypti and Aedes epactius (Dyar
& Knab) in Chihuahua (shares border with Texas, USA), Mexico, in 2021 [31], (iii) Aedes
taeniorhynchus (Wiedemann) in eastern Puerto Rico, in 2007 [32], and (iv) Aedes vexans
(Meigen) in New Jersey, in 2001 [33].

It has been shown that Aedes sollicitans (Walker) can transmit EEE to animals (e.g., chick-
ens and horses) under laboratory conditions [34–36]. Aedes sollicitans and Aedes vexans have
also been implicated as vectors of EEE to humans during an outbreak in New Jersey [37].

Aedes vexans can transmit heartworm disease to dogs under laboratory conditions [38].
Dog heartworm disease has also been isolated from field-collected Aedes sollicitans and
Aedes taeniorhynchus, in the Yucatan, southeastern Mexico, in 2007 [39].

Some other Aedes species that have been collected in the State are not (yet) associated
with disease transmission and have also not been collected recently (but note that this may
be due to the collection methods and protocols in place, see Discussion). These species
include Aedes burgeri (Zavortink), Aedes monticola (Belkin & McDonald), Aedes muelleri
(Dyar), Aedes papago (Zavortink), Aedes pullatus (Coquillett), and Aedes purpureipes (Aitken).
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Table 1. List of Aedes species.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit/Carry

Aedes aegypti (Linnaeus 1762)

1931–1943, 1994–2022
(UAIC) Unknown Apache

Pima

Humans, dogs, swine [40]
Birds [41]

Yellow fever [42,43] a, †

Zika virus [44] a, †

[45,46] b, †††

dengue virus
[47] a, ††† [48] a, †

[49,50] b, †††

Chikungunya virus
[51] a, †, ††† [52] b, †††

West Nile virus [31] b, †††

On or before 1946 [53] Unknown Unknown

On or before 1997 [54]
CO2-baited traps and
hay-infused enhanced
oviposition traps [54]

Unknown

2003–2023 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Apache
Cochise
Coconino
Gila
Graham
Greenlee
Maricopa
Mohave
Pima
Pinal
Santa Cruz
Yavapai
Yuma

2018, 2021, 2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

2021 [55] BG-pro trap baited with
dry ice Maricopa (Tempe)

Aedes albopictus (Skuse 1895)

2008–2009 (Maricopa
County Vector Control)

Collected from a volcano
plant brought to Chandler,
Arizona, from Hawaii.

Maricopa Humans [56]

West Nile virus [29] a, †

[30] b

Chikungunya virus
[25] a, †, ††† [57] b, †††

dengue virus [26] a, †

[58] b, †††

Zika virus [27] a, †, †††

[46] b, †††

Aedes burgeri Zavortink 1972

1964 (UAIC) Unknown (labelled as Ae.
kompi) Pima

Unknown Unknown
1964 [59,60]

JB collected pupae (as Ae.
kompi) from a tree hole
[59,60]

Santa Cruz

Aedes cataphylla Dyar 1916

On or before 1956 [61] Unknown Coconino

Humans [23]
James Town Canyon virus
[62] b

1964 (UAIC) Unknown Apache

On or before 1973 [23] Unknown Coconino
Apache

Aedes dorsalis (Meigen 1830)

1944 (UAIC) Unknown Yuma

Humans [23,63]

California encephalitis
virus [63] b

Western equine
encephalitis virus [63] b

[64] b, †††

On or before 1956 [61] Unknown

Apache
Navajo
Pima
Yuma
Yavapai

On or before 1973 [23] Unknown

Apache
Navajo
Pima
Santa Cruz
Yuma

2012–2017, 2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Yuma
Yavapai
La Paz
Navajo
Cochise
Pima
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Table 1. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit/Carry

Aedes epactius Dyar & Knab 1908

1963–1964 (UAIC) Unknown Cochise
Pima

Humans [61]
Jamestown Canyon virus
[65] a, ††

West Nile virus [31] b, †††
2014 (AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Yuma

2016, 2021 (NEON) CDC CO2 light traps
baited with dry ice Pima

Aedes fitchii (Felt & Young 1904)

On or before 1956 [61] Unknown Coconino
Humans [66] Aleutian disease virus [67] a

Snowshoe hare virus [68] b
On or before 1973 [23] Unknown Coconino

Aedes hexodontus Dyar 1916 ♦

2007 (UAIC) Unknown Coconino

Unknown
Jamestown Canyon virus
[62,69] b

2013 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Coconino

Aedes implicatus Vockeroth 1954

1967 [70] Larval collection Greenlee Unknown Snowshoe hare virus [71] c

Aedes increpitus Dyar 1916

On or before 1974 [20] Unknown Unknown
Livestock (e.g., cattle),
wildlife (e.g., deer) [72]
Mammals [66]

California encephalitis virus
[73] a

2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Coconino

Aedes monticola Belkin & McDonald 1957 *

On or before 1957 [23] Unknown
Cochise
Graham
Pima
Santa Cruz

Humans [23] Unknown

2018, 2019, 2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

Unknown (UAIC) Unknown Unknown

Aedes muelleri Dyar 1920

1917 [63] Caught while biting a
human

Head of Indian Creek in
the Chiricahua Mountains
in Arizona at 6100 feet
elevation

Unknown Unknown
1922, 1928 [61] Unknown Cochise

Santa Cruz

1964–1968 (UAIC) Unknown Cochise
Pima

On or before 1973 [23] Unknown
Cochise
Pima
Santa Cruz

Aedes nigromaculis (Ludlow 1906)

On or before 1956 [61] Unknown Navajo
Yavapai

Humans and animals
[23]

Western equine encephalitis
[74] b

1964, 2010–2015 (UAIC) Unknown Pima

2012–2015, 2017 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Coconino
Navajo

2018 (NEON) CDC CO2 light traps
baited with dry ice Pima
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Table 1. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit/Carry

Aedes papago Zavortink 1970

On or before 1973 [23] Unknown Pima

Unknown Unknown2016–2018, 2021–2022
(NEON)

CDC CO2 light traps
baited with dry ice Pima

Unknown (UAIC) Unknown Pima

Aedes pullatus (Coquillett 1904)

1967 [70] Larval collection Greenlee
Unknown Unknown

On or before 1974 [20] Unknown Unknown

Aedes purpureipes Aitken 1941

On or before 1956 [61] Unknown Pima
Santa Cruz

Humans [23] Unknown

1996–2022 (UAIC) Unknown
Cochise
Pima
Pinal
Yavapai

2012–2013, 2015–2017,
2019 (AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Cochise
Maricopa
Pinal
Santa Cruz
Gila

2016–2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

Aedes sollicitans (Walker 1856)

On or before 1956 [61] Unknown Yuma Humans [23]
Birds and mammals [75]

West Nile virus [76] b, †††

Port Bolivar virus [77] b, †††

Cache Valley virus [78] a, ††

[79] b

Eastern equine encephalitis
virus [35] a, b, ††

Dog heartworm disease [39]
b, †††

Aedes taeniorhynchus (Wiedemann 1821)

1962 [80]
A single female, taken in a
biting collection at Yuma
Test Station

Yuma
Humans and Birds [81]
Mammals, reptiles and
birds [82]

West Nile virus [83] a, ††

[32] b, †††

Venezuelan equine
encephalitis virus [84]
a, ††, †††

Dog heartworm disease [39]
b, †††

Aedes thelcter Dyar 1918

On or before 1990 [85] Unknown Yuma

Unknown Unknown

2000–2022 (UAIC) Unknown Pima

2012–2017, 2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima

2016, 2018, 2021 (NEON) CDC CO2 light traps
baited with dry ice Pima

Aedes trivittatus (Coquillett 1902)

1953–1964 (UAIC) Unknown
Cochise
Navajo
Santa Cruz
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Table 1. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit/Carry

On or before 1956 [61] Unknown

Apache
Greenlee
Cochise
Santa Cruz
Gila

Mammals (humans,
deer, cat, horse, cow)
and avian [86]

Trivittatus virus [87] a, ††

[88] c

West Nile virus [89] a

Shunk river virus [90] b, †††2014–2017, 2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Apache
Cochise
Greenlee
Gila
Navajo
Santa Cruz
Coconino

2016, 2017, 2018, 2022
(NEON)

CDC CO2 light traps
baited with dry ice Pima

Aedes varipalpus (Coquillett 1902)

On or before 1956 [61] Unknown
Cochise
Coconino
Graham
Pima

Humans [66] California Encephalitis virus
[91]

1963 (UAIC) Unknown Gila

2015 (AZDHS) Unknown Navajo

Aedes ventrovittis Dyar 1916 **

1964 (UAIC) Unknown Greenlee
Unknown Unknown

On or before 1973 [23] Unknown Greenlee

Aedes vexans (Meigen 1830)

1938–2022 (UAIC) Unknown
Cochise
Navajo
Pima
Yuma

Humans [23,66]
Other mammals (deer,
horses, cats) and birds
(American robin) [92]

West Nile virus [93] a, †

[33] b

St. Louis encephalitis virus
[94] a

Zika virus [95] a, †, ††† [96]
b, †††

Eastern equine
encephalomyelitis virus [97]
b, †††

Dog heartworm disease [38]
a, ††

[98] b, †††

On or before 1956 [61] Unknown

Apache
Cochise
Graham
Greenlee
Maricopa
Pima
Pinal
Yavapai
Yuma

2012–2017, 2019–2020
(AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Cochise
Coconino
Gila
Graham
La Paz
Maricopa
Mohave
Navajo
Pima
Pinal
Santa Cruz
Yavapai
Yuma

2017, 2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

♦ One or more scientists in the State have expressed doubts about the accuracy of this collection record. * Ae.
monticola (Belkin & McDonald) is cataloged as Ae. varipalpus in the UAIC collection because of the difficulty in
morphologically distinguishing it from Ae. varipalpus. ** Ae. ventrovittis was on the 1973 list [23] but removed from
the 1974 list without explanation [20]. However, one female that was collected and identified as Ae. ventrovittis by
JB remains in the UAIC collection. a Vector competence study under laboratory conditions. b Virus isolated from
field-collected specimens. c Transovarial transmission. † Detection of virus in the saliva of mosquito post-infection.
†† Evidence of transmission to animals by an infected mosquito. ††† Disseminated infection (i.e., detection of virus
in body, legs, and/or wings of mosquito).
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3.2. Genus Anopheles Meigen 1818

There are five species of Anopheles that have been identified in Arizona, which are
Anopheles franciscanus (McCracken), Anopheles freeborni (Aitken), Anopheles hermsi (Barr &
Guptavanij), Anopheles judithae (Zavortink), and Anopheles pseudopunctipennis (Theobald).
Mosquitoes of the Anopheles genus can transmit malaria parasites to humans [99]. They can
also transmit filarial parasites, causing human lymphatic filariasis [100] and arboviruses,
such as Venezuelan equine encephalitis virus [101].

Three of the anopheline species that have been found in the State (Anopheles freeborni,
Anopheles hermsi, and Anopheles pseudopunctipennis) can transmit or carry human malaria
(Table 2). While human malaria is currently not locally transmitted in Arizona, historical
records show it was a public health concern in the 19th century [102]. Public health scientists
have suggested that Anopheles hermsi may have played an important role in its transmission
during that period. Laboratory tests have shown that Anopheles hermsi is susceptible to
Plasmodium vivax [103], suggesting that this species may have been historically implicated
in malaria outbreaks that occurred in California and New Mexico [102]. This raises concerns
for the potential introduction of P. vivax by travelers from regions where the parasite is
endemic, such as India [104], to Arizona, where An. hermsi is present (Table 2). Anopheles
hermsi is not a known vector of Plasmodium falciparum (the most deadly and prevalent
malaria parasite [105]); however, further testing is needed to evaluate its potential role in
the transmission of this malaria parasite. The last documented collection record of Anopheles
hermsi reported to AZDHS (Table 2) was in 2014. Again, it is important to note that this
may be due to the current trapping methods and surveillance strategies (see Discussion).

Finally, Anopheles pseudopunctipennis may be an important species to monitor. It was re-
cently collected in Pima County in 2022 (Table 2), is anthropophilic, and has been implicated
in P. vivax malaria [106] and Venezuelan equine encephalitis virus transmission [107].

Table 2. List of Anopheles species.

Collection Year Collection Method Collection Area (by County) Feeding Preference Diseases They Can/May
Transmit

Anopheles franciscanus McCracken 1904

1934–2022 (UAIC) Unknown

Cochise
Graham
Maricopa
Pima
Santa Cruz

Large mammals (Horse, cow
sheep) and small animals
(duck, turkey, rabbit, guinea
pig) [108]

Unknown

On or before 1956 [61] Unknown

Cochise
Coconino
Gila
Graham
Greenlee
Maricopa
Mohave
Navajo
Pima
Pinal
Santa Cruz
Yavapai
Yuma

2012–2017, 2019 (AZDHS)
A variety of CO2 traps and/or
BG-Sentinel and/or
Oviposition traps

Cochise
Coconino
Gila
Graham
Greenlee
Maricopa
Mohave
Navajo
Pima
Pinal
Santa Cruz
Yavapai
Yuma

2016, 2017, 2020–2022 (NEON) CDC CO2 light traps baited
with dry ice Pima
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Table 2. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Anopheles freeborni Aitken 1939 ♦

2013, 2017 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Santa Cruz
Pinal Large mammals [66]

Malaria [109] a, †

Northway serotype virus
[110] b

Anopheles hermsi Barr and Guptavanij 1989

1995 and 1997 [102] Unknown
Cochise
Navajo
Santa Cruz

Humans [102] Malaria [103] a
2004–2010, 2012, 2014
(AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Yuma
Cochise
Yavapai

Unknown (UAIC) Unknown Cochise
Pima

Anopheles judithae Zavortink 1969

1964 (UAIC) Unknown Cochise

Unknown Unknown

On or before 1969 [111] Unknown Unknown

On or before 1973 [23] Unknown

Cochise
Maricopa
Pima
Santa Cruz
Yavapai

Anopheles pseudopunctipennis Theobald 1901

2015, 2017 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Humans [112]

Venezuelan equine
encephalitis virus [107] b

Malaria [113] b

2016, 2018–2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

♦ One or more scientists in the State have expressed doubts about the accuracy of this collection record. a Vector
competence study under laboratory conditions. b Virus or parasite isolated from field-collected specimens.
† Detection of the parasite in the saliva of mosquito post-infection.

3.3. Genus Culex Linnaeus 1758

There are 14 species of Culex identified in Arizona. Mosquitoes of this genus can carry
or transmit arboviruses, such as WNV [76,114], SLEV [94], and Western equine encephalitis
(WEE) [23,115], but also Zika virus [96], which is commonly associated with Aedes species
(see below).

The most common Culex species of medical importance (vectors of, e.g., WNV &
SLEV) are Culex quinquefasciatus (Say) and Culex tarsalis (Coquillett) (Table 3). These have
also been the most abundant species reported to AZDHS in recent years. Many other
Culex species identified in the State can carry and/or transmit WNV (Table 3). WNV is
endemic to Arizona, with sporadic outbreaks of the disease [116,117], including the largest
documented outbreak of the disease in a single county in the history of the United States in
2021 [118].

While mosquitoes of the genus Aedes, particularly Aedes aegypti and Aedes albopictus,
are commonly implicated with the transmission of Zika [119,120], the arbovirus has been
found in field-collected Culex coronator (Dyar & Knab), Culex quinquefasciatus, and Culex
tarsalis [96].

Finally, Culex erraticus (Dyar & Knab) has been incriminated as a laboratory vector of
reptilian malaria caused by Plasmodium floridense [121].
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Table 3. List of Culex species.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Culex abominator Dyar and Knab 1909 ♦

2012–2014 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Yavapai
Yuma
Pinal

Unknown Unknown

Culex apicalis Adams 1903

1930–1963 (UAIC) Unknown Cochise
Pima

Reptiles, amphibians, and
birds [66] Unknown

On or before 1956 [61] Unknown

Apache
Coconino
Maricopa
Navajo
Pima
Yavapai

Culex arizonensis Bohart 1949

On or before 1956 [61] Unknown
Pima
Santa Cruz
Yavapai Unknown Unknown

1961–1964 (UAIC) Unknown Pima
Santa Cruz

Culex coronator Dyar and Knab 1906

1930–1963, 1996–2021
(UAIC) Unknown Unknown

Mammals and avian [122]

West Nile virus [114]
a, †, †††

[76] b, †††

Zika virus [96] b, †††

St. Louis Encephalitis
virus [94] a

On or before 1956 [61] Unknown Cochise
Pima

2012–2015, 2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima

Culex erraticus (Dyar and Knab 1906)

Humans and other
mammals, birds,
amphibians [123]

West Nile virus [76] b, †††

Eastern equine
encephalomyelitis virus
[97] b, †††

Eastern equine
encephalitis [124] b

Reptilian malaria [121] a, †

2012–2021 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Yuma

Unknown (UAIC) Unknown Yuma

Culex erythrothorax Dyar 1907 *

On or before 1956 [61] Unknown Cochise

Humans and birds [23] West Nile virus [125] b, †††

[93] a, †

On or before 1973 [23] Unknown
Cochise
Santa Cruz
Yuma

1998–2023 (UAIC) Unknown Pima

2012–2021 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Apache
Cochise
Coconino
Graham
Imperial
Maricopa
Mohave
Navajo
Pima
Pinal
Santa Cruz
Yavapai
Yuma
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Table 3. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Culex nigripalpus Theobald 1901

1962 (UAIC) Unknown Santa Cruz Mammals and avian [122]

West Nile virus [76] b, †††

St. Louis encephalitis
virus [126] b, †††

Eastern equine
encephalitis virus [127] b

Culex pipiens Linnaeus 1758 ♦

2012–2013, 2015, 2021
(AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Yuma Birds [128]
Humans [129]

West Nile virus [130] b, †††

Usutu virus [131] a, †

Avian malaria [132] b, †††

Culex quinquefasciatus Say 1823

1920–2023 (UAIC) Unknown Graham
Pima

Mammals and avian [122]

West Nile virus [133]
a, †, †††

[31,76] b, †††

Zika virus [96] b, †††

St. Louis encephalitis
virus [134] a

On or before 1956 [61] Unknown

Cochise
Graham
Maricopa
Pima
Pinal
Santa Cruz
Yuma

2010, 2012–2021 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pinal
Pima
Maricopa
Mohave
Yavapai
Yuma
Cochise
La Paz
Santa Cruz
Coconino
Graham
Navajo
Gila
Apache

2016, 2019, 2020, 2021,
2022 (NEON)

CDC CO2 light traps
baited with dry ice Pima

In 2021 [55] BG-pro trap baited with
dry ice Maricopa (Tempe)

Culex restuans Theobald 1901

On or before 1956 [61] Unknown Santa Cruz

Birds, humans and other
vertebrates [135]

West Nile Virus [136]
a, †, †††

La Crosse virus [137] a, †2015 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima

Culex stigmatosoma Dyar 1907 **

On or before 1956 [61] Unknown Cochise

Birds, mammals and
reptiles [138] West Nile virus [93] a, †

On or before 1973 [23] Unknown

Cochise
Pima
Pinal
Santa Cruz
Yuma
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Table 3. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Culex tarsalis Coquillett 1896

1935–2023 (UAIC) Unknown Pima

Birds, cattle, horses, and
humans [135]

West Nile virus [93] a, †

[31] b, †††

Zika virus [96] b, †††

St. Louis Encephalitis
virus
[94] a

[134] a

Western equine
encephalomyelitis [139] a

Western equine
encephalitis [115] a

[64] b

On or before 1956 [61] Unknown

Collected in large
numbers in every county
at the time except
Greenlee

2012–2021 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Apache
Cochise
Greenlee
La Paz
Maricopa
Mohave
Pima
Pinal
Yavapai
Yuma
Coconino
Gila
Graham
Navajo
Santa Cruz
Imperial

2016–2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

In 2021 [55] BG-pro trap baited with
dry ice Maricopa (Tempe)

Culex territans Walker 1856

On or before 1956 [61] Unknown Cochise
Amphibians, reptiles,
humans and other
mammals [66]

Unknown
2015, 2017 (AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima

Culex thriambus Dyar 1921

1953–2022 (UAIC) Unknown

Pima
Maricopa
Cochise
Santa Cruz
Yuma
Mohave

Birds [140] West Nile virus [140] b
On or before 1956 [61] Unknown

Apache
Cochise
Coconino
Gila
Greenlee
Maricopa
Mohave
Navajo
Pima
Pinal
Santa Cruz
Yavapai

2012–2013, 2015–2017,
2019 (AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Coconino

♦ One or more scientists in the State have expressed doubts about the accuracy of this collection record. * Culex
erythrothorax (Dyar) was listed as Culex pipiens quinquefasciatus (Say) in the 1973 and 1974 lists of mosquitoes of
Arizona [20,23]. ** Culex stigmatosoma (Dyar) was listed as Culex peus (Speiser), a now suppressed name, in the
1973 and 1974 lists of mosquitoes of Arizona [20,23]. a Vector competence study under laboratory conditions.
b Virus isolated from field-collected specimens. † Detection of virus in the saliva of mosquito post-infection.
††† Disseminated infection (i.e., detection of virus in body, legs, and/or wings of mosquito).
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3.4. Genus Culiseta Felt 1904

There are three species of Culiseta identified in Arizona as outlined in Table 4. Mosquitoes
of this genus can transmit arboviruses, such as WNV, WEE, and SLEV [93,94,115,141]. All
three species found in Arizona feed on mammals, including humans, and could serve as a
potential vector for the transmission of arboviral diseases that are already present in the
State, such as WNV and SLEV.

While mosquitoes of the Culex genus are more commonly associated with and screened
for diseases like WNV and SLEV, Culiseta incidens (Thomson) and Culiseta inornata (Williston)
have been successfully infected with WNV and SLEV in the laboratory (Table 4). While
these species have been collected recently in the State, they are not typically screened for
the presence of arboviruses (e.g., WNV) by public health departments.

Finally, Culiseta incidens and Culiseta inornata are confirmed laboratory vectors of
WEE [115]. The virus has also been isolated from field-collected Culiseta inornata in southern
Saskatchewan, Canada, in 1962 [64].

Table 4. List of Culiseta species.

Collection Year Collection Method Collection Area (by County) Feeding Preference Diseases They Can/May
Transmit

Culiseta incidens (Thomson 1869)

1917–2022 (UAIC) Unknown

Cochise
Maricopa
Navajo
Pima
Pinal

Mammals, including humans
[23,66]

West Nile virus [141] a

St. Louis encephalitis virus
[94] a

Western equine encephalitis
[115] a, ††

On or before 1956 [61] Unknown
Graham
Greenlee
Pinal

On or before 1973 [23] Unknown All counties at the time except
Pinal and Graham

2013, 2016–2017, 2019
(AZDHS)

A variety of CO2 traps and/or
BG-Sentinel and/or
Oviposition traps

Coconino
Yavapai
Coconino
Pima

2020 (NEON) CDC CO2 light traps baited
with dry ice Pima

Culiseta inornata (Williston 1893)

1920–1989 (UAIC) Unknown

Cochise
Maricopa
Mohave
Pima
Santa Cruz
Yuma

Humans and other mammals
(cattle) [66]

West Nile virus [93] a, †

St. Louis encephalitis virus
[94] a

Western equine encephalitis
[115] a

[64] b, †††

On or before 1956 [61] Unknown
Gila
Graham
Greenlee

On or before 1973 [23] Unknown All counties at the time except
Gila, Greenlee and Graham

2012–2017, 2019 (AZDHS)
A variety of CO2 traps and/or
BG-Sentinel and/or
Oviposition traps

Coconino
Pima
Yavapai
Yuma
Cochise
Gila
Maricopa
Mohave
Navajo
Apache

2018–2019, 2021–2022 (NEON) CDC CO2 light traps baited
with dry ice Pima

In 2021 [55] BG-pro trap baited with dry
ice Maricopa (Tempe)
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Table 4. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Culiseta particeps (Adams 1903) *

On or before 1956 [61] Unknown Santa Cruz

Humans and other large
mammals [23,66] Unknown

1963–1997 (UAIC) Unknown Cochise
Pima

On or before 1973 [23] Unknown
Cochise
Pima
Santa Cruz

* Culiseta particeps (Adams) was listed as Culiseta maccrackenae (Dyar & Knab) elsewhere [61]. Although this species
feeds on both humans and other animals, it has not been associated with any diseases. a Vector competence study
under laboratory conditions. b Virus isolated from field-collected specimens. † Detection of virus in the saliva
of mosquito post-infection. †† Evidence of transmission to animals by an infected mosquito. ††† Disseminated
infection (i.e., detection of virus in body, legs, and/or wings of mosquito).

3.5. Genus Orthopodomyia Theobald 1904

There are two species of Orthopodomyia identified in Arizona (Table 5). One of these
species (Orthopodomyia signifera (Coquillett)) has been implicated in the transmission of EEE
and WEE [142]. Although these two arboviruses are not currently circulating in the State,
a horse recently tested positive for EEE [14], which suggests that monitoring this genus,
in addition to, e.g., Aedes sollicitans, Aedes vexans, and Culex tarsalis, may be warranted.
There are also no recent records of this genus in Arizona, which again may be attributed to
surveillance systems currently in place (see Discussion).

Table 5. List of Orthopodomyia species.

Collection Year Collection
Method

Collection Area
(by County)

Feeding
Preference

Diseases They
Can/May
Transmit

Orthopodomyia kummi Edwards 1939

1958–1964
(UAIC) Unknown Santa Cruz

Unknown Unknown
On or before
1973 [23] Unknown Santa Cruz

Orthopodomyia signifera (Coquillett 1896)

On or before
1956 [61] Unknown Santa Cruz

Unknown

Eastern equine
encephalitis and
Western equine
encephalitis
[142]

1964–1968
(UAIC) Unknown Pima

Santa Cruz

On or before
1973 [23] Unknown Pima

Santa Cruz

3.6. Genus Psorophora Robineau-Desvoidy 1827

There are six species of Psorophora identified in Arizona (Table 6). Psorophora confin-
nis (Lynch-Arribalzaga) has been implicated as a probable vector of VEEV during epi-
demics and epizootics observed in Mexico, Venezuela, the southern United States, and
Guatemala [143]. Additionally, WNV has also been detected in field-collected Psorophora
columbiae (Dyar & Knab) and Psorophora signipennis (Coquillett) [116,144]. As Culex species
are more commonly associated with and screened for WNV, Psorophora species are not
included in the routine WNV surveillance by the public health departments in the State
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(see Discussion). Finally, field-collected Psorophora columbiae (Dyar & Knab) has been found
infected with dog heartworm in 2010, in Payne County, Oklahoma [145].

Table 6. List of Psorophora species.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Psorophora confinnis (Lynch Arribálzaga 1891) ♦ ,*

On or before 1956 [61] Unknown

Cochise
Graham
Greenlee
Maricopa
Pima
Pinal
Yavapai
Yuma

Large mammals [143]
Venezuelan equine
encephalitis virus [143]
a, †,†††

On or before 1973 [23] Unknown

Cochise
Graham
Greenlee
Maricopa
Pima
Pinal
Santa Cruz
Yavapai
Yuma

2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Yuma

Psorophora columbiae (Dyar & Knab 1906) *

1936–2022 (UAIC) Unknown

Cochise
La Paz
Maricopa
Pima
Pinal
Yuma

Humans [146]
Large mammals [147]

West Nile virus
[116,144] b, †††

Dog heartworm [145] b, †††2010, 2012–2017,
2019–2021(AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Greenlee
Maricopa
Mohave
Yuma
Cochise
Pinal
Santa Cruz
La Paz
Graham
Yavapai
Coconino

2016–2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

Psorophora ciliata (Fabricius 1794) ♦

2016–2017 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Mohave
Pima Mammals [148] Unknown

Psorophora discolor (Coquillett 1903)

On or before 1956 [61] Unknown Cochise
Santa Cruz

Humans and animals [23] Unknown

On or before 1973 [23] Unknown Cochise
Santa Cruz

2014–2017, 2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima

2014–2021 (UAIC) Unknown Pima

2018 (NEON) CDC CO2 light traps
baited with dry ice Pima
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Table 6. Cont.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They Can/May

Transmit

Psorophora howardii Coquillett 1901

On or before 1956 [61] Unknown Pinal

Humans [23] Unknown

On or before 1973 [23] Unknown Pinal

1997–2021 (UAIC) Unknown Pima

2012, 2014–2017, 2019
(AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Cochise
Santa Cruz

2022 (NEON) CDC CO2 light traps
baited with dry ice Pima

Psorophora signipennis (Coquillett 1904)

1936–2022 (UAIC) Unknown

Cochise
Graham
Greenlee
Navajo
Pima
Pinal
Yavapai

Unknown West Nile virus [144] b, †††

On or before 1956 [61] Unknown
Collected in every county
except Apache, Gila,
Navajo and Yuma

On or before 1973 [23] Unknown

Cochise
Coconino
Graham
Greenlee
Maricopa
Mohave
Pima
Pinal
Santa Cruz
Yavapai
Yuma

2012–2017, 2019 (AZDHS)
A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition traps

Pima
Yuma
Maricopa
Yavapai
Greenlee
Gila
Graham
Navajo
Cochise
Mohave

2016–2018, 2021–2022
(NEON)

CDC CO2 light traps
baited with dry ice Pima

♦ One or more scientists in the State have expressed doubts about the accuracy of this collection record. * The
southwestern Ps. columbiae was elevated to full species status and a Dyar name, Psorophora toltecum (Dyar and Knab
1906) was resurrected for it. Also, South American populations are considered Psorophora confinnis [149]. a Vector
competence study under laboratory conditions. b Virus isolated from field-collected specimens. † Detection of
virus in the saliva of mosquito post-infection. ††† Disseminated infection (i.e., detection of virus in body, legs,
and/or wings of mosquito).

3.7. Genera Toxorhynchites Theobald 1901 and Uranotaenia Lynch Arribálzaga 1891

Toxorhynchites moctezuma (Dyar & Knab), Uranotaenia anhydor (Dyar), and Uranotaenia
sapphirina (Osten Sacken) have been identified in Arizona (Table 7). These species have no
known association with disease transmission in humans and/or animals.
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Table 7. List of Toxorhynchites and Uranotaenia species.

Collection Year Collection Method Collection Area (by
County) Feeding Preference Diseases They

Can/May Transmit

Toxorhynchites moctezuma (Dyar & Knab 1906)

1955–2011 (UAIC) Unknown

Cochise
Pima
Pinal
Santa Cruz

Nectar and sugar [150] Unknown

2017 (AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition
traps

Coconino

Uranotaenia anhydor Dyar 1907

On or before 1956 [61] Unknown Cochise Unknown Unknown

Uranotaenia sapphirina (Osten Sacken 1868) ♦

2015 (AZDHS)

A variety of CO2 traps
and/or BG-Sentinel
and/or Oviposition
traps

Pima Unknown Unknown

♦ One or more scientists in the State have expressed doubts about the accuracy of this collection record.

Toxorhynchites moctezuma are non-blood-feeding mosquitoes known for their larval
predatory behavior (their larvae feed on the larvae of other mosquito species) [150]. There-
fore, they may be used as a biological control for other mosquito species that are responsible
for the transmission of MBDs.

There are no documented collection records of Uranotaenia anhydor since 1956 [61],
which may again be attributed to surveillance systems currently in place (see Discussion).
However, the collection of Uranotaenia sapphirina (Osten Sacken) was last reported to
AZDHS in 2015 (Table 7).

4. Discussion

There is a total of 56 mosquito species that have been identified in Arizona to date,
many of which can transmit disease to humans and/or other animals. This list serves as a
foundational resource for understanding the mosquito diversity in the State. It is meant
to guide both surveillance (e.g., target species in surveillance programs and molecular
detection of diseases in different mosquito species) and research (e.g., improving our
understanding of mosquito feeding preference and vector competence) agendas. While it is
a good starting point for continued discussions about mosquito surveillance practices in
the State, there are a few caveats, which we list below.

First, it is important to note that the morphological identification of some species
may have been inaccurate, since some species are morphologically indistinguishable. To
illustrate, the 1973 list included Anopheles barberi (Coquillett) [23], which may actually
have been Anopheles judithae. Anopheles hermsi was cataloged as Anopheles freeborni in the
1973 and 1974 lists [20,23], which may have been due to their similar morphologies [102].
While Aedes infirmatus was initially included on the 1973 and 1974 lists of mosquitoes
found in Arizona [20,23], it was noted as a misidentified Aedes trivittatus a few years
later [151]. Currently, many health departments use dichotomous mosquito identification
keys, which may result in misidentification. This can be overcome by species-specific
molecular identification tools, such as internal transcribed spacer 2 (ITS2) of ribosomal
DNA (rDNA) [152] and mitochondrial cytochrome C oxidase subunit 1 (CO1) gene-based
DNA barcoding [153]. This will target specific rDNA or DNA sequences that are unique
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to individual mosquito species and allow for highly specific identification, even among
closely related species with morphological similarities. Also, it is worthwhile to note that
dichotomous keys are sometimes the most cost-effective mosquito identification method for
some health departments and can be an effective identification tool if personnel are properly
trained. Accurately identifying species is important in assessing MBD transmission risks
and developing appropriate vector control strategies, since different species may differ in
their competency in transmitting diseases.

Second, there is often no information on the collection/sampling methods for many of
the mosquito species presented here. When information is available, CO2-baited traps (often
using dry ice) are most commonly used in the State. Maricopa County, the largest county in
Arizona that includes the city of Phoenix, uses EVS (Encephalitis-Virus-Surveillance) traps
more than other traps [154]. Although these traps collect Aedes aegypti [155–157], there are
other trap types that may be more efficient in trapping Aedes species, such as the BG-Sentinel
trap [157]. The same applies to anopheline species, where, e.g., CDC light traps [158] and
Mosquito Magnet Patriot Mosquito traps [159] may be more effective in capturing this
genus. In addition, other entomological indicators that can be used to guide vector control,
such as (i) larval habitat preference (assessed through, e.g., larval dipping [160] or the use
of environmental DNA [161]), (ii) indoor resting densities (assessed through, e.g., indoor
resting collections and window exit traps), and (iii) the time of mosquito activity (assessed
through, e.g., hourly switching of collection nets or rotator traps) are better assessed using
different sampling methods [160]. Using the appropriate mosquito sampling methods in
surveillance programs will ensure that the obtained data are reliable and relevant for public
health decision-making, by identifying the appropriate control tools to optimally target
vectors of medical importance [162].

Local Vector Control agencies should adopt a multifaceted mosquito surveillance
approach that encompasses not only monitoring mosquito abundance in various counties
but also investigating other ecological and behavioral relevant factors, such as breeding
site selection, host preferences, flight ranges, and insecticide resistance status. For example,
knowledge of their preferred breeding sites and areas allows for more effective and targeted
larviciding efforts. And—as outlined in Tables 2–7—there is a large variation in the feeding
preference (i.e., host preference) between the different mosquito species, which determines
the disease transmission risk to both humans and animals (i.e., an anthropophilic vector
poses a larger threat to human health than a zoophilic vector and vice versa for animal
health). It is also important to understand the flight ranges of the different species to
create and implement spatially informed vector control strategies [163]. Resistance to many
classes of insecticides has been observed in a range of mosquito species (e.g., Aedes, Culex,
Anopheles), which affects vector control efforts [164–167] and has been reported for the
main vector species (Culex quinquefasciatus, Culex tarsalis, and Aedes aegypti) by AZDHS and
partners. Continuously monitoring insecticide resistance and developing an insecticide
resistance management plan that also includes some of the other vector species listed in
this paper allows us to ensure that current and future insecticides remain effective in MBD
control and prevention.

Finally, to complicate matters, we need to face the fact that different mosquito species—
and even genera—that we are currently not monitoring (or are collecting but not testing
for diseases) may transmit common and emerging diseases in the State. For example, it
has been shown that Culex mosquitoes can play a role in Aedes-borne disease transmission
and vice versa. The same has been demonstrated between Culex and Psorophora or Anophe-
les species. Surveillance programs tend to primarily focus on, e.g., Aedes species when
investigating diseases commonly associated with that genus (e.g., Zika, dengue). WNV
is also mostly screened for in several Culex species, as they are considered the primary
vectors. This focused approach may lead to the potential oversight of other competent
vector species, which can lead to vector control decisions that do not necessarily impact dis-
ease transmission dynamics in local communities. Mosquito surveillance programs could
screen for diseases in other potential vector species, even if it is in a so-called “snap-shot
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entomological surveillance” approach (i.e., only at certain time intervals and in certain
places) [162].

Establishing a central mosquito biobank with a subset of specimens that are collected
throughout the State is warranted. This will serve as a repository that will greatly en-
hance surveillance programs by (i) providing a central location for long-term mosquito
preservation whereby specimens are available for training public health officials in species
identification and (ii) serving as a valuable resource for (future) genetic studies (e.g., se-
quencing) to look for, e.g., insecticide resistance markers and novel viruses, or conduct
species-specific molecular identification [168].

5. Conclusions

In this study, we presented a comprehensive and up-to-date list of all known mosquito
species identified in Arizona to date. This supersedes the most recent lists published about
50 years ago. We provided valuable insights into the mosquito fauna of Arizona and shed
light on the known feeding preferences of the different species, as well as the diseases they
can potentially carry and/or transmit to humans and animals. To effectively address the
public health implications of MBDs in the State, a large group of stakeholders—including
entomologists, epidemiologists, social scientists, wildlife ecologists, and ornithologists—
must collaborate and develop a mosquito surveillance framework that is tailored to better
identify the factors that govern the diseases that (i) currently circulate in the State and
(ii) may emerge here in the near future. Social scientists can play an important role in MBD
prevention efforts by providing insights into the link between MBDs and socioeconomic
status in order to identify locations or specific populations that are more at risk for MBDs.
For example, studies have shown that lower socio-economic status is linked with higher
disease incidence [169,170], although the opposite is observed as well [155]. The agricul-
tural sector should also be involved if they use (or have used) insecticidal classes that
are also used in public health [171,172]. Furthermore, it is paramount to collaborate with
irrigation and drainage districts [173], as the systems currently in place in our desert envi-
ronment may unintentionally create productive mosquito breeding areas (e.g., after flood
irrigation, and inside storm drains). Additionally, it is essential to engage the community
(through, e.g., community-based integrated vector management IVM programs [174]) to
help with eliminating and preventing stagnant water sources serving as breeding grounds
for mosquitoes. Furthermore, through collaborations with institutions like the USDA,
local public health professionals can be effectively trained to monitor and detect not only
autochthonous MBDs but also MBD occurrence through importations and in local zoonotic
reservoirs (rodents, reptiles, amphibians, birds, etc.). This interdisciplinary approach of
different stakeholders working together will ensure that proactive measures are put in
place to safeguard the health of our local communities.
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