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Simple Summary: Flies inhabit mushrooms or consume them incidentally throughout their lifecycle.
In wild conditions, these flies are part of the recycling process and are not considered pests. However,
in commercial mushroom houses, these flies can become problematic, as compost pests, through
physical damage of mushroom production through consumption, or as vectors of pathogens or
nematodes. Here, we describe the bacterial associates of two fly pest species of Pennsylvania
mushroom houses.

Abstract: Mushroom cultivation vastly improves the yield of mushrooms under optimized, controlled
conditions, but may be susceptible to opportunistic colonization by pest species that can establish
themselves, as well as the pathogens and pests they may transmit. Here, we describe our investi-
gation into the bacterial communities of adult Lycoriella ingenua (Diptera: Sciaridae) and Megaselia
halterata (Diptera: Phoridae) collected from button mushroom (Agaricus bisporus) production houses
in Pennsylvania. We collected adult flies and sequenced the hypervariable v4 region of the bacterial
16S rRNA using the Illumina MiSeq. The most abundant bacterial genus detected in both species was
Wolbachia, but phylogenetic analysis revealed that the infections are from different clades. Future
studies include the characterization of Wolbachia infections on fly behavior and biology, comparison
of microbial diversity of fly species colonizing wild mushrooms, and other microbiota that may
contribute to the success of certain pest fly species.

Keywords: mushroom fly; microbiome; Lycoriella ingenua; Megaselia halterata; Wolbachia

1. Introduction

Fungi are integral components of many ecosystems. Many fungi produce sporocarps,
macroscopic structures in which sexual spores develop and from which spores are released.
Fungi play many roles in nature: predators, parasites, mutualists, and/or recyclers. A
given fungal species may be a mycorrhizal companion of nearby plants, food and shelter
for developing invertebrates, and may itself be parasitized by microorganisms while also
consuming bacteria and benefiting from bacterial breakdown products. Mycetophagous
flies in turn may consume fungal material (mycelia or fruiting bodies) and utilize volatiles
from fungal pathogens or bacterial breakdown products to select optimal oviposition
sites [1].

Wild sporocarp-forming fungi are populated with a rich diversity of flies [2]. In the
northeastern United States, the fruiting structures of the fungal genus Agaricus are predom-
inantly colonized by members of the families Drosophilidae, Phoridae, and Tipulidae [3].
In contrast, only a handful of fly species are considered economic pests of mushroom pro-
duction worldwide. Fly pests are predominantly from the families Phoridae, Sciaridae, and
Cecidae [4,5]. In Pennsylvania mushroom farms, the two major pest species are Lycoriella
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ingenua (Dufour 1839, Family Sciaridae) and Megaselia halterata (Santos Abreu, 1921, Family
Phoridae) [6].

Agricultural monocultures are optimized for maximum crop yield but are also suscep-
tible to opportunistic colonization by pest species that can establish themselves, as well as
the pathogens and pests they may transmit. Mushroom houses serve as an ideal experimen-
tal environment in which to study the dynamics of microbe–fly–cultivated crop interactions
when conditions are optimized for mushroom crop production. Here, we describe our
investigation into the bacterial communities of adult L. ingenua and Megaselia halterata
collected from button mushroom (Agaricus bisporus) production houses in Pennsylvania.

These two pest species have distinct but overlapping biologies. L. ingenua consumes
the compost material (and any associated microbes) prior to the addition of mushroom
spawn [7]. Once the compost is fully colonized by Agaricus bisporus, the populations of
L. ingenua decline [8]. In contrast, populations of M. halterata thrive on mycelial growth,
gradually building up from spring until fall and then declining when mushrooms are
harvested and beds replaced [9]. We predicted that there would be some overlap in
bacterial community composition between the two fly species, but we suspected there
would be differences that might be unique to each fly species. We collected specimens of
each species, extracted their nucleic acids, and sequenced the bacterial 16S rRNA gene
sequences using the Illumina MiSeq sequencing platform. We detected some overlap in
bacterial diversity and identified two phylogenetically distinct Wolbachia sequences.

2. Materials and Methods
2.1. Collection Sites and Sampling

We collected Lycoriella ingenua and Megaselia halterata adults by aspiration from two
mushroom production houses in Kennett Square, Chester County, PA, at two times (May
and October of 2014; Table 1). Flies were collected in separate vials by species (L. ingenua or
M. halterata) and transported alive on ice to University Park, PA, to prevent damage to the
nucleic acids. Flies were then placed at −80 ◦C until processed.

Table 1. Fly specimen information table. “SampleID” corresponds to the files submitted to Genbank.
“Fly” = fly species; “Date” = collection date; “SampleNo” = simplified graph labels. “Mh” and “Li”
refer to M. halterata and L. ingenua, respectively; “Sp” and “Fa” refer to the collection dates 16 May
2014 and 18 September 2014, respectively.

SampleID Fly 1 Date SampleNo

C09Ph051614Mh01 M. halterata 16 May 2014 MhSp01
C10Ph051614Mh02 M. halterata 16 May 2014 MhSp02
C11Ph051614Mh03 M. halterata 16 May 2014 MhSp03
C12Ph051614Mh04 M. halterata 16 May 2014 MhSp04
D01Ph051614Mh05 M. halterata 16 May 2014 MhSp05
D02Ph051614Mh06 M. halterata 16 May 2014 MhSp06
D03Ph051614Mh07 M. halterata 16 May 2014 MhSp07
D04Ph091814Mh04 M. halterata 18 September 2014 MhFa01
D05Ph091814Mh05 M. halterata 18 September 2014 MhFa02
D06Ph091814Mh06 M. halterata 18 September 2014 MhFa3
D07Ph091814Mh11 M. halterata 18 September 2014 MhFa04
D08Ph091814Mh12 M. halterata 18 September 2014 MhFa05
D09Ph091814Mh13 M. halterata 18 September 2014 MhFa06
D10Ph091814Mh14 M. halterata 18 September 2014 MhFa07
D11Ph091814Mh15 M. halterata 18 September 2014 MhFa08
D12Ph091814Mh16 M. halterata 18 September 2014 MhFa09
E01Ph091814Mh17 M. halterata 18 September 2014 MhFa10
E02Ph091814Mh18 M. halterata 18 September 2014 MhFa11
E03Ph091814Mh19 M. halterata 18 September 2014 MhFa12
E04Ph091814Mh20 M. halterata 18 September 2014 MhFa13
E05Sc051614Li01 L. ingenua 16 May 2014 LiSp01
E06Sc051614Li02 L. ingenua 16 May 2014 LiSp02
E07Sc051614Li03 L. ingenua 16 May 2014 LiSp03
E08Sc051614Li04 L. ingenua 16 May 2014 LiSp04
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Table 1. Cont.

SampleID Fly 1 Date SampleNo

E09Sc051614Li05 L. ingenua 16 May 2014 LiSp05
E10Sc051614Li06 L. ingenua 16 May 2014 LiSp06
E11Sc051614Li07 L. ingenua 16 May 2014 LiSp07
E12Sc051614Li08 L. ingenua 16 May 2014 LiSp08
F01Sc051614Li09 L. ingenua 16 May 2014 LiSp09
F02Sc051614Li10 L. ingenua 16 May 2014 LiSp10
F03Sc091814Li01 L. ingenua 18 September 2014 LiFa01
F04Sc091814Li02 L. ingenua 18 September 2014 LiFa02
F05Sc091814Li03 L. ingenua 18 September 2014 LiFa03
F06Sc091814Li04 L. ingenua 18 September 2014 LiFa04
F07Sc091814Li05 L. ingenua 18 September 2014 LiFa05
F08Sc091814Li06 L. ingenua 18 September 2014 LiFa06
F09Sc091814Li07 L. ingenua 18 September 2014 LiFa07
F10Sc091814Li08 L. ingenua 18 September 2014 LiFa08
F11Sc091814Li09 L. ingenua 18 September 2014 LiFa09
F12Sc091814Li10 L. ingenua 18 September 2014 LiFa10

1 There were 7 M. halterata collected in spring and 13 M. halterata collected in fall.

2.2. Sample Processing for Bacterial 16S rRNA Sequencing

To describe the bacterial community composition, we extracted genomic DNA from
40 individual flies (Table 1). DNA extractions were conducted by macerating each adult fly
in individual 1.5 mL sterile polypropylene centrifuge tubes using sterile polypropylene
pellet pestles in tissue lysing (TL) solution from the Omega E.Z.N.A. Tissue DNA kit (SKU#:
D3396, Norcross, GA, USA), following the provided manufacturer’s protocol for extraction
from tissue. Extracted nucleic acid samples were submitted for Illumina MiSeq paired-end
sequencing of the v4 region of the bacterial 16S rRNA gene. The sequencing facility used
the original Caporaso 515F/806R primers [10] (since the 2016 updated EMP primers were
not yet available at the time of sequencing in 2015). Sequences (~290 bp) returned from the
facility were demultiplexed with primers and adaptors, and barcodes were removed.

2.3. Analysis of Bacterial Communities of Flies

Demultiplexed sequences were quality checked, dereplicated, merged (trimmed to
220 bp), filtered to remove chimeric sequences, aligned, and analyzed in RStudio using
Dada2 version 1.33.0 and Phyloseq version 1.48.0 and other data visualization tools in
several R packages (microbiome 1.26.0, mia 1.12.0, microViz 0.12.3) [11–15]. Reads were
assigned taxonomic identity using the Dada2 taxonomy assigner and Silva (v138) reference
database of eubacterial 16S ribosomal RNA sequences [11,16,17]. The Amplicon Sequence
Variant (ASV) table is provided in the Supplementary Materials. After an initial analysis, we
detected taxa that matched mitochondrial sequences or were suspected to be contaminants
from other samples sequenced in the same run (see “Post-Illumina sequence confirmation
and phylogenetic placement of Wolbachia sequences”). Thereafter, we filtered out reads
matching “mitochondria”, “Rickettsia”, and “Rickettsiella” before continuing with diversity
analyses. Shannon and inverse Simpson indices were used for measuring richness and even-
ness. Statistical comparisons within species were performed using the Kruskal–Wallis test.
Community dissimilarity (Bray–Curtis index) was evaluated between groups. Principal
Coordinate Analyses (PCoA) were performed and plotted to visualize bacterial community
structure between groups using Phyloseq. Statistical comparison between groups was
performed to run permutational multivariate analyses of variance (PERMANOVA using
999 permutations). The significance level was set to 0.05.

2.4. Post-Illumina Sequence Confirmation and Phylogenetic Placement of Wolbachia Sequences

Our samples were sequenced with samples from other arthropod studies (two differ-
ent mosquito species and a tick species). Because of this, it was important to confirm the
presence of the three bacterial genera that were also detected in one or more of those arthro-
pod hosts. We used PCR primers to test for Rickettsia, Rickettsiella, and Wolbachia [18,19].
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We did not detect the presence of Rickettsia or Rickettsiella, both of which were taxa in high
abundance in tick samples sequenced on the same run. However, we did detect fragments
of Wolbachia 16S rRNA using primers W-Specf (5′-CATACCTATTCGAAGGGATAG-3′)
and W-Specr (5′-AGCTTCGAGTGAAACCAATTC-3′) to amplify a 438 bp fragment [18].
Amplicons from four fly samples (two of each fly species) were gel-separated, purified, and
submitted for Sanger sequencing. Amplicons were aligned to known GenBank deposited
sequences of Wolbachia, trimmed to 330 bp to eliminate indels, and phylogenies estimated
using Maximum Likelihood with MEGA X using the best-estimated model of evolution
selected by jmodeltest [20,21].

3. Results
3.1. Bacterial Community Composition

In total, 2,389,953 16S rRNA reads passed quality control and chimera checking. After
the removal of singletons and matches to Rickettsia, Rickettsiella, and mitochondria, the
total number of reads was 2,276,353. Absolute read counts were higher from L. ingenua
(1,626,951) than from M. halterata (685,794) (Figure 1). The five taxa at the Class level that
accounted for the majority of the reads were Alpha-proteobacteria, Gamma-Proteobacteria,
Bacteroidiia, Bacilli, and Actinobacteria. The 10 most abundant families matched Anaplas-
mataceae, Enterobacteriaceae, Weeksellaceae, Yersiniaceae, Pseudomonadaceae, Moraxel-
laceae, Burkholderiaceae, Acetobacteraceae, Rhodobacteraceae, and Aeromonadaceae
(Supplementary Figure S1). When examining prevalence across all samples, Wolbachia
was detected in 95% (38 of 40) of all samples across both species and accounted for 75.8%
(n = 1,752,473) of total reads. Wolbachia, Serratia (Yersiniaceae), Ralstonia (Burkholderiaceae),
Cedecea (Enterobacteriaceae), Asaia (Acetobacteriaceae), and Aeromonas (Aeromonadaceae)
were found in 36 or more of 40 specimens (90% prevalence).
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Figure 1. Absolute read counts (Log10(x + 1)) for fly specimens by bacterial Class. Darker colors
represent higher reads/taxon. Sample names: samples of Megaselia halterata (Phoridae) are denoted by
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“Mh”, while those of Lycoriella ingenua (Sciaridae) are denoted by “Li”. Top horizontal bar denotes fly
species: lighter blue represents specimens of M. halterata; darker blue represents L. ingenua. Heatmap
generated using microViz, using the viridis color palette option “rocket” [15].

Relative abundance revealed a marked difference between the two taxa. Wolbachia
(Class Alpha-Proteobacteria: Family Anaplasmataceae) was the dominant taxon in all
individuals of L. ingenua, but it was not always the most abundant taxon in M. halterata
(Figure 2). Gamma-bacteria Klebsiella (Enterobacteriaceae) and Pseudomonas (Pseudomon-
adaceae) were often more abundant in M. halterata than in L. ingenua (Figure 2).
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Figure 2. Relative read abundance of bacterial genera by fly species. Relative bacterial read abundance
by individuals for each species of fly. Mh = Megaselia halterata (Phoridae); Li = Lycoriella ingenua
(Sciaridae); Fa = fall; Sp = spring. Rare reads with a prevalence of less than 50% and detection below
0.1% were aggregated into “Other”. Barplot generated using the R package “microbiome” [13].

3.2. Bacterial Diversity

The L. ingenua microbiota was not evenly distributed, and fewer taxa (lower richness)
were identified compared to M. halterata. We detected significant differences in diversity
between collection times in L. ingenua, but not in M. halterata (Figure 3). While the alpha di-
versity measures of L. ingenua individuals differed between May and September collections,
this was not the case for M. halterata (most M. halterata bacterial taxa clustered together
regardless of dates).
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Figure 3. Comparison of alpha diversity by date within each fly species using inverse Simpson and
Shannon indices. There was a significant difference in diversity in L. ingenua samples collected in May
versus September. This difference in diversity was not observed in M. halterata between collection
dates. Barplot generated using the R package “microbiome” [13].

When we examined the beta diversity, we observed that the diversity measures of the
two species were distinct from each other, although there was some clustering between
fly species that corresponded to the fall collection (Figure 4). We confirmed that there was
a significant interaction between fly species and collection date using a PERMANOVA
analysis (Species p = 0.001; Date p = 0.022; Species*Date p = 0.008). We therefore analyzed
the two species separately to confirm the effect of the collection date. In both species, there
was a significant effect of collection date (Li, R2 = 0.36726, p = 0.005; Mh, R2 = 0.13511,
p = 0.003).
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Figure 4. Two-dimensional density plot for both fly species. Data are plotted using a Principal
Coordinate Analysis (PCoA) with the Bray–Curtis dissimilarity measure. Samples closer together are
more similar in diversity of samples than those that are farther away. Microbial community diversity
of L. ingenua and M. halterata specimens clustered separately in spring-collected specimens, but were
more diffuse and overlapped between species in the fall-collected specimens. PCoA plot generated
using the R package “microbiome” [13]. Shapes refer to collection dates; colors represent fly species
(Circles = 16May2014, Triangles = 18Sept2024, Blue = “L. ingenua”, Yellow = “M. halterata”).

3.3. Sequence Confirmation and Phylogenetic Placement of Wolbachia Sequences

Fragments of Wolbachia 16S rRNA sequences from four samples (two from each fly
species) were amplified, gel-purified, and submitted for Sanger sequencing. We confirmed
that the Wolbachia sequences identified in the dataset were not due to sequence contamina-
tion and that the isolates from each fly species were from phylogenetically distinct clades
(Supergroup E for L. ingenua and Supergroup B for M. halterata) (Figure 5).
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Figure 5. Maximum Likelihood phylogenetic tree of Wolbachia 16SrRNA sequences from each fly
species. Analyses were conducted using MEGA X [21]. The evolutionary history was inferred using
the Maximum Likelihood method and the Tamura–Nei model. The bootstrap consensus tree was
inferred from 1000 replicates. Branches with less than 50% bootstrap support are collapsed. Initial
trees are obtained by Neighbor-joining and BioNJ algorithms. Evolutionary rate differences among
sites were modeled using gamma distribution with the inclusion of some evolutionary invariable
sites (+G, +I). All positions with less than 95% coverage were excluded. The trimmed and aligned
fragment length was 330 bp. Anaplasma marginale and Rickettsia bellii were outgroups. Lm07 and
Lm15 (stars) = Lycoriella ingenua; Mh06 and Mh17 (circles) = Megaselia halterata. Supergroups E and B
represent Wolbachia Supergroups into which the fly Wolbachia sequences clustered.

4. Discussion

While there have been other microbiome studies in mushroom cultivation settings, they
largely focus on the mushrooms and the substrate, on associated fungi, or on viruses [9,22–25].
In this study, we address the presence of bacteria in two mushroom fly pest species.
We observed distinct bacterial community compositions and also observed an effect of
collection date, particularly in L. ingenua.

We investigated the two collection dates in order to assess whether microbial commu-
nities changed between spring and fall populations. The bacterial community composition
is highly dynamic and dependent on the ecology of the mushroom house. After the first
flush (=crop) of mushrooms, some taxa (e.g., Proteobacteria) decline, but are replaced in
abundance by Actinobacteria and Firmicutes [25]. It is therefore conceivable that flies
intimately associated with mushroom compost and casing might acquire some of their
microbiota, but the extent to which they both harbored the same taxa was not known.
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The microbial diversity between the two fly species overlapped somewhat in the
fall. This could be explained by their respective biologies. L. ingenua is a generalist
mycophagous insect, readily consuming the mycelium, colonized compost, mushroom
primorida, and all parts of the fully developed sporocarps. In contrast, M. halterata is
more selective (“oligophagous”), feeding only on actively growing hyphal tips [26]. As the
two populations increase over the season from spring to fall, they experience increased
competition for resources that become depleted over time, and consequently may acquire
or share microbes present in the substrate.

Because bacterial read counts were much higher from L. ingenua than from M. halterata
(Figure 1), it was important to consider this when interpreting differences in microbial
communities between fly species. For instance, Serratia was found in higher absolute
abundance in L. ingenua, but this only accounted for proportionally less than 10% of
the total taxonomic abundance. The absolute and relative abundances of Klebsiella and
Pseudomonas were higher in M. halterata than in L. ingenua; the dominant bacterial taxon
detected in both fly species was confirmed to be Wolbachia.

Wolbachia occurred at higher relative (and absolute) abundance in L. ingenua than in M.
halterata. It is not unusual to find Wolbachia in fly species. However, phylogenetic analysis
suggests that the Wolbachia found in both fly species may have been acquired independently.
Wolbachia sequences contained in the fly species were determined to be from different clades.
The presence of Wolbachia in both fly species was confirmed (post-Illumina sequencing)
because of a concern that the sequences represented contamination from mosquito samples
that were also sequenced in the same run. However, while the M. halterata Wolbachia
was from a similar clade to Culex pipiens Wolbachia, it was distinct from the Wolbachia
sequenced from the mosquito samples. Further, the Wolbachia identified in L. ingenua was
from a completely different cluster (within the Supergroup E clade), a clade that has been
previously associated primarily with springtails and several mite species [27,28]. One
predatory mite (Hypoaspis aculeifer), known to be an effective biocontrol agent against
both species of flies, was not observed or known to be in these mushroom houses, but
even if it had been present, it is not a species known to harbor Wolbachia [7,29]. Since the
sequencing was conducted on whole flies (flies were too small to dissect for sufficient DNA
for sequencing), we cannot exclude the possibility that the Wolbachia detected came from
infected springtails or mites that may have been consumed by fly larvae in the mushroom
mats. Whether or not the Wolbachia found in L. ingenua existed in the flies as a co-evolved
associate or acquired through horizontal transfer through interactions with other organisms
in mushroom beds (e.g., springtails or mites) needs further research.

Pseudomonas is a ubiquitous bacterial taxon, and several species of Pseudomonas have
been described from mushroom farms. Its presence was therefore not a surprise in our
sequence data. While some species of Pseudomonas are important enhancers of mush-
room development (metabolizing compost compounds that might otherwise inhibit A. bis-
porus primordial development), other species (e.g., P. tolaasii and P. reactans) are known
pathogens [22,24]. Although we detected Pseudomonas in both fly species, we did not
isolate or characterize them and cannot ascribe their nature as pathogenic, beneficial, or
commensal within the mushroom house microbiome.

4.1. Limitations of the Study

Our study had some limitations that could be addressed in future studies. In some
flies (e.g., Bactrocera tryoni, the Queensland fruit fly), the microbial communities can shift
from immature to adult stages [30]. We are unable to speculate as to the effect the bacterial
communities have on larval development or adult behavior because our samples were
collected in the same year, albeit from different seasons.

We cannot speculate whether the Wolbachia detected in this study caused sex ratio dis-
tortion or reproductive effects because we did not separate the males or females, nor did we
examine immature life stages. However, since Wolbachia infections can be cleared through
antibiotic treatment, we could potentially examine the behavior and interactions of Wol-
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bachia-free flies with mushroom substrates, other invertebrates, and associated microbiota
in future studies.

We do not know the extent to which the microbial communities of flies and mush-
rooms are shared, how the microbiota influences fly behavior, or the secondary ecological
impacts of fly microbiota on parasitoids of mushroom flies, springtails, predatory mites, or
nematodes. These are areas that could be explored further in later studies.

4.2. Future Studies

Mushroom cultivation began in the 1600s, but structures or caves were not used until
the early 1900s [31]. Modern mushroom houses were started in the early 1900s but were
quickly plagued by sciarid pests [32]. While earlier attempts at control included chemical
applications, the quick development of resistance necessitated changes in cultivation prac-
tices and biocontrol agents as integrated pest management strategies [33,34]. Cultivation
practices such as compost pasteurization and the use of chemicals and biocontrol agents
(e.g., predatory mites, entomopathogenic nematodes and fungi) can help control fly pests,
but exclusion is preferred [7,35,36]. It should be noted that pasteurization alone may not be
sufficient, as adult female sciarids (L. ingenua) are attracted to compost and the volatiles
released by pathogenic molds [37].

Cultivated button mushroom farming represents a rich microbial ecosystem under
fairly homogeneous environmental conditions. The current study connects one more piece
of the multitrophic ecological puzzle, but many questions are still unanswered. For instance,
can the interactions and dynamics of mushroom flies with other microbial (e.g., viruses or
nematodes) or invertebrate associates be used to facilitate the biocontrol of flies, bacterial
pathogens, or fungal pathogens of mushroom houses?

One such study we are currently exploring is the identification of viral communities
and the potential for both of these fly species to serve as vectors of mushroom pathogens.
In a preliminary viral study of mushroom flies, we identified a putative fungal hypovirus
in the spawn (unpublished data). While we did not detect that hypovirus in flies, it is
conceivable that (given the polyphagous nature of L. ingenua) the fly might serve as a
vector and/or reservoir of viral pathogens of fungi. In a study by Liu et al. (2016), a
mycovirus of the plant pathogen Sclerotinia sclerotiorum (named Sclerotinia sclerotiorum
hypovirulence-associated DNA virus 1) was shown to infect and replicate in L. ingenua, and
to be transovarially transmitted [38].

One of the biological differences between the two fly species is that, while L. ingenua
is found throughout the growing season, M. halterata populations build up from spring
until fall, and then decline in winter. M. halterata adults leave the mushroom houses in fall
to mate and may maintain their populations outside of the houses. However, evidence
of phorid presence was not detected in adjacent residential properties [7,9]. One future
goal is to identify alternative hosts that may support M. halterata or serve as refugia for
overwintering. Another is to compare the microbial dynamics between years, since, if
M. halterata overwinters outside of mushroom houses, it is likely exposed to different
microbial pressures and could bring external pathogens back into the mushroom houses
the following year.

While the purpose of the exploration of mushroom fly microbial dynamics was to
identify biocontrol options in a cultivated setting, a broader ecological question we could
not ignore was the following: What are the factors that dictate which fly species becomes a
pest? Wild mycophagous flies are dependent on a resource whose abundance is heavily
affected by rainfall and other variables. Thus, resource unpredictability would likely favor
polyphagy, not host specialization, in mycophagous flies [1]. The diversity of mycophagous
fly taxa encountered in wild mushrooms reflects this and represents an arena for resource
competition. Wild mushrooms (Agaricus spp. in particular) in the northeastern United
States are largely colonized by mycophagous drosophilids (Drosophila and Leucophenga
spp.), wood gnats, mushroom flies, and crane flies [1,3]. Although a limited food source
(e.g., single basidiocarp) might result in inter- and intraspecies competition and subsequent
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reduction in size, an effectively inexhaustible food source (such as a mushroom house)
would likely favor mushroom flies.

In theory, any mycophagous fly in the vicinity should benefit from such an abundance
of resources. In other regions of the USA and worldwide, other fly species are also pestifer-
ous: cecids Mycophila speyeri and Heteropeza pygmaea can damage mushroom production,
while house and stable flies are nuisance pests of compost heaps [5]. Cultivation and
control practices have been successful in excluding or eliminating former pests such as
mites and springtails in commercial production houses [6,33]. One future study we are
interested in is an in-depth investigation of the multitrophic dynamics of fly colonization
of wild mushrooms in adjacent wooded areas to identify possible explanations for the
exclusion or establishment of other fly species in cultivated settings.

What role Wolbachia plays in the lifecycle of either of these fly species is unknown.
Further studies would include attempts to cure colonized flies of Wolbachia infections and
determine whether/how this affects biology, behavior, or pathogen vector competence. We
can also determine the population genetics of the Wolbachia isolates in mushroom houses
and in wild mushroom populations.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/insects15070525/s1: Figure S1: Absolute read counts (Log10(x + 1))
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of contaminant sequences or singletons).
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