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Simple Summary: Due to a combination of monandry and promiscuity in Grapholita molesta (Busck),
this study investigated the interaction of different adult ages (3, 5, or 7 days) and mating history
(unmated or mated) in each sex on the mating selection, development of the reproductive system,
and offspring production in the laboratory. The results show that the physiological status of females
may be responsible for mating and reproductive decisions, and the physiological status of males
may regulate the ranges in behavioral changes. As a species with high reproductive potential, the
presence of males accelerated the growth of the G. molesta populations. Our results would provide
theoretical data to further understand the reproductive biology of G. molesta in the field.

Abstract: Grapholita molesta (Busck) is a pest of rosaceous fruit plants worldwide. Due to a combination
of monandry and promiscuity in G. molesta, the age and mating history of both sexes significantly
affected the mating and reproductive success. In this study, the interactions of different ages (3, 5, or
7 days) and mating history (unmated or mated) in each sex on the mating selection, reproductive
system, and offspring production were investigated in the laboratory. The results showed that these
differences mainly occurred in young females or males, associated with unmated or mated state.
Especially, the 3-day-old unmated females were preferred by the 7-day-old males but discriminated
against by the 3- or 5-day-old unmated males, whereas the 3-day-old mated males were preferred by
the 3-day-old mated or 7-day-old females but discriminated against by the 3- or 5-day-old unmated
females. The lengths of the ovarian ducts were affected by age in the unmated females, with the
greatest length being found at 7 days old. The size of testes varied with age in the unmated males,
being the largest at 3 days old. At 3 days old, the testes size of the unmated males was larger than that
of the mated males. The pairing of 5-day-old unmated females × 3-day-old mated males maximized
the successful matings. The least productive pairing was 7-day-old unmated females × 5-day-old
mated males. The pairing of 5-day-old mated males × 3-day-old mated females had the lowest
number of matings and the highest number of offspring. The pairing of 3-day-old mated females
× 3-day-old mated males had a high rate of mating success and the most offspring. These results
revealed the different roles between females and males because of physiological states in terms of the
reproductive biology in G. molesta.

Keywords: Grapholita molesta; adult physiological status; mating preference; reproductive system;
offspring production

1. Introduction

Grapholita molesta (Busck) (Lepidoptera: Tortricidae) is a worldwide orchard pest and
is a serious problem in the fruit-growing regions of China [1]. It attacks almost all rosaceous
crop species, including the species of Prunus, Malus, and Pyrus, from the “green tip” stage
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up to harvest, over a 4-to-9-month period [2]. Over the growing season, the infestation
site of G. molesta on the plant changes, from attacks by first-generation larvae on sprouting
shoots in spring and early summer to feeding by larvae of the summer generations inside
the fruit [3]. Until recently, this pest has been primarily controlled by the use of one or
more broad-spectrum insecticides [4]. The issues associated with the heavy and repeated
use of insecticides, including insecticide resistance, toxicity to natural enemies, and food
residues, have provided an impetus for the research and development regarding new
control technologies [5].

Sex pheromones are used for monitoring, mass trapping, and mating disruption
and are effective supplements to pesticides against G. molesta [6]. The value of using sex
pheromones may depend on the biological details of the target pest, including the adult
reproductive status, mating system, population density, mobility, etc. [7]. The features of
G. molesta, such as a male-biased sex ratio, multiple mating by males, and single mating
by females, made it more likely that the use of sex pheromones will increase control costs
and have limited effectiveness [8]. However, most of the previous studies have reported
that multiple mating in insects can significantly reduce the efficacy of sex pheromones for
managing field populations [9]. Thus, it is very important to understand the reproductive
biology of G. molesta for the improvement and optimization of sex pheromone technology.

Mating systems have a great impact on the reproductive output of insects [10]. Because
of the asymmetry in the number of partners in certain mating systems, an individual’s
fitness is a function of both its own mating strategy and its partner’s mating strategy [11].
In the case of polyandry, the ability of a portion of the males to monopolize the access to
the females is thought to be the fundamental determinant of such mating systems [12],
whereas the female’s investment in reproduction is dictated by her physiological state, the
expectation of future reproductive opportunities, and the trade-off between the two [13].
We reported earlier that, under laboratory conditions, the male G. molesta preferred young
females, whereas the females preferred mated males [14]. These observations suggest that
the mating system of G. molesta is modulated by the age and mating history of both sexes,
which may be related to the development of the female ovaries and male ductus among
the mating and egg-maturation and oviposition stages [15,16]. However, when one sex
encounters the opposite sex based on different physiological states in this type of mating
system, the variations in their mating and reproductive behavior because of individual
fitness are unclear.

Here, we investigated the effects of age and mating history between the two sexes
on the mate preference, reproductive system, totally successful mating, and fertile egg
production in laboratory tests. The determination of the plastic degree in the mating system
of G. molesta will help to clarify the reproductive biology in order to improve the efficacy of
sex pheromone control technology.

2. Materials and Methods
2.1. Insect Rearing

G. molesta used in our experiments were from a colony established with larvae collected
from infested orchards (Taigu, Shanxi, China) in 2010 and maintained for >80 generations.
Approximately 30% of this laboratory population was renewed each year with new larvae
collected from the same orchards. To accomplish this, larvae from infested shoots or fruits
were collected and taken to the laboratory, removed from the plant material, and placed
in glass tubes (3.6 cm diameter × 8 cm high). These tubes were filled with an artificial
diet [17], plugged with absorbent cotton balls, and held until larvae pupated. Larvae
were reared at 26 ± 0.8 ◦C, 75 ± 5% RH, and a photoperiod of 15:9 (L:D) h, following
the protocol of Kong et al. [18]. We observed no difference in adult emergence, mating,
and reproductive performance between laboratory and wild strains [8]. Moths used in
experiments were collected on the morning of their emergence and were designated on
that day as 1-day-old moths.
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2.2. Experimental Designs Applicable to All Experiments

Unmated or mated females and males, of 3 different ages (3, 5, or 7 days old) were
used in all experiments. A single unmated female or male at 1–2 days old was individually
paired with the opposite sex of the same age in a mating cage, and then was isolated in
separate cage until the required age states of the experiments were obtained. Especially,
the number of eggs laid by mated females was recorded daily before paring in Exp.#3.
Courtship bouts were observed from the initial approach of a male until either copulation
began, the female flew away, or 30 min had elapsed. Copula was judged to have occurred
if wings of a male were under wing of a female, and male’s antennae were placed on the
female’s back [19]. All observations were conducted from 5 p.m. to 9 p.m., which was
the time of maximal calling by females, and a diode red light emitter was used for insect
observation during the scotophase [14]. All experiments were conducted from 2020 to 2023.

2.2.1. Exp. #1. Mating Selection

The behavioral responses of one sex to the opposite sex based on six physiological
states in G. molesta were evaluated in a six-arm olfactometer in agreement with the method
reported in Cao et al. [20,21]. Briefly, the six-arm olfactometer consisted of a central chamber
(9.5 cm internal diameter, 7.5 cm high) with six arms (6 cm length, 1.5 cm internal diameter),
each connected to a glass tube (20 cm length and 1.5 cm diameter) that projected outwards at
an equidistance, with 60◦ angles between pairs of flasks. Each arm was connected through
Teflon tubing to a triangular glass bottle (250 mL), which was used to contain test stimuli.
The airflow was set at 200 mL·min–1 to drive the odor source to test moths. Previous
reports show that male hairpencil components during courtship attract sex-pheromone-
releasing females from several centimeters [22]. One sex with each of six physiological
states in G. molesta was introduced in groups (1 individual per group) with a brush, and six
physiological states of the opposite sex were used as six test stimuli. Moths that entered
an arm of the olfactometer within 20 min were counted as having made a choice for a
particular odor source. Moths that did not enter an arm within this time were considered
‘non-responders’. After each test, the olfactometer was cleaned, dried, and the arms were
rotated (60◦). Bioassays were replicated 12 to 14 times and were carried out between
17:00 p.m. and 21:00 p.m. A red light was also placed in the center, 60 cm above the
chamber, to eliminate any light bias. Before the beginning of the olfactometer assays, the
system was cleaned with ethanol (95%) and rinsed with distilled water. The olfactometer
system was placed in a controlled temperature room held at 25 ± 2 ◦C. The selectivity rate
was calculated as Equation (1).

Selective rate(%) =
Adult number with behavioral responses

Total number of test adults
× 100% (1)

2.2.2. Exp. #2. Anatomical and Morphological Observations of Reproductive System

After cocooning, fifty male pupae and fifty female pupae were selected randomly
and held for adult emergence. Moths of known age could be dissected to observe the
morphology of their reproductive systems according to the report by Zhang et al. [16]. For
dissections, unmated or mated moths were chosen for each of 3 ages (3, 5, and 7 days).
Moths were dissected in a glass Petri dish (90 mm diameter) (Renyuan Company, Cangzhou,
China) containing phosphate buffered saline (PBS) buffer (Shenggong Biological Engineer-
ing Co., Ltd., Shanghai, China) using a Leica stereomicroscope M205C (Shanghai Baihe
Instrument Technology Co., Ltd., Shanghai, China). A tip tweezer (Shenggong Biological
Engineering Co., Ltd., Shanghai, China) was used to hold the thoracic-abdominal junction
of the moth, and another tip tweezer was used to remove the cephalothorax. The tweezers
were then used to open the abdominal epidermis along the thoracic-abdominal junction
to reveal the abdominal cavity. The ovary or testes were then collected, removing other
surrounding tissues [23]. Ovaries and testes were transferred to a glass slide with a drop of
PBS buffer. The glass slide was placed under a Leica DFC450 digital camera (Dayueweijia
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Science and Technology Ltd., Beijing, China) attached to a Leica stereomicroscope M205C,
and the ovaries or testes were photographed. Either five females or five to six males were
examined for each mating state. We recorded the lengths of ovarian ducts and the long and
short diameters of testes in order to evaluate their development [24]. The size of testes was
calculated using Equation (2) [25].

Size of tests =
π × long diameter × short diameter

4
(2)

2.2.3. Exp. #3. Mating and Reproductive Traits

The integrated effects of varying age and mating history of males and females on
mating and reproductive success were assessed in one experiment with three setting
conditions (SCs) as follows.

In SC 1, a single 3-day-old virgin or mated female was individually paired with a
single virgin or mated male of 3 ages (3, 5, or 7 days old).

In SC 2, a single 5-day-old virgin or mated female was individually paired with a
single virgin or mated male of 3 ages (3, 5, or 7 days old).

In SC 3, a single 7-day-old virgin or mated female was individually paired with a
single virgin or mated male of 3 ages (3, 5, or 7 days old).

All pairings were performed individually in transparent mating cages (1.5 L bottles
cut along the center; 15 cm diameter, 20 cm high) with absorbent cotton saturated daily
with a 5% sugar-water solution. We observed and recorded the start and end times of
each copulation, number of the day on which copulation occurred, and total number of
copulations. The number of eggs laid on the surface of mating cage was recorded daily,
and each egg was marked with a small circle outside mating cage using a marker pen
until the female died. It normally takes three days for most fertile eggs to hatch. After
this time, eggs were considered fertilized if they were darker in color [18]. The number of
fertile eggs (those developing to the blackhead stage) vs. infertile eggs (no darkening) were
counted during the three-day observation period. The preoviposition, oviposition, and
post-oviposition periods of females were recorded until they died. For males and females
that died before any egg was laid, only the lifespan was recorded [8]. All containers were
maintained in a growth chamber under the same conditions as the colony. If a test female
or male died during the course of the experiment, the replicate was discarded. Females
mated once in their lifetime and laid eggs the same day they mated [8]. Of the 233 couples
observed of this study, 100% (n = 233) of the pairs mated once; 24.03% (n = 56) of the pairs
mated twice; 8.58% (n = 20) of the pairs mated three times; 4.29% (n = 10) of the pairs mated
four times; 2.15% (n = 5) of the pairs mated five times; 0.43 (n = 1) of the pairs mated six
times. So, oviposition information of females with mated state after the mating test was
not available. However, we just wanted to know the effects of mating on oviposition by
mated females.

All treatments under each of SCs were repeated at least six times because of high
mortality rate of old moths. Overall, three-hundred-forty-nine cages were set up, and
three-hundred-forty-nine males and three-hundred-forty-nine females were used for these
observations.

2.3. Statistical Analysis

All data sets were square root transformed to stabilize their variances before analysis.
For data from selection tests, the selective rate of one sex within each of six physiological
states to the opposite sex in six physiological states was analyzed using chi-squared tests.
For virgin or mated states, both the lengths of ovarian ducts of females and size of testes
of males at 3 ages were analyzed with one-way ANOVA. Post hoc comparisons of means
were conducted with Tukey’s multiple range tests. For the two morphological indicators,
significant differences between the virgin and mated states for each of both sexes within
each of 3 ages were analyzed using independent sample tests. Different t-tests for equality
of the means were used when equal variances could be assumed (Levene’s test for equality
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of variances, p > 0.05) or not (Levene’s test for equality of variances, p < 0.05). When
one sex within each of six physiological states was individually paired with the opposite
sex within each of six physiological states, the number of matings per cage, duration of
matings per cage, number of eggs laid by a female per cage after pairing, percentage of
eggs hatched per cage after pairing, total number of eggs laid by a female per cage, and
total percentage of eggs hatched per cage among eighteen pairing combinations within
each of two mating histories for each of both sexes were analyzed with one-way ANOVA.
Post hoc comparisons of means were conducted with Tukey’s multiple range tests.

3. Results
3.1. Effect of Adult Physiological States on Selection of One Sex for the Opposite Sex

When males of six physiological states (3 ages × mated vs. unmated) were selected
by females within each of six states (3 ages × mated vs. unmated), the male conditions
had no significant effect on the rates for five of the six female conditions. No significance
was found for either the 5-day-old (χ2 = 3.997, df = 5, p = 0.55) or 7-day-old (χ2 = 6.674,
df = 5, p = 0.246) virgin females, or the 3-day-old (χ2 = 5.364, df = 5, p = 0.373), 5-day-old
(χ2 = 6.959, df = 5, p = 0.224), or 7-day-old (χ2 = 1.83, df = 5, p = 0.872) mated females
(Figure 1B–F). Only for the 3-day-old virgin females was there any significance among the
male states, with selection having the highest rate for the 7-day-old males (χ2 = 13.703,
df = 5, p < 0.05) (Figure 1A).

Conversely, there was no significant difference among the selective rates of six physio-
logical states of females for either the 3-day-old (χ2 = 8.024, df = 5, p = 0.155), 5-day-old
(χ2 = 7.729, df = 5, p = 0.172), or 7-day-old (χ2 = 1.082, df = 5, p = 0.956) virgin females
(Figure 1G–I), or 5-day-old (χ2 = 10.103, df = 5, p = 0.072) or 7-day-old (χ2 = 0.608, df = 5,
p = 0.988) mated females (Figure 1K–L). However, the selective rates by the 3-day-old mated
males were higher for either the 7-day-old virgin females or 3-day-old and 7-day-old mated
females when compared to the 3-day-old or 5-day-old virgin females, but their rates did
not differ from that of the 5-day-old mated females (χ2 = 12.274, df = 5, p < 0.05) (Figure 1J).

3.2. Effect of Adult Physiological States on Reproductive System

The length of the ovarian ducts of the mated females was not affected by age (F = 1.962,
df = 2, 14, p = 0.183). However, the length of the ovarian ducts of the 7-day-old unmated
females was significantly longer than that of the 3-day-old or 5-day-old unmated females
(F = 6.921, df = 2, 15, p < 0.05). There was no significant difference in the length of the ovarian
ducts between the virgin and mated females at any age: 3 (t = −1.326, df = 8, p = 0.221), 5
(t = 0.846, df = 9, p = 0.419), or 7 (t = 2.236, df = 8, p = 0.056) days old (Figure 2A).

The testes size of the mated males was not affected by age (F = 1.39, df = 2, 14, p = 0.286).
However, the testes size of the 3-day-old unmated males was larger than that of the 5-day-
old or 7-day-old unmated males (F = 7.827, df = 2, 14, p < 0.05). There was no significant
difference in testes size between the unmated and mated males at 5 (t = −0.554, df = 8,
p = 0.594 > 0.05) or 7 (t = −0.24, df = 8, p = 0.816 > 0.05) days old. The tests size of the
unmated males was, however, larger than that of the mated males at 3 days old (t = 0.237,
df = 8, p < 0.05) (Figure 2B).



Insects 2024, 15, 457 6 of 13Insects 2024, 15, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 1. Comparison of the selective rates (%) (mean ± SEM) of one sex of Grapholita molesta in 6 
physiological states with the opposite sex, which also has 6 physiological states. Different lowercase 
letters indicate significant differences among physiological states of one sex within each physiolog-
ical state of the opposite sex at p < 0.05, based on Turkey�s multiple-range test. 
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Figure 2. Effect of 6 physiological states on the lengths of ovarian ducts of females (A) and the testes
size of males (B) in Grapholita molesta (mean ± SEM). Different uppercase or lowercase letters indicate
significant differences among ages within each sex on unmated or mated states at p < 0.05, based on
Turkey’s multiple-range test. There was a significant or non-significant difference in either ovarian
ducts or testes between the unmated and mated females within each age group at a p < 0.05 or
p > 0.05 level, based on Levene’s test for equality of variances.

3.3. Effect of Adult Physiological States on Mating and Reproductive Success

When 3, 5, or 7-day-old unmated females were paired with six physiological states of
males, there were significant differences among the cages with the six physiological states
of males in (1) the number of matings per cage (F = 2.134, df = 17, 170, p < 0.05), (2) number
of eggs laid by a female per cage (F = 5.942, df = 17, 170, p < 0.05), and (3) percentage of
eggs hatched per cage (F = 2.238, df = 17, 170, p < 0.05), but not in the duration of matings
per cage (F = 1.516, df = 17, 170, p = 0.095) (Table 1).

Table 1. The number of matings per cage, duration of matings per cage, number of eggs laid by a
female per cage, and percentage of eggs hatched per cage from males in one of six physiological
states paired with an unmated female within each age group in the laboratory.

Unmated
Female Male Number of

Matings per Cage
Duration of
Matings per
Cage (min)

Number of Eggs
Laid by a Female

per Cage

Percentage of
Eggs Hatched per

Cage (%)

3-day-old

3-day-old
Mated 2.40 ± 0.45 ab 63.20 ± 11.90 a 135.80 ± 18.28 d 61.73 ± 10.81 ab

Unmated 1.10 ± 0.10 ab 26.60 ± 3.93 a 37.70 ± 14.95 abc 81.02 ± 10.30 ab

5-day-old
Mated 1.00 ± 0.19 a 31.50 ± 5.45 a 91.25 ± 10.16 bcd 82.74 ± 3.67 ab

Unmated 1.60 ± 0.40 ab 55.30 ± 12.92 a 93.00 ± 25.47 abcd 95.95 ± 2.46 ab

7-day-old
Mated 1.33 ± 0.37 ab 33.11 ± 8.20 a 125.44 ± 18.88 d 79.03 ± 7.79 ab

Unmated 1.10 ± 0.10 ab 34.70 ± 2.26 a 128.30 ± 21.51 d 96.48 ± 1.59 b

5-day-old

3-day-old
Mated 2.50 ± 0.56 b 68.40 ± 15.49 a 134.90 ± 14.37 d 78.32 ± 8.94 ab

Unmated 1.30 ± 0.15 ab 35.50 ± 4.27 a 124.90 ± 10.54 d 98.00 ± 0.79 b

5-day-old
Mated 1.80 ± 0.36 ab 50.60 ± 9.85 a 144.40 ± 20.60 d 84.76 ± 5.10 b

Unmated 1.00 ± 0.00 ab 35.00 ± 4.69 a 25.67 ± 11.14 ab 76.63 ± 11.73 ab

7-day-old
Mated 1.20 ± 0.13 ab 39.70 ± 4.00 a 114.10 ± 18.45 cd 83.81 ± 6.85 ab

Unmated 1.50 ± 0.27 ab 46.60 ± 6.56 a 107.80 ± 19.42 cd 97.16 ± 1.20 b

7-day-old

3-day-old
Mated 1.30 ± 0.15 ab 36.80 ± 5.61 a 100.80 ± 13.67 cd 62.29 ± 11.88 ab

Unmated 1.10 ± 0.10 ab 30.90 ± 2.96 a 94.00 ± 17.55 bcd 86.90 ± 7.40 b

5-day-old
Mated 1.60 ± 0.31 ab 47.30 ± 11.81 a 69.10 ± 19.91 abcd 49.96 ± 14.00 a

Unmated 1.00 ± 0.00 ab 35.90 ± 4.07 a 68.10 ± 18.62 abcd 81.41 ± 8.79 ab

7-day-old
Mated 1.17 ± 0.40 ab 34.67 ± 13.33 a 121.00 ± 22.86 d 76.21 ± 8.38 ab

Unmated 1.00 ± 0.00 ab 42.33 ± 6.68 a 13.00 ± 4.18 a 77.56 ± 7.90 ab

Mean ± standard error followed by the same letter in the column do not differ by Turkey’s multiple-range test
(p ≥ 0.05).
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When 3-, 5-, and 7-day-old mated females were paired with six physiological states of
males, there were significant differences among the cages with six physiological states of
males in (1) the number of eggs laid by a female per cage after pairing (F = 9.633 df = 17,
177, p < 0.05), (2) percentage of eggs hatched per cage after pairing (F = 2.366, df = 17, 177,
p < 0.05), and (3) total percentage of eggs hatched per cage (F = 2.401, df = 17, 177, p < 0.05),
but not in the number of matings per cage (F = 1.423, df = 17, 177, p = 0.132), duration of
matings per cage (F = 1.362, df = 17, 177, p = 0.162), or total number of eggs laid by a female
per cage (F = 1.659, df = 17, 177, p = 0.056) (Table 2).

Table 2. The number of matings per cage, duration of matings per cage, number of eggs laid by a
female per cage after pairing, percentage of eggs hatched per cage after pairing, total number of eggs
laid by a female per cage, and total percentage of eggs hatched per cage from males in one of six
physiological states paired with a mated female within each age group in the laboratory.

Mated
Female Male

Number of
Matings per

Cage

Duration of
Matings per
Cage (min)

Number of Eggs Laid
by a Female per Cage

after Pairing

Percentage of
Eggs Hatched
per Cage after

Pairing (%)

Total Number of
Eggs Laid by a

Female per Cage

Total Percentage
of Eggs Hatched

per Cage (%)

3-day-old

3-day-old
Mated 0.50 ± 0.31 a 12.90 ± 7.16 a 141.10 ± 12.31 def 94.38 ± 1.04 c 148.20 ± 14.22 a 94.08 ± 1.10 b

Unmated 0.50 ± 0.17 a 15.80 ± 6.27 a 170.00 ± 14.54 ef 91.25 ± 1.39 bc 170.60 ± 14.71 a 90.99 ± 1.45 b

5-day-old Mated 0.30 ± 0.15 a 11.60 ± 6.57 a 171.00 ± 12.75 f 92.15 ± 1.89 bc 175.10 ± 12.61 a 89.87 ± 1.74 b

Unmated 0.50 ± 0.17 a 22.90 ± 8.31 a 170.70 ± 13.35 f 71.09 ± 10.43 abc 170.80 ± 13.34 a 71.10 ± 10.43 ab

7-day-old
Mated 0.22 ± 0.15 a 6.33 ± 4.26 a 129.56 ± 19.79 def 88.31 ± 5.85 bc 134.44 ± 20.10 a 87.96 ± 5.40 b

Unmated 0.50 ± 0.17 a 18.50 ± 6.27 a 131.90 ± 9.77 def 91.73 ± 2.53 bc 134.00 ± 9.61 a 90.15 ± 2.47 b

5-day-old

3-day-old
Mated 0.10 ± 0.10 a 3.70 ± 3.70 a 89.90 ± 14.29 bcd 90.53 ± 2.34 bc 119.20 ± 14.98 a 75.67 ± 6.86 ab

Unmated 0.20 ± 0.13 a 5.90 ± 3.93 a 94.70 ± 9.75 bcde 88.24 ± 3.19 bc 119.90 ± 12.44 a 87.98 ± 2.46 b

5-day-old
Mated 1.20 ± 0.47 a 52.70 ± 30.46 a 120.90 ± 7.64 def 81.58 ± 6.91 abc 161.60 ± 11.62 a 82.06 ± 5.41 b

Unmated 0.10 ± 0.10 a 6.00 ± 6.00 a 107.30 ± 9.81 cdef 89.44 ± 3.36 bc 135.80 ± 10.24 a 87.67 ± 3.38 b

7-day-old
Mated 0.40 ± 0.22 a 15.10 ± 8.29 a 89.90 ± 14.38 abcd 62.50 ± 11.15 a 118.40 ± 18.80 a 59.81 ± 10.13 a

Unmated 0.20 ± 0.13 a 8.00 ± 5.54 a 93.10 ± 4.81 bcde 94.19 ± 1.52 c 118.40 ± 8.92 a 88.27 ± 4.04 b

7-day-old

3-day-old
Mated 0.80 ± 0.25 a 29.90 ± 9.73 a 65.00 ± 13.21 abc 77.20 ± 8.80 abc 135.10 ± 10.87 a 83.15 ± 9.29 ab

Unmated 0.40 ± 0.16 a 13.00 ± 5.43 a 52.20 ± 7.40 ab 68.59 ± 10.75 ab 135.50 ± 20.85 a 72.01 ± 10.20 ab

5-day-old
Mated 0.90 ± 0.43 a 19.30 ± 8.85 a 85.10 ± 12.08 abcd 66.80 ± 8.29 abc 151.80 ± 15.53 a 67.78 ± 8.39 ab

Unmated 0.40 ± 0.16 a 16.90 ± 8.03 a 37.10 ± 6.50 a 58.81 ± 9.88 a 114.30 ± 21.22 a 53.96 ± 9.60 a

7-day-old
Mated 0.80 ± 0.29 a 25.90 ± 9.27 a 103.80 ± 10.64 bcdef 91.52 ± 1.01 bc 157.90 ± 12.12 a 92.03 ± 1.36 b

Unmated 0.44 ± 0.18 a 20.00 ± 8.36 a 85.78 ± 9.22 bcd 80.02 ± 9.67 abc 152.89 ± 12.87 a 81.10 ± 9.56 ab

Mean ± standard error followed by the same letter in the column do not differ by Turkey’s multiple-range test
(p ≥ 0.05).

When 3-, 5-, and 7-day-old virgin males were paired with six physiological states of
females, there were significant differences among the cages with six physiological states of
females in (1) the number of matings per cage (F = 10.698, df = 17, 176, p < 0.05), (2) duration
of matings per cage (F = 7.361, df = 17, 176, p < 0.05), (3) number of eggs laid by a female
per cage after pairing (F = 10.74, df = 17, 176, p < 0.05), and (4) total number of eggs laid
by a female per cage (F = 9.535, df = 17, 176, p < 0.05), but not in the percentage of eggs
hatched per cage after pairing (F = 1.665, df = 17, 176, p = 0.055) or total percentage of eggs
hatched per cage (F = 1.685, df = 17, 176, p = 0.05) (although nearly so) (Table 3).

When 3-, 5-, and 7-day-old mated males were paired with six physiological states of
females, there were significant differences among the cages with six physiological states of
females in (1) the number of matings per cage (F = 6.631, df = 17, 171, p < 0.05), (2) duration
of matings per cage (F = 5.388, df = 17, 171, p < 0.05), (3) number of eggs laid by a female
per cage after pairing (F = 2.944, df = 17, 171, p < 0.05), (4) percentage of eggs hatched per
cage after pairing (F = 2.86, df = 17, 171, p < 0.05), (5) total number of eggs laid by a female
per cage (F = 2.631, df = 17, 171, p < 0.05), and (6) total percentage of eggs hatched per cage
(F = 2.72, df = 17, 171, p < 0.05) (Table 4).
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Table 3. The number of matings per cage, duration of matings per cage, number of eggs laid by a
female per cage after pairing, percentage of eggs hatched per cage after pairing, total number of eggs
laid by a female per cage, and total percentage of eggs hatched per cage from females in one of six
physiological states paired with an unmated male within each age group in the laboratory.

Unmated
Male Female

Number of
Matings per

Cage

Duration of
Matings per Cage

(min)

Number of Eggs
Laid by a Female

per Cage after
Pairing

Percentage of
Eggs Hatched
per Cage after

Pairing (%)

Total Number of
Eggs Laid by a

Female per Cage

Total
Percentage of
Eggs Hatched
per Cage (%)

3-day-old

3-day-old
Mated 0.50 ± 0.17 ab 15.80 ± 6.27 abcd 170.00 ± 14.54 g 91.25 ± 1.39 a 170.60 ± 14.71 e 90.99 ± 1.45 a

Unmated 1.10 ± 0.10 cd 26.60 ± 3.93 bcdef 37.70 ± 14.95 abc 81.02 ± 10.30 a 37.70 ± 14.95 abc 81.02 ± 10.30 a

5-day-old
Mated 0.20 ± 0.13 a 5.90 ± 3.93 ab 94.70 ± 9.75 defg 88.24 ± 3.19 a 119.90 ± 12.44 de 87.98 ± 2.46 a

Unmated 1.30 ± 0.15 d 35.50 ± 4.27 cdef 124.90 ± 10.54 efg 98.00 ± 0.79 a 124.90 ± 10.54 de 98.00 ± 0.79 a

7-day-old
Mated 0.40 ± 0.16 a 13.00 ± 5.43 abc 52.20 ± 7.40 abcde 68.59 ± 10.75 a 135.50 ± 20.85 de 72.01 ± 10.20 a

Unmated 1.10 ± 0.10 cd 30.90 ± 2.96 cdef 94.00 ± 17.55 cdefg 86.90 ± 7.40 a 94.00 ± 17.55 cde 86.90 ± 7.40 a

5-day-old

3-day-old
Mated 0.50 ± 0.17 ab 22.90 ± 8.31 abcdef 170.70 ± 13.35 g 71.09 ± 10.43 a 170.80 ± 13.34 e 71.10 ± 10.43 a

Unmated 1.60 ± 0.40 d 55.30 ± 12.92 f 93.00 ± 25.47 bcdef 95.95 ± 2.46 a 93.00 ± 25.47 bcde 95.95 ± 2.46 a

5-day-old
Mated 0.10 ± 0.10 a 6.00 ± 6.00 a 107.30 ± 9.81 efg 89.44 ± 3.36 a 135.80 ± 10.24 de 87.67 ± 3.38 a

Unmated 1.00 ± 0.00 abc 35.00 ± 4.69 cdef 25.67 ± 11.14 ab 76.63 ± 11.73 a 25.67 ± 11.14 ab 76.63 ± 11.73 a

7-day-old
Mated 0.40 ± 0.16 a 16.90 ± 8.03 abcd 37.10 ± 6.50 abcd 58.81 ± 9.88 a 114.30 ± 21.22 de 53.96 ± 9.60 a

Unmated 1.00 ± 0.00 abc 35.90 ± 4.07 cdef 68.10 ± 18.62 bcdef 81.41 ± 8.79 a 68.10 ± 18.62 abcd 81.41 ± 8.79 a

7-day-old

3-day-old
Mated 0.50 ± 0.17 ab 18.50 ± 6.27 abcde 131.90 ± 9.77 fg 91.73 ± 2.53 a 134.00 ± 9.61 de 90.15 ± 2.47 a

Unmated 1.10 ± 0.10 cd 34.70 ± 2.26 cdef 128.30 ± 21.51 efg 96.48 ± 1.59 a 128.30 ± 21.51 de 96.48 ± 1.59 a

5-day-old
Mated 0.20 ± 0.13 a 8.00 ± 5.54 ab 93.10 ± 4.81 defg 94.19 ± 1.52 a 118.40 ± 8.92 de 88.27 ± 4.04 a

Unmated 1.50 ± 0.27 d 46.60 ± 6.5 6 ef 107.80 ± 19.42 defg 97.16 ± 1.20 a 107.80 ± 19.42 de 97.16 ± 1.20 a

7-day-old
Mated 0.44 ± 0.18 ab 20.00 ± 8.36 abcde 85.78 ± 9.22 cdefg 80.02 ± 9.67 a 152.89 ± 12.87 e 81.10 ± 9.56 a

Unmated 1.00 ± 0.00 abc 42.33 ± 6.68 def 13.00 ± 4.18 a 77.56 ± 7.90 a 13.00 ± 4.18 a 77.56 ± 7.90 a

Mean ± standard error followed by the same letter in the column do not differ by Turkey’s multiple-range test
(p ≥ 0.05).

Table 4. The number of matings per cage, duration of matings per cage, number of eggs laid by a
female per cage after pairing, percentage of eggs hatched per cage after pairing, total number of eggs
laid by a female per cage, and total percentage of eggs hatched per cage from females in one of six
physiological states paired with a mated male within each age group in the laboratory.

Mated
Male Female Number of

Matings per Cage
Duration of

Matings per Cage
(min)

Number of Eggs
Laid by a Female per

Cage after Pairing

Percentage of
Eggs Hatched per

Cage after
Pairing (%)

Total Number of
Eggs Laid by a

Female per Cage

Total
Percentage of

Eggs Hatched per
Cage (%)

3-day-old

3-day-old
Mated 0.50 ± 0.31 abcd 12.90 ± 7.16 abcd 141.10 ± 12.31 bc 94.38 ± 1.04 b 148.20 ± 14.22 b 94.08 ± 1.10 b

Unmated 2.40 ± 0.45 ef 63.20 ± 11.90 ef 135.80 ± 18.28 abc 61.73 ± 10.81 ab 135.80 ± 18.28 ab 61.73 ± 10.81 ab

5-day-old
Mated 0.10 ± 0.10 a 3.70 ± 3.70 a 89.90 ± 14.29 abc 90.53 ± 2.34 b 119.20 ± 14.98 ab 75.67 ± 6.86 ab

Unmated 2.50 ± 0.56 f 68.40 ± 15.49 f 134.90 ± 14.37 abc 78.32 ± 8.94 ab 134.90 ± 14.37 b 78.32 ± 8.94 ab

7-day-old
Mated 0.80 ± 0.25 abcdef 29.90 ± 9.73 abcdef 65.00 ± 13.21 ab 77.20 ± 8.80 ab 135.10 ± 10.87 b 83.15 ± 9.29 ab

Unmated 1.30 ± 0.15 cdef 36.80 ± 5.61 bcdef 100.80 ± 13.67 abc 62.29 ± 11.88 ab 100.80 ± 13.67 ab 62.29 ± 11.88 ab

5-day-old

3-day-old
Mated 0.30 ± 0.15 abc 11.60 ± 6.57 abc 171.00 ± 12.75 c 92.15 ± 1.89 b 175.10 ± 12.61 b 89.87 ± 1.74 b

Unmated 1.00 ± 0.19 abcdef 31.50 ± 5.45 abcdef 91.25 ± 10.16 abc 82.74 ± 3.67 b 91.25 ± 10.16 ab 82.74 ± 3.67 b

5-day-old
Mated 1.20 ± 0.47 abcdef 52.70 ± 30.46 abcdef 120.90 ± 7.64 abc 81.58 ± 6.91 b 161.60 ± 11.62 b 82.06 ± 5.41 b

Unmated 1.80 ± 0.36 ef 50.60 ± 9.85 def 144.40 ± 20.60 bc 84.76 ± 5.10 b 144.40 ± 20.60 b 84.76 ± 5.10 b

7-day-old
Mated 0.90 ± 0.43 abcde 19.30 ± 8.85 abcde 85.10 ± 12.08 abc 66.80 ± 8.29 ab 151.80 ± 15.53 b 67.78 ± 8.39 ab

Unmated 1.60 ± 0.31 def 47.30 ± 11.81 cdef 69.10 ± 19.91 a 49.96 ± 14.00 a 69.10 ± 19.91 a 49.96 ± 14.00 a

7-day-old

3-day-old
Mated 0.22 ± 0.15 ab 6.33 ± 4.26 ab 129.56 ± 19.79 abc 88.31 ± 5.85 b 134.44 ± 20.10 ab 87.96 ± 5.40 b

Unmated 1.33 ± 0.37 bcdef 33.11 ± 8.20 abcdef 125.44 ± 18.88 abc 79.03 ± 7.79 b 125.44 ± 18.88 ab 79.03 ± 7.79 b

5-day-old
Mated 0.40 ± 0.22 abc 15.10 ± 8.29 abcd 89.90 ± 14.38 abc 62.50 ± 11.15 ab 118.40 ± 18.80 ab 59.81 ± 10.13 ab

Unmated 1.20 ± 0.13 cdef 39.70 ± 4.00 cdef 114.10 ± 18.45 abc 83.81 ± 6.85 b 114.10 ± 18.45 ab 83.81 ± 6.85 b

7-day-old
Mated 0.80 ± 0.29 abcde 25.90 ± 9.27 abcdef 103.80 ± 10.64 abc 91.52 ± 1.01 b 157.90 ± 12.12 b 92.03 ± 1.36 b

Unmated 1.17 ± 0.40 abcdef 34.67 ± 13.33 abcdef 121.00 ± 22.86 abc 76.21 ± 8.38 ab 121.00 ± 22.86 ab 76.21 ± 8.38 ab

Mean ± standard error followed by the same letter in the column do not differ by Turkey’s multiple-range test
(p ≥ 0.05).
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4. Discussion

In G. molesta, mating occurs throughout the entire adult life stage, and the first mating
can occur as early as the first night after adult emergence, at which time females can also
produce fertile eggs [8].

Our results showed that the selectivity of either unmated females except for 3 days old
or mated females to males was not affected by the physiological states of males, whereas the
selectivity of either mated males except for 3 days old or unmated males to females was not
related with the physiological states of females, which may be related with a difference in
the mating number and age-delayed mating between females and males [14]. The 3-day-old
unmated females were favored by the older males but were discriminated against by the
young and middle-aged males. In contrast, the 3-day-old mated males were favored by
either the young mated females or old females but were discriminated against by either the
young or middle-aged unmated females. For most insects, old adults prefer young states of
the opposite sex for mating [26,27]. In the observations, the males preferred the unmated
females and the females preferred the mated males, which was consistent with our previous
report on the multiple and repeated mating of both sexes in G. molesta [14]. For insects in
which one sex produces a sex pheromone that attracts the opposite sex, age-dependent
olfactory plasticity is also linked to sexual maturation [28]. Mated males do not respond
behaviorally to the female sex pheromone as compared with that of unmated males because
of a fast-acting, transient neuronal plasticity that ‘switches off’ the olfactory system, which
could prevent males from mating [29]. These results suggest that the pheromone-guided
behavior may be more modulated by age than mating history.

For the development of the reproductive systems of male and female G. molesta in
different physiological states, our results showed that age did not affect the length of the
ovarian ducts of the mated females, and mating did not affect the length of the ovarian ducts
of females of the same age. The aspects are supported by the report of Shukla et al. [30] and
may be related to our daily feeding of honey to supplement nutrition [31]. However, some
studies report that the development of the ovarian system was much slower in unmated
females than in mated females [31]. Other studies report that female mating accelerates
the rate of ovariole development [32,33]. The disruption of the deposition of yolk protein
in the ovary and the shortened lengths of the ovarian ducts resulted in reduced female
fecundity [24]. Furthermore, age in our study also affected the length of the ovarian ducts
of the unmated females, and the length of the ovarian ducts in the unmated females was
greatest at 7 days of age. Ovarioles grow continuously during ovarian development [34,35].
For males, we observed that age affected the testes size of the unmated moths, and the size
was greatest at 3 days of age. Also, mating did not affect the size of male testes at 5 or 7 days
of age, but, at 3 days of age, the testes of the unmated males were larger than the mated
males. For the mated males, age did not affect the testes size. The testes decrease in volume
as sperm bundles are transferred from the testes to the duplex where the spermatophore is
formed, which is then transferred to the female during copulation [36,37]. For G. molesta, the
restoration of sperm content begins within 6 h and is fully restored within 18 h, after which
males can mate again [16]. Our findings suggest that age may induce ovary development,
while testes restoration is responsive to mating.

Our comparative results showed that either the post-mating and lifetime offspring
production of the females or the number of matings of the unmated females was affected by
the physiological status of the male sires. Inversely, the physiological status of the females
affected the mating success of the males, the post-mating and lifetime offspring production
sired by males, and the post-mating percentage of hatched eggs linked to mated males.
Many studies have reported that mating can stimulate female fecundity and fertility [38–40].
Because female G. molesta seldom mate more than once, the delayed mating of females
does not affect the daily oviposition rate [8,41]. Because male G. molesta can copulate many
times, the male mating history is inversely proportional to the spermatophore production
but has no effect on the egg production by female partners [8,42]. The above results suggest
that the effect of the physiological state of males on unmated females may be greater than
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that on mated females, but the physiological status of females had a significantly higher
effect on mated males than on unmated males.

Specifically, when paired with unmated females, the mating success of males was
enhanced, but the number of offspring sired by the males decreased. In contrast, when
males were paired with mated females, males’ mating success was lower, but the number
of offspring sired by the males increased. The states for either unmated females paired
with males or mated males paired with females that seemed best in mating success were
5-day-old unmated females and 3-day-old mated males. The males discriminated against
the ≥5-day-old females in offspring production, but the females preferred once-mated
males in terms of mating opportunity [14]. The 3-day-old mated females and 3-day-old
mated males produced the highest number of offspring among the combination of the
unmated females paired with males and had success in mating among the combination
of the unmated males paired with females. The 5-day-old mated females and 3-day-old
mated males had the highest number of offspring despite unsuccessful mating among the
combination of the mated males paired with females. The preference of the 3-day-old mated
males for young or middle-aged mated females was most efficient for mating opportunity
and offspring production at that time, and this is why the differences occur [42]. The state
of the 7-day-old unmated females and 5-day-old mated males had the lowest number
of offspring for either unmated females paired with males or mated males paired with
females. This resulted from the age-delayed mating of females, which is associated with
significantly lower fecundity and fertility in older females [43]. These findings suggest
that the presence of males is conducive to the mating of the unmated females and to the
reproduction of the mated females.

The results obtained in this study indicate that encounters of young mated males
with either young unmated females or young mated females may cause high mating or
oviposition rates, respectively. These results characterize G. molesta as a species with high
reproductive potential, and the presence of the mated males accelerated the growth of the
G. molesta populations, which is an important trait to consider regarding the possibility
of improving the integrated pest management of G. molesta, particularly in the practical
application of pheromones. Control strategies might be suggested such that young mated
males should be disrupted and trapped by sex pheromones of young unmated females in
order to avoid the conversion of young females with an unmated state to a mated state for
decreasing the mating and reproductive opportunities. However, because many natural
and non-natural factors can be present in the field, it should be noted by other authors that
the results obtained from laboratory tests are unlikely to be reflected in the field. In fact,
for optimizing the application of pheromones in the field, it is better to clarify how female
and male moths respond to sex pheromones directly as a function of age and mating status
in G. molesta and analyze the spatio-temporal distributions of different ages and sexes of
insect targets during the relevant seasonal windows in the future.
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