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Simple Summary: Aradidae is a large family in Hemiptera, which feeds on mycelium, and its
phylogenetic status is not fully understood. Mitochondrial genome sequences can be used to study
species identification and phylogeny, and provide valuable molecular markers for further genetic
research. In this paper, we sequenced three species of the genus Yangiella for the first time, assembled
three mitochondrial genomes, and compared the general characteristics of the mitochondrial genomes
of the three species. It was found that the base composition and mitochondrial genome structure
of the three species were highly similar. The phylogeny of Yangiella was also discussed. Based on
the phylogenetic analyses results of two data matrices, the status of Yangiella was discussed and the
monophyly of this genus was verified. In addition, we infer that the genus Yangiella diverged about
57 million years ago.

Abstract: The mitochondrial genomes of three species of Yangiella were sequenced, annotated, and
analyzed. The genome length of the three species of the genus is 15,070–15,202 bp, with a typical
gene number, including a control region, 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes
(tRNAs), and 13 protein-coding genes (PCGs). It was found that the mitochondrial genome of
Yangiella had AT bias. Except for the lack of a DHU arm of the trnS1 gene, the other tRNAs had
a typical cloverleaf structure, and the codon usage preferences of the three species exhibited high
similarity. In addition, tRNA gene rearrangements were observed among the three subfamilies of
Aradidae (Mezirinae, Calisiinae, Aradinae), and it was found that codon usage preferences appeared
to be less affected by base mutation and more by natural selection. The Pi and Ka/Ks values indicated
that cox1 was the most conserved gene in the mitochondrial genome of Aradidae, while atp8 and
nad6 were rapidly evolved genes. Substitution saturation level analysis showed that the nucleic acid
sequence of mitochondrial protein-coding genes in Aradidae did not reach saturation, suggesting
the rationality of the phylogenetic analysis data. Bayesian and maximum likelihood methods were
used to analyze the phylogeny of 16 species of Hemiptera insects, which supported the monophyly
of Aneurinae, Carventinae, and Mezirinae, as well as the monophyly of Yangiella. Based on fossils
and previous studies, the differentiation time was inferred, indicating that Yangiella diverged about
57 million years ago.

Keywords: Aradidae; mitochondrial genome; gene rearrangement; phylogenetic analysis; comparative
analyses

1. Introduction

Aradidae is a larger family in Hemiptera, with 8 subfamilies and about 2000 species [1].
Mezirinae is the largest subfamily and is found in all geographical regions of the world [2].
Yangiella is a genus of Mezirinae [3]. This genus of insects usually lives under the bark of
fallen trees, and is sometimes found in gaps on the bark surface [4]. They live in groups and
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feed on hyphae, mainly distributed in Southwestern China and parts of Southeast Asia [5].
Due to its high concealment and lesser contact with humans, past research on this genus
has mainly focused on traditional morphological classification, and molecular biology
research has not been carried out, resulting in its classification status still being unclear.

Mitochondrial genomes have the characteristics of maternal inheritance, fast evolution,
easy separation and purification, and are widely used in the study of phylogenetic relation-
ship of insects [6,7] and molecular evolution [8,9]. The typical insect mitochondrial genome
is a double-stranded, circular, closed DNA molecular structure with a length of 15–18 kb,
containing 37 genes (composed of 13 protein-coding genes and 24 RNA genes) [10], and a
non-coding control region containing the origin of replication [11]. In the past, most of the
studies on the molecular system of Aradidae were based on partial gene fragments, and
Heisset et al. analyzed the evolution of three subfamilies based on cox1 fragments [12,13].
Marchal et al. used cox1, 16S rRNA, and 28S rRNA gene fragments to analyze the phylogeny
of 79 species in eight subfamilies. They believed that Prosympiestinae and Chinamyersiinae
were paraphyletic, and the remaining six subfamilies were monophyletic [14]. However,
compared with the complete mitochondrial genome, a single gene can only reflect part of
the information and provide limited information. The complete mitochondrial genome
sequence contains more abundant information [15], which is a powerful evidence form for
phylogenetic research [16].

In this study, the mitochondrial genomes of three Yangiella species were sequenced and
annotated for the first time. The basic characteristics of the mitochondrial genome, codon
usage bias, and tRNA gene secondary structure were described and analyzed. The internal
relationship of Aradidae was elucidated by analyzing the evolutionary rate and genome
rearrangement of each species of Aradidae. In addition, based on 13 protein-coding genes
and 2 RNA genes, the phylogenetic trees of 16 species (including 14 Aradidae insects and
2 outgroups) were reconstructed by Bayesian inference (BI) and maximum likelihood (ML)
methods, and the divergence time of Aradidae was estimated based on phylogenetic trees
and fossil data.

2. Materials and Methods
2.1. Specimen Collection, Extraction, and Sequencing

Samples of Yangiella mimetica (Hsiao, 1964 [3]), Yangiella montana (Zhang, Bai, Heiss,
and Cai, 2010 [5]) and Yangiella sp. were collected in China (Table 1). The specimens were
immersed in 95% ethanol during collection, and then transferred of −20 ◦C for long-term
preservation in the Inner Mongolia Normal Entomological Museum (Hohhot, Inner Mon-
golia). The total DNA was extracted from the leg and chest muscle tissues of insects. Using
the kit of Tiangen Biochemical Technology Co., Ltd. (Beijing, China), DNA was extracted
according to the instructions in the instructions. The processed samples were sent to Berry
Genomics Co., Ltd. (Beijing, China) for sequencing (DNA concentration ≥ 20 ng/µL,
total ≥ 500 ng). Second-generation sequencing technology was used, and the sequencing
mode was Novaseq 6000-S4-150 PE.

Table 1. Voucher information of the specimens used for mitochondrial genome sequencing.

Specimens Date of Collection Collection Site Longitude (E) Latitude (N) GB Numbers

Y. mimetica 16 January 2011 Jinping, Yunnan 103.2383 22.9067 PP545373

Y. montana 31 October 2019 Yingjiang Tongbiguan, Yunnan 97.9364 24.7031 PP708566

Yangiella sp. 27 May 2023 Shuangbai Dutian Forest farm, Yunnan 101.4556 24.5447 PP708567

2.2. Gene Assembly, Annotation, and Analysis

Raw read data with a double-end sequencing length of 150 bp were obtained, and
Fastp v0.23.0 was used to perform quality control on the raw data [17], and the reads
below the average quality value of the reads were removed. The reads with N con-
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tent less than 5 were screened to obtain clean data with a size of 5G. SPAdes v3.15.5
(https://github.com/ablab/spades (accessed on 15 March 2024)) was used for assem-
bly [18]. Based on the assembly process, the contig sequence was obtained by iterative
method to construct the local blast database. Using the cox1 sequence of Neuroroctenus
yunnanensis (Hsiao, 1964), which belongs to Mezirinae, as bait, the BLAST function was
used to screen contigs of the target mitochondrial genome.

The mitochondrial genome sequence was imported into the online tool MITOS (http://
mitos.bioinf.uni-leipzig.de/index.py (accessed on 22 March 2024)), and set to invertebrate
mitochondrial coding mode for automated annotation [19]. The annotation results were
imported into Geneous Prime v11 [20], and the gene boundaries were manually corrected by
comparing them with related species. The location of the tRNA gene was reconfirmed using
the tRNAscan-SE online tool (Cover cutoff = 5) [21], and Adobe Illustrator CS 2024 software
was used for drawing. The CGView Server online server (https://cgview.ca/ (accessed on
10 April 2024)) was used to visualize the mitochondrial map [22]. The gene rearrangement
of Aradidae was studied by comparing with the mitochondrial gene arrangement of
Macroscytus subaeneus (Dallas, 1851) from the Cydnidae. Finally, the newly sequenced
mitochondrial genomes were submitted to the GenBank database.

The nucleotide composition of the gene was calculated using MEGA11 [23]. AT-skew and
GC-skew are calculated by AT-skew = (A − T)/(A + T) and GC-skew = (G − C)/(G + C) [24],
respectively. DnaSP v6.12.03 [25] was used to calculate the non-synonymous substitution
rate (Ka), synonymous substitution rate (Ks), and nucleotide diversity (Pi) of protein-coding
genes. Relative synonymous codon usage (RSCU) and effective number of codon (ENC)
were analyzed by CodonWv 1.4.4 software.

Neutrality plot analysis was performed on Aradidae species. GC12 (the mean value
of G + C content at codons 1 and 2 of protein-coding genes) was used as the ordinate,
and GC3 (the G + C content at codon 3 of protein-coding genes) was used as the abscissa.
The difference in base content at different sites of protein-coding genes was judged by a
slope to determine whether it demonstrated neutral evolution [26]. ENC-plot analysis was
performed, and the scatter plot was drawn using Microsoft Excel 2019 with GC3 as the
abscissa and ENC as the ordinate [27]. The expected value was calculated according to
the formula ENC = 2 + GC3 + (29/(GC32 + (1 − GC3)2)) [28], and the standard curve was
drawn. Finally, DAMBE v7.3.32 software was used to evaluate the replacement saturation
of sequence data [29].

2.3. Phylogenetic Analysis

We retrieved the complete mitochondrial genomes of 14 insects from NCBI. Com-
bined with the newly determined complete mitochondrial genomes of three species of the
genus Yangiella in this study, an initial dataset containing 16 species (14 species of Aradi-
dae, Macroscytus subaeneus, Urochela quadrinotata (Reuter 1881) as outgroup, see Table S1)
was complete.

The initial dataset was imported into Phylosuite v1.2.3 software [30] to extract the
nucleotide sequences of protein-coding genes (PCGs) and rRNAs. Subsequently, multiple
sequence alignments of each gene of the PCG and rRNA sequences were performed using
the G-INS-i strategy in MAFFT v7.464 software [31]. As MAFFT v7.464 does not consider
the codon structure of PCGs, it may introduce alignment errors; therefore, it was necessary
to optimize the aligned PCG sequences using MACSE [32]. Then, GBlocks v0.91 b was
used to prune PCGs to remove sites with alignment errors or multiple substitutions, so
as to remove phylogenetic noise and retain phylogenetic signals [33]. rRNA sequences
were trimmed using trimAl v1.4 software [34]. Finally, FASconCAT-G v1.04 was used to
concatenate the sequences [35]. Two datasets for phylogeny were obtained: (1) a data matrix
of 13 protein-coding genes and 2 rRNA genes (PCGsRNA); (2) a data matrix (PCGs12RNA)
constructed by the first and second codons of 13 protein-coding genes and 2 rRNA genes.

The overall heterogeneity of the two data matrices was evaluated using Aligroove
v1.06 [36]. Then, ModelFinder [37] was used to evaluate the optimal partitioning strategy
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and evolutionary model of the PCGsRNA and PCGs12RNA matrices, respectively. Based
on the results of ModelFinder (Tables S2–S5), a Bayesian inference (BI) phylogenetic tree
was constructed using Exabayes v1.5.1 software [38]. Outgroups were manually selected,
MCMC generations were set to 10,000,000, sampling frequency was 1000, four MCMC
chains were run, and the Burnin Fraction value was 0.25. When the average standard
deviation of the split frequencies (ASDSF) value was less than 0.01, BI ran converge and the
BI phylogenetic tree was obtained. Then, IQ-tree v2 software [39] was used to construct the
maximum likelihood (ML) phylogenetic tree, manually select the outgroup, and calculate
the Ultra-fast Bootstrap Value as the support rate for each node [40]. The online website
TVBOT (https://www.chiplot.online/tvbot.html (accessed on 10 May 2024)) was used to
visualize the phylogenetic trees of BI and ML [41].

2.4. Divergence Time Estimation

For these two matrices, this study used BEAST v1.10.4 to calculate the divergence time
of each genus of Aradidae [42]. The partitioning scheme was set according to the results
of ModelFinder. The divergence time of the previous study was used as the calibration
point [43,44] (Table S6). The prior distribution selected was the normal distribution and
the relaxed molecular clock model. The total generation value of the MCMC chain was
set to 20 million generations, and sampling was performed every 1000 generations. The
running results were viewed using Tracer v1.7.2 to test whether the parameters converged
(ESS > 200) [45], TreeAnnotator v1.10.4 was used to obtain the MCC tree (the maximum
clade credibility tree), and the proportion of discarded samples was set to the top 25%.
Finally, FigTree v1.4.4 was used to view the MCC tree.

3. Results
3.1. General Characteristics of the Mitochondrial Genome of the Genus Yangiella

In this study, we sequenced the complete mitochondrial genomes of three species of the
genus Yangiella (Figure 1), with lengths of 15,192 bp for Y. mimetica, 15,205 bp for Y. montana,
and 15,070 bp for Yangiella sp., respectively. The difference in mitochondrial genome length
is mainly due to changes in the length of the control region and rRNA. The mitochondrial
genomes of the three species of Yangiella contain 37 genes and a non-coding control region
(CR). Among them, there are 23 J-strand genes, including 14 tRNA genes and 9 PCGs.
There are 14 genes on the N-strand, including 4 PCGs, 8 tRNA genes, and 2 rRNA genes
(Tables S7–S9). Compared with the mitochondrial gene arrangement of Cydnidae, tRNA
gene rearrangement was found in Aradidae, forming three-gene arrangement. Among
them, Aradacanthia heissi (Bai, Zhang, and Cai) and Aradus compar (Kiritshenko, 1913) each
all a gene arrangement, and Aneurinae, Carventinae, and Mezirinae all have the same gene
order (Figure 2).

There are 12–14 gene overlap regions in the complete mitochondrial genomes of the
three species, ranging from 1 to 8 bp in length. The longest overlap region is located
between trnW and trnC in the three species, which is 8 bp. There are also between seven
and eight intergenic spacers (IGS) between each gene, with a length of 1–50 bp. The largest
intergenic spacers of each species are located between trnQ and trnI, with a length of
44–50 bp. In addition, among the 13 protein-coding genes of each Yangiella species, except
for cox1, cox2, and nad1, which used TTG as the starting codon, the remaining PCGs used
ATN (N = A, T, C, G) as the starting codon. The starting codons of nad3, nad4, nad4L, and
nad6 were different among different species. Ten PCGs of the three species were terminated
with TAA or TAG, and cox2, nad4, and nad5 were terminated with T residues (Tables S7–S9).

The mitochondrial genome of Yangiella had AT bias, and the AT content was between
69.1 and 69.7%, showing positive AT and negative GC bias. The AT and GC bias in protein-
coding genes were both negative, while the genes on the J-chain had positive AT and
negative GC tilt, and the N-chain was the opposite (Table S10).

The mitochondrial genome of Yangiella contains 22 tRNAs, with a length of 61–70 bp,
of which trnA is the shortest, with a length of 61 bp in all three species. Y. mimetica has

https://www.chiplot.online/tvbot.html
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the longest trnW (70 bp). The longest trnQ in Y. montana was 69 bp; the trnQ, trnK, and
trnD genes of the new species were all 69 bp. The trnS1 in each species lacks the DHU
arm (Dihydrouridine arm) and cannot form a typical cloverleaf secondary structure. Other
tRNAs can fold to form a typical clover structure (Figures 3 and S1–S3). A total of 102 base
mismatches occurred in the tRNA of the three species, including 75 GU mismatches, 10 UU
mismatches, 8 AC mismatches, 5 UC mismatches, 3 AA mismatches, and 1 AG mismatch.
GU, UU, UC, and AC mismatches were found in all three species, and the number of GU
mismatches was the highest in all three species, while AG mismatches were only found in
trnC of Y. montana.
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Figure 2. Mitochondrial gene rearrangements in flat bugs. Except for the underlined genes, the other
genes were transcribed from left to right. IGS is the intergenic region. (A) Macroscytus subaeneus.
(B) Aradacanthia heissi. (C) Aradus compar. (D) Aneurus similis, Aneurus sublobatus, Libiocoris heissi,
Taiwanaptera montana, Arbanatus sp., Brachyrhynchus hsiaoi, Brachyrhynchus triangulus, Mezira sp.,
Neuroctenus yunnanensis, Yangiella sp., Yangiella mimetica, Yangiella montana.
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Figure 3. Secondary structure prediction of the tRNA gene of Yangiella sp. The Watson–Crick pair
is represented by a straight line, and the mismatch is represented by a dot. All of the Yangiella sp.
mitogenome tRNAs except for trnS1 follow the canonical conserved three-loop cloverleaf structure
consisting of the amino-acyl arm (lilac), dihydrouridine arm (DHU, green), pseudouridine arm (TΨU
loop, blue), and the anticodon loop (modena). All tRNAs also contain a variable region (red).

The Yangiella mitochondrial genome contains two rRNA genes; rrnL is located between
trnL1 and trnV, and rrnS is located between trnV and control region. The length of rrnL is
between 1258 and 1384 bp, and the length of rrnS is between 743 and 748 bp, both of which
have obvious AT bias (Table S10).

3.2. Codon Preference Analysis

Among the 13 PCGs of Y. mimetica and Y. montana, UUA, UCA, CGA, UCU, and ACA
were used more frequently, while UUA, UCA, ACA, AGA, and CGA were used more
frequently in Yangiella sp. However, the synonymous codon usage frequency of UUA
was the highest in the three species, while the relative synonymous usage frequency of
AGG was the lowest in the three species. The most commonly used amino acids were Ile,
followed by Met, Phe, and Leu2 (Figure 4). In general, the codon usage preferences of the
three species of Yangiella are similar.
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3.3. Neutrality Plot Analysis and ENC-Plot Analysis

The results of neutral mapping analysis (Figure 5A) showed that the GC12 values of
the mitochondrial gene of Aradidae were between 0.309 and 0.391, and the GC3 values
were between 0.148 and 0.341. The GC12 and GC3 were significantly correlated (R2 = 0.9131,
p < 0.01), indicating that the mutation pressure affected all codon sites. In addition, all the
mitochondrial genes of Aradidae were located below the ENC standard curve (Figure 5B).
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Figure 5. Codon preference analysis of 14 species in Aradidae. (A) The G + C content trend line and R
value of codon 1 and 2 (GC12) and codon 3 (GC3) of mitochondrial protein-coding gene in Aradidae.
(B) The scatter plot of the correlation between ENC value and GC3. The purple curve represents the
expected functional relationship between ENC and GC3 under no selection pressure but only under
abrupt pressure.

3.4. Base Substitution Saturation Analysis

The transversion rate of protein-coding genes in Aradidae is often greater than the
transition rate, which is more in line with the ideal state of substitution. At the saturation
level, when the total genetic distance increases, the slope of the transversion saturation
curve gradually decreases, but there is no obvious platform, so it does not reach saturation;
the slope of the transition saturation curve is much larger than zero, and does not reach
saturation (Figure 6A). In theory, the third site of the protein-coding gene is subjected to
the least selection pressure and the substitution occurs more frequently. The substitution
saturation of the three coding sites was calculated, respectively. The first and second sites
had almost positive slope lines, which were completely unsaturated (Figure 6B,C). The
slope of the transition trend line at the third site is much larger than zero, and it also
does not reach the saturation state, but the slope of the transversion trend line gradually
becomes smaller, showing a slight saturation state (Figure 6D). The trend line of substitution
saturation of rRNA gene is almost a standard positive slope line, which is completely
unsaturated (Figure 6E).



Insects 2024, 15, 533 9 of 17
Insects 2024, 15, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 6. Substitution saturation plots of PCGs and RNA in the mt genomes of 14 species of Ara-
didae. “S” represents the transition rate (dark red), and “V” represents the transversion rate (dark 
green). (A) All sites of protein-coding genes. (B) The first site of protein-coding genes. (C) Protein-
coding gene second site. (D) Protein-coding gene third site. (E) rRNA gene. 

3.5. Nucleotide Diversity (Pi) and Nonsynonymous (Ka)/Synonymous (Ks) Mutation Rate Ra-
tios 

In this study, the Pi values of 13 PCGs in the mitochondrial genome of Aradidae were 
calculated (Figure 7). The results showed that the overall Pi changes of 13 PCGs in Ara-
didae were not significant. Among them, atp8, nad6, and nad4L had higher Pi values than 
other coding genes, and the value of cox1 was the smallest, indicating that the gene had 
the least variability. The Ka/Ks ratio was used to evaluate the evolutionary rate of 13 PCGs 
in Aradidae species (Figure 7). The results showed that the Ka/Ks ratio of all genes was 
less than 1, indicating that these genes were in a state of purification selection. However, 
atp8, nad2, nad41, nad5, and nad6 showed higher Ka/Ks ratios, and they may have higher 
evolutionary rates than other genes. 

Figure 6. Substitution saturation plots of PCGs and RNA in the mt genomes of 14 species of Aradidae.
“S” represents the transition rate (dark red), and “V” represents the transversion rate (dark green).
(A) All sites of protein-coding genes. (B) The first site of protein-coding genes. (C) Protein-coding
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3.5. Nucleotide Diversity (Pi) and Nonsynonymous (Ka)/Synonymous (Ks) Mutation Rate Ratios

In this study, the Pi values of 13 PCGs in the mitochondrial genome of Aradidae
were calculated (Figure 7). The results showed that the overall Pi changes of 13 PCGs in
Aradidae were not significant. Among them, atp8, nad6, and nad4L had higher Pi values
than other coding genes, and the value of cox1 was the smallest, indicating that the gene
had the least variability. The Ka/Ks ratio was used to evaluate the evolutionary rate of
13 PCGs in Aradidae species (Figure 7). The results showed that the Ka/Ks ratio of all
genes was less than 1, indicating that these genes were in a state of purification selection.
However, atp8, nad2, nad41, nad5, and nad6 showed higher Ka/Ks ratios, and they may
have higher evolutionary rates than other genes.
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3.6. Heterogeneity Analysis

Heterogeneity in nucleotide divergence was evaluated via pairwise comparisons in
a multiple sequence alignment. The results showed that the heterogeneity of the two
matrices was low and could be used to construct phylogenetic trees (Figure 8). On the
whole, PCGs12RNA has darker blue and lower heterogeneity. The heterogeneity rate
of the third codon was high, and the removal of the third codon matrix can reduce the
degree of heterogeneity, which can further explain that PCG base heterogeneity is mainly
concentrated in the third codon.
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3.7. Phylogenetic Analyses

In this study, we conducted a phylogenetic analysis that included 14 species of Ara-
didae, as well as outgroup species from Pentatomidae. We used maximum likelihood
(ML) and Bayesian inference (BI) methods, and used two data matrices (PCGsRNA and
PCGs12RNA) to generate four phylogenetic trees. The Bayesian inference (BI) and max-
imum likelihood (ML) trees of the two data matrices show exactly the same topology,
and most nodes are strongly supported. The results showed that except for Calisiinae
and Aradinae, where only one species was not discussed, the remaining subfamilies were
Aneurinae (BP = 90; PP = 1), Carventinae (BP = 90; PP = 10), and Mezirinae (BP = 100;
PP = 1), which are monophyletic subfamilies. Among them, Calisiinae is located at the
base of the phylogenetic tree, and Mezirinae is a highly evolved subfamily, but the ML tree
support of individual points in its internal branch is weak (BP = 16–19), and it is stronger
in the BI tree (PP = 0.80–0.81). In addition, the three Yangiella sequenced in this study were
monophyletic (BP = 100; PP = 1), and it is a sister group to Chinolyda (Figure 9).
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data matrix. (B) Phylogenetic tree based on PCGs12RNA data matrix.

3.8. Divergence Time Estimation

We estimated the divergence time, and there was no significant difference between the
results of the two data matrices (Table S11). Based on the results of the two data matrices, it
is inferred that the most recent common ancestor of Aradidae appeared in the Late Jurassic
(168 MYA). Aradinae was isolated from Carventinae, Mezirinae, and Aneurinae in the early
Early Cretaceous (146 MYA). In the late Early Cretaceous (128 MYA), Carventinae was
separated from Aneurinae and Mezirinae. Finally, Yangiella and Neuroctenus formed and
differentiated in the early Eocene (57 MYA) (Figure 10).
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is shown at the bottom.

4. Discussion

Gene rearrangement is considered to be an important molecular marker in reveal-
ing insect evolution [46]. The arrangement and direction of the mitochondrial genes of
the three species of Yangiella were consistent with those of Aneurinae, Carventinae, and
Mezirinae, but the trnC and trnY genes were shifted compared with Aradus comper in Arad-
inae [43]. Compared with Aradacanthia heissi [47] of Calisiinae, trnC and trnW genes were
reversed. The trnQ and trnI genes were rearranged in Aradidae compared to Macroscytus
subaeneus [48], which is also a Hemiptera (Figure 2). In addition, it was also found that the
gene rearrangements of Aradidae mainly occurred between tRNA genes and were located
between the control region and cox1. Previous studies have noted that genes around the
replication start point (such as CR) are more likely to be replicated to form a “hot spot”
region, making the rearrangement of gene order more likely [49]. Moreover, the same
gene arrangement (trnQ–trnI) was found in the mitochondrial genomes of all Aradidae,
which was different from the gene order of most other hemipteran insects (trnI–trnQ) [50].
In previous studies, this rearrangement was considered to be an ancestral feature of the
Aradidae [43].
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The mitochondrial genome of Yangiella insects shows high AT bias, which is widely
present in the mitochondrial genome of insects. This may be because guanine (G) and
cytosine (C) nucleotides require more energy for biosynthesis than adenine (A) and thymine
(T) nucleotides, and are not easily available in cells [51]. Therefore, the unequal use of four
bases usually leads to high A + T content [8,52]. At the same time, the two strands (heavy
chain and light chain) of the mitochondrial DNA of the genus insects are not uniform, and
there is no reverse chain asymmetry. The AT skew is positive and the GC skew is negative,
which is consistent with the characteristics of most insect genomes [53]. This phenomenon
may be related to replication and transcription mechanisms [54].

The trnS1 genes of Yangiella species all lack the (DHU) arm and form a ring. Such a
phenomenon exists in most insects [8]. At the same time, six mismatched base pairs were
found, of which the largest number of GU mismatches can form hydrogen bonds in RNA,
but the geometric shape of the base causes the GU pair to be weaker than the hydrogen
bond of the AU pair [55,56]. GU base pairing also plays an important role in biological
processes [57]. In addition, non-classical UC mismatches, UU mismatches, AC mismatches,
AA mismatches, and AG mismatches were also found. These mismatches may be caused
by error correction mismatches during RNA editing, but the mismatch phenomenon has
little effect on the corresponding function of tRNA genes [58]. If the helical regions of
RNA molecules are used to construct phylogeny in subsequent studies, it is necessary to
understand the way these parts of the sequence evolve. The genetic relationship between
species can be judged by codon usage patterns, that is, similar codon preference between
genomes means a closer genetic relationship [59,60]. In this study, the RSCU values of the
mitochondrial genomes of three species of the genus Yangiella were analyzed. The analysis
revealed a high degree of similarity in codon preference among the three species, further
confirming that they belong to the same genus.

The ENC value of Aradidae is low, indicating that its codon preference is strong [61].
All the genes in the results of ENC mapping analysis were located under the standard curve,
indicating that the mitochondrial gene codons of Aradidae insects were greatly affected by
natural selection. Neutrality plot analysis showed that the correlation between GC12 and
GC3 in the mitochondrial genome of Aradidae was extremely significant, indicating that
the codon usage preference of Aradidae was affected by base mutation. Combined with
the regression coefficient, it can be inferred that natural selection and base mutation have a
great influence, but the influence of natural selection is greater.

The Pi and Ka/Ks values of cox1 are the lowest, indicating that it is the most conserved
gene in the mitochondrial genome [62], while atp8 and nad6 are rapidly evolving genes.
In addition, the Ka/Ks < 1 of each gene in Aradidae indicates that the evolution of Aradidae
is subject to purification selection [63,64], and the stability of gene function needs to be
maintained by eliminating harmful mutations [65]. This is consistent with the results of the
study on the evolutionary rate of Hemiptera insects in 2015 [66]. However, in the study
of scale insects, nine PCGs had a higher nonsynonymous mutation rate (Ka/Ks > 1), and
the dominant evolution seemed to be positive selection [50]. This difference may be due
to the adaptive evolution of scale insects with host plants, while the flat bugs mostly live
under the bark of rotten wood, without specific host plants, and the living environment is
rarely changed.

The results of substitution saturation level analysis showed that the nucleic acid se-
quence of mitochondrial protein-coding genes in Aradidae did not reach saturation, which
provided data rationality support for subsequent phylogenetic analysis. Heterogeneity
analysis of the two data matrices showed that the compositional heterogeneity of Aradidae
was low and would not lead to abnormal topological clustering. In addition, the phylo-
genetic results of this study are basically consistent with the traditional morphological
classification and previous molecular studies [13]. Both datasets strongly support the mono-
phyly of each subfamily and Yangiella of Aradidae. Through the analysis of divergence time,
it was found that the differentiation time of the main lineages of Aradidae was consistent
with its fossil record. For example, Aradinae branched with Carventinae, Mezirinae, and
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Aneurinae in the Early Cretaceous, which is consistent with the age of the oldest Aradinae
fossil, Aradus nicholasi (Popov, 1989) (ca. 125–113 MYA) [67]. The branch of Mezirinae in the
Late Cretaceous is consistent with the time of the Mezirinae fossil Myanmezira longicornis
(Heiss and Poinar Jr, 2011) (100–90 MYA) in Myanmar [68]. The results of this study can
provide a scientific basis for the evolution of Aradidae insects, and more comprehensive
phylogenetic and more accurate molecular clocks need further study.

5. Conclusions

In this study, we report for the first time the complete mitochondrial genomes of three
species in the genus Yangiella. It was found that the mitochondria of the genus have similar
structural characteristics and nucleotide composition. The unique gene arrangement of
Aradidae was also found, which further proved the monophyly of this family. All the
phylogenetic trees have the same topological structure, which supports the monophyly of
Aneurinae, Carventinae, and Mezirinae, and the monophyly of Yangiella. Unfortunately,
the number of species used in this paper is limited and was not analyzed in conjunction
with morphological characters. Therefore, further and more comprehensive studies are
needed, as well as exploration of species divergence times.
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