
Citation: Zhou, L.; Hu, P.; Xie, J.; Li,

J.; Guo, C.; Yang, Z. Influence of

Endogenous Bacteria on Behavioral

Responses in Leptocybe invasa: An

Analysis of mVOCs. Insects 2024, 15,

455. https://doi.org/10.3390/

insects15060455

Academic Editor: Loganathan

Ponnusamy

Received: 25 March 2024

Revised: 16 May 2024

Accepted: 14 June 2024

Published: 16 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

insects

Article

Influence of Endogenous Bacteria on Behavioral Responses in
Leptocybe invasa: An Analysis of mVOCs
Leming Zhou 1, Ping Hu 1, Jinting Xie 1, Junjue Li 1, Chunhui Guo 2,* and Zhengde Yang 1,*

1 Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest
Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry,
Guangxi University, Nanning 530004, China; zlm160826@outlook.com (L.Z.); huping@gxu.edu.cn (P.H.);
xiejt333@163.com (J.X.); 13978755183@163.com (J.L.)

2 Ecological Environment Monitoring and Scientific Research Center, Yellow River Basin Ecology and
Environment Administration, Ministry of Ecology and Environment, Zhengzhou 450004, China

* Correspondence: guochunhui26@126.com (C.G.); dzyang68@126.com (Z.Y.)

Simple Summary: This study investigates the impact of the mVOCs emanating from nine cultivable
endogenous bacteria within Leptocybe invasa on the host’s behavioral selection.

Abstract: Microorganisms within insects play a vital role in maintaining the basal physiological
functions of the insects, with olfactory signals as critical components of insect survival strategies.
Leptocybe invasa (L. invasa), an invasive alien pest inflicting significant damage to eucalyptus trees,
harbors a rich and varied bacterial community within its body. However, the impact of its endogenous
bacteria and their microbial Volatile Organic Compounds (mVOCs) on the behavioral preferences
of L. invasa remains unexplored to date. This study focused on nine cultivable and dominant
endogenous bacterial strains within L. invasa. Using a Y-tube olfactometer, we investigated the
behavioral responses of female L. invasa to the mVOCs emitted by these bacteria. Concurrently, gas
chromatography–mass spectrometry (GC–MS) was employed to quantify the mVOCs produced
by these endogenous bacteria. Our findings revealed that Staphylococcus sp. exhibited the highest
attractiveness of L. invasa, whereas Microbacterium sp. and E. cloacae exerted the most significant
avoidance effects. The analysis of the mVOCs further highlighted the significance of aldehyde
compounds, notably 2,3,6-trichlorobenzaldehyde, and alkane compounds, such as eicosane, in
mediating the repellency and attraction effects. These results contribute to a deeper understanding of
the invasion mechanism of L. invasa and provide a scientific basis for developing novel biopesticides
or elicitors.

Keywords: Leptocybe invasa; endogenous bacteria; GC–MS; insect behavior; Y-tube olfactometer

1. Introduction

Leptocybe invasa Fisher and La Salle (Hymenoptera: Eulophidae) is an invasive pest
with a widespread global presence [1]. In recent years, L. invasa has posed a significant threat
as an emerging invasive pest, severely impacting China’s eucalyptus plants [2]. Robust
environmental adaptability, diverse reproductive tactics, diminutive size, gall-induced
protection, and overlapping life cycles characterize this insect species. Upon invading a
eucalyptus planting area, this pest quickly inflicts damage by consuming all the young
leaves and inducing the rapid formation of galls on their twigs and petioles [3,4].

Insects host diverse microorganisms, encompassing bacteria, fungi (including yeasts),
and viruses, which have coevolved synergistically over extended periods, forming intricate
micro-ecosystems [5]. Under basal circumstances, microorganisms usually establish a
dynamic equilibrium among themselves and with the host insects, resulting in a balance
that significantly contributes to maintaining the insects’ basal physiological functions [6–8].
It is well-known that bacteria pervade the insect realm, encompassing both the cutaneous
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associates and endosymbiotic bacteria within the organism. These resident microorganisms,
dwelling within the insect’s body, can be categorized based on their relationship with
the host into probiotics, pathogens, and intermediate flora [9–11]. Through long-term
co-evolutionary processes, insects have developed intimate relationships with bacteria that
facilitate host survival, reproduction, defense against natural enemies, and the elicitation
of various physiological responses in the host [5,7,12]. Insect symbiosis has garnered
significant attention, emerging as a critical research focus today. Presently, the roles of
insect symbiotic bacteria encompass providing nutrients and metabolic support to the
host, regulating the host’s environmental adaptation, influencing the invasiveness of the
host, bolstering the host insect’s resilience to biotic stresses, modulating the reproduction
of the host insect, and augmenting the host’s resistance to pesticides [12]. Considering
the substantial ecological and economic implications of L. invasa in eucalyptus systems,
a better understanding of this species’ biology and behavior becomes imperative. Such
research would help to shed light on the mechanisms underlying L. invasa’s great invasion
capacities and survival strategies and, therefore, inform targeted management interventions
to mitigate its devastating effects on eucalyptus plantations.

The detection of olfactory signals is vital for insect survival [13] as they employ sophisti-
cated chemosensory systems to decipher environmental odors, facilitating inter-population
communication, establishing predation relationships, and acquiring crucial information
on nutrient sources, mating partners, and habitat fitness, thereby rendering volatile com-
pounds central to insect survival strategies [14–16]. These signals yield profound insights
into the micro-behavioral dynamics within ecosystems [17], and extensive research high-
lights the pivotal role of microbial Volatile Organic Compounds (mVOCs) in modulating
essential insect behaviors such as foraging, mating, and oviposition [18–22]. For example,
the mVOCs from Beauveria bassiana influenced the oviposition in Spodoptera frugiperda
(Lepidoptera) [23]. In contrast, the mVOCs from the yeast Metschnikowia reukaufii and
the bacterium Asaia astilbes affected Bombus impatiens and its feeding behavior, with the
bumblebee showing a preference for the mixture for the habitat and the yeast for nectar [24].
It has also been demonstrated that specific agricultural pest endosymbionts can attract
hosts. For instance, Staphylococcus aureus has been shown to attract Mexican fruit flies,
Anastrepha ludens [25]. Culturable bacteria from Bactrocera dorsalis (Tephritidae), includ-
ing Enterobacteriaceae, Enterococcaceae, and Bacillaceae, produce mVOCs that attract more
adults of the same species [26]. Endosymbionts like Enterobacter cloacae and Klebsiella
pneumoniae exhibit high attractiveness to bactrocera zonata [27], illustrating mVOCs’ role in
directing foraging, mate selection, and population patterns [12]. Additionally, numerous
hymenopteran wasps utilize mVOCs from their prey or the surrounding environment to
locate food sources for their offspring [24]. For instance, the hyperparasitoid enemies of
parasitic wasps can reliably use the odors of parasitized caterpillars to find the parasitic
wasp larvae developing inside the caterpillar [28]. The mVOCs emitted by certain fungi
facilitate host localization over long distances, whereas bacteria and yeasts may contribute
to short-distance localization [29].

Previous research has found that, upon invasion by L. invasa, eucalyptus trees mount a
defense response characterized by producing a substantial array of secondary metabolites
to deter the pest. Intriguingly, particular bacteria hosted by L. invasa can enzymatically
degrade these eucalyptus-derived defensive compounds, effectively assisting the pest in
circumventing the host resistance and ultimately achieving pervasive colonization [30]. A
scholarly inquiry has predominantly centered around L. invasa’s biological attributes, inva-
sion strategies, and host-adaptation mechanisms [31–34]. The research on the endogenous
bacteria and their host L. invasa, particularly the influence of cultivable bacterial strains and
their emitted mVOCs on the host behavioral responses, remains relatively scarce, with no
comprehensive studies documented thus far.

This study focuses on the cultivable endogenous bacteria of L. invasa as the subject of
investigation [35,36] to identify bacterial strains that significantly influence the behavioral
choices of L. invasa and characterize the specific mVOCs involved in these processes. We
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hypothesized that these bacteria, which are widespread in the host, may respond differently
to the host even when different bacterial species are closely related and that the species
of bacteria may influence the behavioral choices of the host insect by releasing different
mVOCs. Ultimately, these mVOCs could shape the behavioral decision-making processes
of L. invasa. This study employs a Y-tube olfactometer setup to systematically observe and
quantitatively assess the behavioral responses of female L. invasa insects when exposed to
mVOCs, thereby revealing their tendencies to be attracted to or repelled by distinct mVOCs.
Simultaneously, gas chromatography–mass spectrometry (GC–MS) technology is utilized
to elucidate these mVOCs’ chemical constitution and pinpoint the chemically informative
constituents significantly influencing L. invasa’s behavioral reaction. Our objective is to
comprehensively elucidate the bacterial strains with a significant impact on L. invasa, as
well as the mVOCs they produce, and subsequently identify mVOCs with the potential for
the development of attractants or repellents, thereby providing scientific underpinnings for
the sustainable management of L. invasa.

2. Materials and Methods
2.1. Preparation of Experimental Materials

Nine dominant endogenous bacterial strains were isolated and cultured from fe-
male specimens of L. invasa. The isolated strains included Actinobacteria, Proteobacte-
ria, and Firmicutes [36]. The information about the bacteria is shown in Table 1. All
these strains were maintained in the Forest Protection Laboratory within the College of
Forestry at Guangxi University (CN). Newly emerged L. invasa females were collected
from the Teaching and Experimental Base of the College of Forestry at Guangxi University
(108◦17′ E, 22◦51′ N). The host plant for these wasps was identified as the hybrid clone
Eucalyptus grandis × Eucalyptus tereticornis, precisely the DH201-2 variety, provided by the
Guangxi Academy of Forestry Sciences (108.35′ E, 22.92′ N).

Table 1. Basic information on the nine endogenous bacteria isolated from L. invasa.

Phylum Genus Strain Name Gram’s Dyeing

Actinobacteria
Arthrobacter Arthrobacter sp. G+

Microbacterium Microbacterium sp. G+
Brachybacterium Brachybacterium sp. G+

Proteobacteria

Pseudomonas Stenotrophomonas sp. G−
Klebsiella K. pneumoniae G−

Acinetobacter A. baumannii G−
Enterobacter E. cloacae G−

Firmicutes
Staphylococcus Staphylococcus sp. G+

Bacillus B. altitudinis G+

2.2. Cultivation of Bacteria

The procedure described involves inoculating and cultivating a preserved bacterial
strain in LB (Luria-Bertani Medium). LB was utilized, with each liter containing 10 g of
tryptone, 5 g of yeast extract, and 10 g of NaCl dissolved in 950 milliliters of deionized
water. The pH was adjusted to 7.0 using five mol/L NaOH, and the volume was adjusted
to 1 L with deionized water. The prepared LB medium was sterilized in an autoclave
(DGL-35G, LICHEN Technology Co., Shaoxing, China) for 20 min. Initially, the strain was
used in a sterile inoculation loop inoculated into a centrifuge tube with 5 mL of LB and
incubated overnight (dark conditions) for 18 h in a constant temperature shaker set at 28 ◦C
and 220 rpm. Subsequently, a sterile pipette was used to withdraw 0.05 mL of the bacterial
suspension and re-inoculate it into a 250 mL conical flask that contained 50 mL of LB. This
culture was then incubated in the shaking incubator for 24 h under the same conditions
of 28 ◦C and 220 rpm. Meanwhile, an uninoculated LB was maintained under identical
cultivation conditions.
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2.3. Behavioral Assays of L. invasa

The behavioral responses of L. invasa female insects to the endogenous bacteria were
evaluated using a transparent glass Y-tube olfactometer. The system consists of two 15 cm
long arms forming a 60-degree angle between them and a final stem of 20 cm. The inner
diameter of the tubes was 1 cm. Air, propelled by a pump, sequentially passed through
a flow meter, a filter, a humidifier, a splitter, and odorant-containing bottles before be-
ing distributed into the two arms of the Y-tube. A 1 mL bacterial suspension volume
(5 × 108 cells/mL) was pipetted onto sterile cotton wool and placed inside the scent source
bottle. Sterile cotton wool soaked with LB served as a control. Once all components were
connected, the air pump was activated, and the gas flow rate was set to 30 mL/min using
a flow meter. After 5 min of ventilation, the experiment commenced. Recordings started
after a 2 min acclimation period against the wind direction, excluding any L. invasa that
entered the selection arm within the initial 2 min; such insects were reintroduced into the
olfactometer. The experiment consisted of ten test groups, including nine combinations of
bacteria + air and one combination of LB + air serving as a control. In each group, 20 female
L. invasa individuals were observed, and the trials were repeated four times. The microbial
odor source was replaced with a new one for each set of experiments; i.e., it was replaced
four times. To preclude aggregation behavior during each trial, a single L. invasa individual
was released per experimental run, allowing it to choose by introducing a second insect
for subsequent experimentation. Each female insect was subjected to testing only once. If
it traversed the selection arm by at least 3 cm and remained for more than 10 s, its choice
was recorded; otherwise, it was documented as not having made a choice. After each trial,
the test insects were replaced, and the Y-tube, collection bottles, and scent source bottles
were cleaned with 75% ethanol, dried, and reused. Additionally, the orientation of the odor
source was alternated. Finally, the number of insects choosing different odor sources was
recorded. The experiments were performed during two time slots: 8:00–10:00 a.m. and
4:00–7:00 p.m., under constant room temperature and a light intensity of 260 lux.

2.4. Collection of mVOCs

VOCs emitted by the nine strains of endogenous bacteria were collected using the
Dynamic Headspace Sampling Method [37]. The operations are as follows: first, each
bacterial strain was inoculated into 250 mL conical flasks containing 50 mL of LB and
incubated at 28 ◦C constant agitation at 220 rpm for 24 h. This was completed to ensure
ample induction of bacterial metabolism to produce mVOCs. Simultaneously, an equivalent
volume of uninoculated LB served as a control. A food-grade polyethylene roasting bag
(dimensions 430 mm × 550 mm) was tightly wrapped around the conical flask containing
the cultivated bacterial strain. A PTFE flexible hose connected the roasting bag to an
atmospheric sampling system, with one end inserted into the bag and the other attached to
an adsorption tube filled with Tenax ®® TA (Yichen Technology Co., Ltd., Fujian, China)
sorbent tubes. The atmospheric sampler was activated to continuously draw air from
within the roasting bag at a steady flow rate of 300 mL/min while introducing clean air
filtered through activated carbon to maintain stable internal bag pressure. Sampling for
each replicate lasted 10 h, with each treatment repeated three times. Upon completion, the
adsorption tubes were repeatedly eluted with 2 mL of chromatographically pure n-hexane.
The collected eluates were pooled into pre-labeled round-bottom flasks and concentrated
using a rotary evaporator. The water bath was set to 65 ◦C, with the rotor speed adjusted
between 30 rpm and 120 rpm throughout the concentration process. The bath temperature
and rotor speed were judiciously modulated as needed to prevent overheating or splashing.
Once the eluate was reduced to approximately 2 mL, heating was discontinued, and
rotation continued to minimize residual vapor. Finally, the concentrated sample was
carefully aspirated into a precooled long-gauge syringe and then transferred into a 1 mL
brown glass vial, promptly stored at −20 ◦C in a refrigerator protected from light.
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2.5. Identification of mVOCs

MVOCs were determined using gas chromatography–mass spectrometry (7890A,
Agilent Technologies, Santa Clara, CA, USA). Nine bacterial groups and one LB were
determined, ten groups in total, and six biological replicates per species. A 5% Phenyl
Polysilphenylene-siloxane (30 m × 0.25 mm × 0.25 µm; Agilent Technologies) column was
employed, and 1 µL of the concentrated sample was introduced into the gas chromatograph
via non-split injection. The helium of 99.9% purity served as the carrier gas, delivered
at a 1.0 mL/min flow rate, while the precolumn pressure was maintained at 7.0699 Psi.
The initial column temperature was set to 45 ◦C for a 10 min hold, followed by a rapid
ramp to 100 ◦C at a rate of 3 ◦C/min for 1 min, then to 150 ◦C at a rate of 5 ◦C/min for
5 min, and ultimately to 250 ◦C at a rate of 10 ◦C/min for a final 10 min hold. Under the
operating conditions for mass spectrometry, the electron ionization source was employed
with an electron energy of 70 eV. The interface temperature was set to 250 ◦C, the ion source
temperature to 230 ◦C, the quadrupole rod temperature to 150 ◦C, and the mass scanning
range was set to 20~500 m/z using full scan mode, and mVOCs were automatically searched
using the NIST 2014 (National Institute of Standards and Technology, Mass Spectral) library,
with tentative identifications of mVOCs achieved by comparing standard mass spectra and
retention times. The relative percentage content of each volatile was calculated using peak
area normalization [38].

2.6. Statistical Analysis

The experimental data were processed and analyzed using SPSS 22.0 (IBM Corporation,
Armonk, NY, USA), while Hiplot was utilized for graphing [39]. We compared the total
number of females making different choices (bacteria or LB) to the total number of females
in each test group, i.e., dividing the number of females making a choice by the 20 females
per test and converting it to a percentage. Ultimately, we obtained the mean selection rate
by combining data from four replicates and used a t-test test to determine whether selection
rates differed significantly between treatment groups [40]. Subsequently, after performing a
one-way Analysis of Variance (ANOVA) on the response data of the compounds to ascertain
if there existed any overall differences among the various compounds, a subsequent Tukey’s
Honestly Significant Difference (HSD) multiple comparison test was carried out to discern
and statistically distinguish those compounds displaying significant variations among
them [41]. We used K-means clustering heatmaps to analyze mVOCs’ profiles (i.e., identify
compounds common and specific to bacterial strain).

3. Results
3.1. L. Response of L. invasa to Different Endogenous Bacteria

Overall, a tiny proportion of insects (less than 0.01%) were found to have made no choice.
There were significant differences in the overall response of female L. invasa to the nine en-
dogenous bacterial strains, as depicted in Figure 1. Four bacterial strains—Stenotrophomonas sp.
(p = 0.00061), B. altitudinis (p = 0.00183), K. pneumoniae (p = 0.00145), and Staphylococcus sp.
(p = 0.01247)—demonstrated a significantly attractive effect on female L. invasa; we named
them “attractive” strains. Among these, Staphylococcus sp. exhibited the highest attrac-
tion rate (78.33% of the wasps chose this bacterial strain versus the control), followed
by Stenotrophomonas sp., B. altitudinis, and K. pneumoniae, with attraction rates of 70.00%,
65.00%, and 66.67%, respectively. In contrast, the female L. invasa exhibited reduced at-
traction to the mVOCs produced by Arthrobacter sp. (p = 0.00026), Microbacterium sp.
(p = 0.00002), and E. cloacae (p = 0.00171) with relative proportions of 25.00%, 21.67%, and
21.67%, and we collectively referred to these three strains as “avoided” strains. For the re-
maining two bacterial strains, A. baumannii (p = 0.2302) and Brachybacterium sp. (p = 0.5342),
the overall response proportions of the female L. invasa to their respective mVOCs were
48.33% and 45.00%, which did not exhibit a statistically significant difference compared to
the LB (p = 0.070); these strains were classified as “neutral” strains.
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3.2. Identification Results of mVOCs

We analyzed the mVOCs produced by nine different bacterial strains, identifying
forty-one mVOCs (Table 1), which we categorized into eight distinct chemical classes
(Figure 2). Notably, the aldehydes and alkanes had the highest percentage of total abun-
dance among all the compounds, about 46.32% and 34.28%. Following these are terpenes
and ketones, whose combined relative content amounted to roughly 6.0% and 5.5%, respec-
tively. As shown in Figure 2, the aldehydes exhibited a significantly higher relative content
in the “avoided” strains than other bacterial strains, whereas their content was relatively
lower in the “attractive” strains. For the “neutral” strains, the relative content of both the
alkanes and aldehydes fell between those of the “attractive” and “avoided” strains.
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The “attractive” strains, comprising Stenotrophomonas sp., B. altitudinis, K. pneumoniae,
and Staphylococcus sp., exhibited alkane contents of 18.9%, 17.8%, 17.3%, and 16.4%, and
aldehyde contents of 7.3%, 8.0%, 12.0%, and 9.7% for all the compounds, respectively.
In comparison, the “avoided” strains, including Arthrobacter sp., Microbacterium sp., and
E. cloacae, showed alkane compositions of 6.1%, 7.7%, and 2.5%, along with aldehyde
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contents of 16.4%, 17.1%, and 14.8% for all the compounds, respectively. The “neutral”
strains, represented by A. baumannii and Brachybacterium sp., displayed alkane and aldehyde
levels at 12.3% (for both strains) and 14.6% and 12.4% for all the compounds, respectively.

Upon the closer examination of the individual strains, it was discovered that
K. pneumoniae and E. cloacae emitted a great amount of ketones, constituting 17.5% and 20.2%
of the total ketone content, respectively. Meanwhile, Staphylococcus sp. and E. cloacae pos-
sessed relatively high terpene contents, representing 20.0% and 23.0% of the total terpenes.
Intriguingly, despite sharing this trait of high content, these strains exhibited contrasting
effects on L. invasa: E. cloacae demonstrated avoidance properties, whereas K. pneumoniae
and Staphylococcus sp. exhibited attractive effects. Moreover, the “avoided” strain E. cloacae
contained 45.8% of all the aromatics, while the “attractive” strain Stenotrophomonas sp.
harbored 38.6% of all the olefins.

3.3. Identification of Common mVOCs

We reported the relative content of all the mVOCs within each bacterial strain alongside
the statistically significant differences (Table 1). Of particular interest, a conserved set of
six compounds were identified across the entire panel of nine bacterial species. These
ubiquitous mVOCs were visually represented in their relative content among the nine
bacteria and subsequently subjected to K-means clustering (Figure 3). Notably, the resulting
clustering configuration aligned well with L. invasa’s behavioral preferences inferred from
the olfactory cues, with clusters forming around the “avoided” strains in one group, and
the “attractive” and “neutral” strains showing similar chemical profiles. Figure 3 showed
that two bacterial species from the Firmicutes phylum (Staphylococcus sp. and B. altitudinis)
produced comparable levels of shared mVOCs, both eliciting an attractive effect on the host.
Conversely, L. invasa exhibited three distinct behavioral responses towards four bacteria
classified under Proteobacteria.
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Figure 3 illustrated that the concentration of 2,3,6-trichlorobenzaldehyde (an aldehyde
compound) was significantly higher in the “avoided” strains compared to the “attrac-
tive” ones, while the “neutral” strains exhibited levels intermediate between the two.
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Nonanal reached its highest concentrations in the neutral strains Brachybacterium sp. and
A. baumannii. γ-terpinene was found in notably high amounts across “attractive” strains
such as Stenotrophomonas sp. and Staphylococcus sp., the “avoided” strain E. cloacae, and
the neutral strain A. baumannii. While 2-hydroxy-4-methyl-2-pentanone predominantly
attained its peak levels in the “avoided” strains E. cloacae and Arthrobacter sp., its pres-
ence in the “attractive” strain K. pneumoniae was also considerable. In contrast, tridecane
and p-xylene exhibited minimal variations in concentration across all the strains, with no
statistically significant differences discernible.

3.4. Identification of Strain-Specific mVOCs

In the K-means clustering analysis of the specific mVOCs, we observed the emergence
of branch configurations deviating from those derived from the common mVOCs; for
instance, the clustering structure of the unique mVOCs produced by Firmicutes changed.
Nonetheless, the “avoided” and “attractive” strains consistently clustered into two distinct
groups without overlap. Drawing from Table 1 and Figure 4, several key insights emerged.
When comparing across all the strains, eicosane exhibited the highest relative content in
the “attractive” strains, highlighting its significant role in these organisms. Conversely,
tetradecane and ethylbenzene showed peak relative content in the “avoided” strains,
underscoring their crucial function in conferring repellency. This evidence underscored the
differential importance of these compounds in defining the behavioral responses elicited
by the bacterial strains.
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Moreover, in conjunction with Table 1, we discovered the existence of three dis-
tinctive compounds—cis-9-tetradecen-1-ol, acetic acid butyl ester, and 2-propenoic acid
butyl ester—that were exclusive to the “avoided” strains, specifically Arthrobacter sp.,
Microbacterium sp., and E. cloacae. Conversely, a singular compound, 1-hexanol-2-ethyl, was
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uniquely found in the “attractive” strains comprising Stenotrophomonas sp., B. altitudinis,
K. pneumonia, and Staphylococcus sp.

From the perspective of the individual strains, we particularly noted certain compounds
that were unique to those strains and undetected in others despite being present at lower
concentrations. For instance, among the strains that exhibited “avoidance” characteristics, the
unique mVOCs of Arthrobacter sp. comprised 1-methyl-2,3-dinitrobenzene and isobutyl acetate,
whereas, for E. cloacae, the distinct compound was 1-ethyl-3-methylbenzene. Regarding the
“attractive” strains, the presence of 1,3,5-cycloheptatriene marked Stenotrophomonas sp. as its
unique mVOC; Staphylococcus sp. not only possessed 1,3,5-cycloheptatriene but also featured
1-octanol; B. altitudinis’s unique mVOCs included 2-hexanone, 2,2-dimethyl-3-hexanone, and
p-cymene, and, similarly, the list of unique compounds for K. pneumoniae encompassed
2-hexanone and 2,2-dimethyl-3-hexanone.

4. Discussion

This study identified four “attractive” strains, three “avoided” strains, and two “neu-
tral” strains that affected L. invasa differently through insect olfactory behavioral tests.
Our investigation revealed that various endogenous bacterial species within L. invasa
potentially contributed to modulating the host’s behavioral responses. These data may in-
dicate that the mVOCs from this concentration of “attractive” strains (Stenotrophomonas sp.,
B. altitudinis, K. pneumoniae, and Staphylococcus sp.) and “avoided” strains (Arthrobacter sp.,
Microbacterium sp., and E. cloacae) may have potential attraction or avoidance effects on
female L. invasa. Several previous studies unveiled different bacterial species’ attraction or
avoidance effects and their metabolites on a broad spectrum of insect behaviors [42]. In
the case of Solenopsis invicta, it was observed that the Arthrobacter woluwensis cultured in its
nest soil can attract worker ants. In contrast, several Firmicutes bacteria, including Bacillus,
Paenibacillus, Brevibacillus, and other species, typically exhibited an avoidance effect on
ants [42]. Further studies have shown that K. oxytoca and Citrobacter freundii significantly
lured female stable flies [43]. Our results revealed that the relationship between bacteria
within the same phylum and their produced chemical profiles is a complex issue, and our
results merely illustrated that two bacteria within Firmicutes exhibited an attractive effect
on L. invasa and shared similar chemical characteristics. Nonetheless, this observation
might represent a coincidental structure due to the small sample size since other bacteria
within the same phylum in our experimental outcomes did not display comparable chem-
ical features. This result was consistent with our earlier conjectures. Accordingly, even
within the same bacterial phylum, the behavioral effects of these bacteria on the same or
different insect species may vary considerably due to other factors. This underscores the
complexity and diversity of bacteria in regulating insect behavior [44].

Via the GC–MS analysis, we revealed that the differences in the content of aldehyde
and alkane were closely related to the luring or avoiding behavior of L. invasa. This
demonstrated the vital role of microbial mVOCs in regulating the behavioral choices
of insects. From our findings, it was observed that L. invasa showed a preference for
strains producing high amounts of alkane compounds and avoided those emitting a high
concentration of aldehyde compounds. This likely indicates that high levels of alkanes
can strongly lure L. invasa through olfactory signals, whereas elevated concentrations of
aldehydes can deter L. invasa. Moreover, terpenes and ketones appeared to potentially
cooperate with aldehydes and alkanes, jointly impacting the behavioral preferences of
L. invasa. Growing evidence suggests that volatile compounds from bacteria can also induce
changes in insect behavior through olfactory cues [45]. For instance, the esters, organic
acids, aromatic compounds, and cycloalkanes produced by Corynebacterium sputi repelled
the parasitic behavior of Aphidius colemani [44]. Phenylethyl alcohol, another compound
emitted by Staphylococcus xylosus, is a feeding attractant for Aphis fabae [46,47]. However,
the content of a single compound class does not entirely determine the behavioral response
of insects, and the synergistic effect of different compounds at different concentrations may
be the key to deciding the attraction or avoidance of insects.
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Although the two K-means clustering analyses of mVOCs yielded different group-
ings, a consistent observation was the clear distinction between the “avoidance” and
“attraction” strains without any crossover, highlighting fundamental disparities between
these strain categories regarding the compounds produced and their concentrations. This
pattern strongly suggested that the preference of L. invasa for a particular strain was
jointly governed by the variety and relative content of the compounds secreted by that
strain. In this study, we showed that the experimental evidence conclusively identified
2,3,6-trichlorobenzaldehyde as the central mVOC triggering the avoidance response in
L. invasa. In contrast, nonanal did not appear to exert a significant effect on the behavioral
inclination of L. invasa. As for γ-terpinene and 2-hydroxy-4-methyl-2-pentanone, their
impact on the insect behavior proved more nuanced and multifaceted, implying that these
compounds may have played complex regulatory roles in a myriad of interactions between
the insect and its environment [48,49]. Notably, 2,3,6-trichlorobenzaldehyde, classified as
an aromatic aldehyde, has been documented to stimulate pronounced electroantennogram
responses in Helicoverpa armigera adults [50]. Correspondingly, an agarose preparation
enriched with a wide array of aromatic compounds but devoid of phenolic materials has
been found to exhibit trapping effects on H. armigera adults [51]. Such a phenomenon may
be attributed to the proportion of specific compounds in their mVOCs.

The alkane compounds had a high relative content in the “attractive” strains, sug-
gesting that alkane compounds may serve as crucial signaling molecules eliciting the
attraction response of L. invasa. Among these, eicosane warranted particular attention.
Our study also demonstrated that tetradecane and ethylbenzene likely had a signifi-
cant avoidance effect on L. invasa. Specifically, cis-9-tetradecen-1-ol, butyl acetate, and
butyl 2-propenoate were found solely in strains exhibiting avoidance properties, whereas
2-ethyl-1-hexanol was identified uniquely in those attracting the insect. This distribution
reinforced the direct correlation between specific compounds and the strains’ tendencies to
attract or repel. Moreover, special attention should be paid to certain compounds, such as
1-ethyl-3-methylbenzene, 1,3,5-cycloheptatriene, 2-hexanone, and 2,2-dimethyl-3-hexanone,
which, even at low concentrations, maintained strain specificity and potentially enhanced
the strains’ appeal to insects. However, the same compounds might have different effects on
different species of insects. In the context of host-finding behavior, eicosane extracted from
the integument of Mythimna separata was found to be instrumental in facilitating the host
localization process by the parasitoid Microplitis mediator [52]. Similarly, within the suite of
cuticular mVOCs obtained from the rice moth, eicosane emerged as a standout compound,
demonstrating a significantly heightened attraction potential for its corresponding para-
sitoid, Habrobracon hebetor, surpassing the efficacy of the other constituents examined [53].
In terms of insect behavioral tests, various concentration gradients of eicosanes were eval-
uated for their avoidance effects on the foragers of Apis florea, where a concentration of
10.0% eicosanes attracted Apis andreniformis foragers, while 5.0% eicosanes repelled the
insects [54]. In subsequent investigations, it was imperative to account for the effects of
the culture medium type and pH conditions on the qualitative and quantitative synthesis
of mVOCs [55], particularly in light of the prior findings indicating that the generation of
mVOCs by common Enterobacteriaceae strains inhabiting the gut of Bactrocera tryoni was
subject to considerable strain-specific and media-dependent variations, as well as showing
semi-quantitative fluctuations depending on the pH levels and duration of incubation [39].
Hence, differences exist in the perceived sensitivity of insects to various compounds,
and alterations in the compound concentrations and pH could significantly influence
their effects [39,56,57].

An intriguing question arose: “Why would endogenous bacteria exert detrimental
effects on host behavior?” We posit that symbiotic bacteria, ubiquitous across diverse
insect species, primarily augment the host’s defense against pathogens and parasites [58].
Prior research had established that the endosymbiotic bacteria inhabiting pea aphids
(Acyrthosiphon pisum) were efficacious in suppressing the growth of parasitic wasp (Aphidius
ervi) larvae, thereby dramatically enhancing aphid survival following wasp attacks [59].
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Furthermore, these endosymbionts contribute to synthesizing vital nutrients, facilitating
their hosts’ growth and reproductive success [60]. Nevertheless, the exact functional
implications of endosymbionts within L. invasa necessitate further exhaustive scientific
exploration to unravel.

In summary, this study, utilizing insect behavioral assays coupled with GC–MS
analysis, elucidated the intricate relationship between nine bacterial mVOCs and the
olfactory-driven behavioral choices of L. invasa, thereby improving our comprehension
of the role of mVOCs in the ecological modulation of insect behavior. Furthermore, we
identified the critical mVOCs with attracting properties: eicosane and 1-hexanol-2-ethyl, as
well as those with avoidance effects: 2,3,6-trichlorobenzaldehyde, tetradecane, ethylben-
zene, γ-terpinene, cis-9-tetradecen-1-ol, acetic acid butyl ester, and 2-propenoic acid butyl
ester. These findings provided a foundational dataset for developing novel eco-friendly
attractants or deterrents targeting L. invasa and furnished a substantial underpinning for
further inquiries into the functional significance of microbial mVOCs in the ecological regu-
lation of insect behavior. While this investigation has established linkages between specific
mVOCs and L. invasa’s behavioral preferences, a more profound examination is warranted
concerning the interplay among compounds, concentration-dependent effects, and environ-
mental variables’ influence on the volatile emissions and insect behavioral responsiveness.
Future research endeavors should concentrate on elucidating the dose-dependent effects,
synergistic interactions between compounds, ecological factors, as well as conducting prac-
tical demonstration studies. Additionally, employing GC-EAG/olfactometry techniques
with synthetic standards can facilitate the precise manipulation of the behavior of Leptocybe
invasa, thereby enhancing our understanding and control strategies.
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Appendix A

Table 1. Relative content and statistical significance results of 41 mVOCs, illustrated with letter coding; note: data followed by different letters indicate significant differences.

Class Compound/Bacterial
Name Arthrobacter sp. Microbacterium

sp. E. cloacae A. baumannii Brachybacterium
sp.

Stenotrophomonas
sp. B. altitudinis K. pneumoniae Staphylococcus

sp.

Aldehyde

2,3,6-
Trichlorobenzaldehyde 58.11 ± 9.37 a 60.57 ± 2.01 a 51.60 ± 3.75 b 40.42 ± 5.91 c 48.30 ± 9.99 bc 24.87 ± 2.68 d 43.91 ± 8.28 c 33.65 ± 9.93 d 26.39 ± 3.56 d

3-Cyclohexene-1-
acetaldehyde,
α,4-dimethyl

0.63 ± 0.15 a 0.27 ± 0.05 b / / / / 0.08 ± 0.02 c 0.06 ± 0.02 c /

Nonanal 1.32 ± 0.37 b 1.36 ± 0.32 b 1.66 ± 0.20 b 2.81 ± 0.76 a 2.42 ± 0.19 a 0.53 ± 0.23 c 0.60 ± 0.25 c 1.40 ± 0.30 b 1.84 ± 0.24 b

Retinal 0.91 ± 0.45 b 0.28 ± 0.13 c 0.26 ± 0.07 c 1.32 ± 0.35 a / 0.78 ± 0.09 b / 0.32 ± 0.13 c 0.21 ± 0.06 c

Undecanal 0.69 ± 0.21 c 1.22 ± 0.21 b 1.33 ± 0.11 b 1.33 ± 0.67 b 3.55 ± 1.98 a 0.93 ± 0.16 b 0.16 ± 0.04 d 0.53 ± 0.16 c 1.41 ± 0.15 b

Alkane

Decane / 0.31 ± 0.09 c / 1.40 ± 0.31 b / 2.14 ± 0.57 a 0.64 ± 0.18 bc 0.93 ± 0.17 b 2.56 ± 0.31 a

1-Tridecene 0.43 ± 0.13 c / / 1.00 ± 0.26 b 1.17 ± 0.58 b 0.17 ± 0.06 d 0.13 ± 0.02 d 0.48 ± 0.06 c 1.43 ± 0.19 a

Dodecane / / / 0.56 ± 0.26 bc / / 0.31 ± 0.11 c 0.79 ± 0.23 b 1.33 ± 0.40 a

Eicosane 5.06 ± 2.19 e 8.11 ± 2.25 de / 10.89 ± 2.43 d 25.16 ± 7.24 c 37.92 ± 6.45 b 43.74 ± 11.10 a 37.21 ± 4.51 b 29.50 ± 3.31 c

Hexadecane 1.02 ± 0.51 cd 2.82 ± 1.34 c 4.17 ± 1.62 b 9.31 ± 2.35 a / 0.50 ± 0.10 d 1.57 ± 0.31 cd 0.95 ± 0.25 d 2.75 ± 0.59 c

Pentadecane / 0.64 ± 0.32 d / 3.15 ± 0.87 b 4.32 ± 0.73 a 1.86 ± 0.65 c 0.51 ± 0.25 d 0.54 ± 0.20 d 2.68 ± 0.93 bc

Tetradecane 7.37 ± 2.14 a 7.09 ± 3.08 a 4.19 ± 0.06 b 5.55 ± 1.82 b 0.91 ± 0.43 d 4.71 ± 1.58 b / 2.84 ± 1.39 c 4.59 ± 0.50 b

Tridecane 3.37 ± 1.81 a 1.77 ± 0.33 b 1.38 ± 0.88 b 1.81 ± 0.61 b 2.22 ± 0.84 b 1.85 ± 0.51 b 0.65 ± 0.16 c 1.85 ± 0.43 b 2.43 ± 0.51 b

Undecane / / / 1.07 ± 0.25 a / 0.93 ± 0.18 a / / 1.10 ± 0.35 a

Terpene
Eucalyptol 0.95 ± 0.32 ab 0.72 ± 0.20 b 1.11 ± 0.33 a / 1.20 ± 0.31 a 0.57 ± 0.14 b 0.43 ± 0.22 c 0.74 ± 0.15 b 0.76 ± 0.22 b

γ-Terpinene 6.49 ± 1.19 ab 4.20 ± 0.55 b 10.97 ± 3.55 a 9.37 ± 3.03 a 1.58 ± 0.51 c 8.13 ± 1.06 a 2.41 ± 1.05 c 4.68 ± 1.17 b 9.61 ± 1.96 a

Ketone

2-Hexanone / / / / / / 0.13 ± 0.03 b 0.77 ± 0.24 a /

2-Pentanone,
4-hydroxy-4-methyl- 6.55 ± 1.53 b 4.04 ± 1.01 c 8.92 ± 0.85 a 1.45 ± 0.67 d 6.07 ± 1.31 b 3.11 ± 1.00 c 2.05 ± 1.58 d 6.49 ± 1.18 b 5.49 ± 1.15 b

3-Hexanone,
2,2-dimethyl- / / / / / / 0.13 ± 0.03 b 0.48 ± 0.17 a /
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Table 1. Cont.

Class Compound/Bacterial
Name Arthrobacter sp. Microbacterium

sp. E. cloacae A. baumannii Brachybacterium
sp.

Stenotrophomonas
sp. B. altitudinis K. pneumoniae Staphylococcus

sp.

Alcohol

cis-9-Tetradecen-1-ol 1.03 ± 0.13 b 0.88 ± 0.08 b 1.46 ± 0.64 a / / / / / /

Benzene,
1-ethyl-3-methyl- / / 2.18 ± 0.41 a / / / / / /

3-Hexanol / / / / / / 0.28 ± 0.05 b 1.42 ± 0.23 a /

2-Heptanol, 3-methyl- 0.32 ± 0.03 bc / / / / 0.45 ± 0.06 b 0.40 ± 0.04 b 1.54 ± 0.35 a 0.24 ± 0.02 c

1-Octanol / / / / / / / / 0.46 ± 0.51 a

1-Hexanol, 2-ethyl- / / / / / 0.52 ± 0.15 b 0.66 ± 0.18 b 1.00 ± 0.24 a 1.04 ± 0.25 a

Aromatic

1-Butanol, 3-methyl- / / 0.33 ± 0.03 b 3.37 ± 0.15 a / / / / /

p-Xylene 1.72 ± 0.53 bc 1.64 ± 0.16 bc 3.06 ± 0.82 a 1.42 ± 0.71 c 0.85 ± 0.21 d 2.14 ± 0.51 b 0.23 ± 0.07 e 0.43 ± 0.07 e 1.70 ± 0.60 bc

p-Cymene / / / / / / 0.06 ± 0.02 a / /

o-Xylene / / 1.49 ± 0.52 a / / / / / /

Mesitylene / 0.81 ± 0.20 b 1.39 ± 0.45 a / / / / / /

Ethylbenzene 0.39 ± 0.13 b 0.26 ± 0.23 b 0.94 ± 0.23 a / / / / / 0.20 ± 0.10 b

Benzene,
1-methyl-2,3-dinitro- 0.27 ± 0.09 a / / / / / / / /

Ester

Hydrazinecarboxylic
acid, phenylmethyl

ester
0.28 ± 0.14 bc 0.30 ± 0.03 bc / 3.78 ± 0.12 a 0.33 ± 0.17 bc 0.64 ± 0.16 b 0.08 ± 0.04 c 0.10 ± 0.04 c 0.23 ± 0.08 bc

Isobutyl acetate 0.23 ± 0.11 a / / / / / / / /

Bis(2-ethylhexyl)
phthalate 2.16 ± 0.88 a 1.14 ± 0.32 b / / 0.77 ± 0.30 c 2.03 ± 0.05 a 0.40 ± 0.11 c 0.51 ± 0.11 c /

Acetic acid, butyl ester 0.43 ± 0.13 c 0.78 ± 0.16 b 1.43 ± 0.19 a / / / / / /

2-Propenoic acid,
butyl ester 0.35 ± 0.05 b 0.46 ± 0.17 b 1.99 ± 0.38 a / / / / / /

Olefin

1,3,5-Cycloheptatriene / / / / / 3.30 ± 0.36 a / / 0.33 ± 0.03 b

Hexane, 2,4-dimethyl- / 0.32 ± 0.07 a / / / / 0.04 ± 0.01 b / 0.26 ± 0.09 a

Methylene chloride / / / / 1.15 ± 0.59 b 1.92 ± 0.65 a / / 1.79 ± 0.40 a

Styrene / / 0.14 ± 0.04 b / / / 0.38 ± 0.09 a 0.30 ± 0.10 a /
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