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Simple Summary: Infestations of pests in grain storage can have a significant impact on both the
quantity and quality of stored grains. Drawing inspiration from the detection abilities of humans and
birds in identifying pests, we present an innovative deep learning solution designed for the detection
and management of pests in stored grains. Specifically focusing on the detection of small grain
pests within cluttered backgrounds, we propose a cascaded feature aggregation convolution network.
Our approach outperforms existing models in terms of both trainable parameters and detection
accuracy, as evidenced by experiments conducted on our newly introduced GrainPest dataset as well
as publicly available datasets. By sharing our dataset and refining our model’s architecture, we aim
to advance the field of research in grain pest detection and the classification of stored grains based
on pest density. This study is expected to contribute to the reduction of economic losses caused by
storage pests and to enhance food security measures.

Abstract: Pest infestation poses significant threats to grain storage due to pests’ behaviors of feeding,
respiration, excretion, and reproduction. Efficient pest detection and control are essential to mitigate
these risks. However, accurate detection of small grain pests remains challenging due to their small
size, high variability, low contrast, and cluttered background. Salient pest detection focuses on the
visual features that stand out, improving the accuracy of pest identification in complex environments.
Drawing inspiration from the rapid pest recognition abilities of humans and birds, we propose a
novel Cascaded Aggregation Convolution Network (CACNet) for pest detection and control in stored
grain. Our approach aims to improve detection accuracy by employing a reverse cascade feature
aggregation network that imitates the visual attention mechanism in humans when observing and
focusing on objects of interest. The CACNet uses VGG16 as the backbone network and incorporates
two key operations, namely feature enhancement and feature aggregation. These operations merge
the high-level semantic information and low-level positional information of salient objects, enabling
accurate segmentation of small-scale grain pests. We have curated the GrainPest dataset, comprising
500 images showcasing zero to five or more pests in grains. Leveraging this dataset and the MSRA-B
dataset, we validated our method’s efficacy, achieving a structure S-measure of 91.9%, and 90.9%,
and a weighted F-measure of 76.4%, and 91.0%, respectively. Our approach significantly surpasses
the traditional saliency detection methods and other state-of-the-art salient object detection models
based on deep learning. This technology shows great potential for pest detection and assessing the
severity of pest infestation based on pest density in grain storage facilities. It also holds promise for
the prevention and control of pests in agriculture and forestry.

Keywords: visual attention mechanism; salient object detection; feature aggregation; feature enhancement;
cascaded atrous convolution
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1. Introduction

Grains (cereals, oilseeds, and legumes) are the major source of food for both humans
and domestic animals. Grain pests can inflict significant damage on stored grains through
activities such as feeding, breathing, excretion, reproduction, webbing, and other behav-
iors. Insect infestation is the leading major factor for postharvest losses of grains during
storage [1]. In accordance with the Chinese standard GB/T 29890-2013: Technical Crite-
rion for Grain and Oil-seeds Storage, the presence and severity of grain pests dictate the
requirement for implementing control measures such as low-temperature storage, chem-
ical fumigation, and other applicable methods. Stored grain pests can cause substantial
post-harvest losses, ranging from approximately 9% in developed countries to potentially
exceeding 20% in developing countries [2]. Insect infestation will result in the loss of stored
grains both quantitatively and qualitatively, and then affect the nutritional values and
marketability of the subsequent foodstuff [3]. Considering the growing global population
and the slow growth of food production, the Food and Agriculture Organization (FAO)
predicts that the world may face food scarcity in the coming decades [4]. To reduce the
major grains postharvest loss in the storage stage, we can take some proper storage meth-
ods and intelligent approaches for pest infestation identification and control. With the
development of computer vision [5] and emerging deep learning techniques [6], modern
approaches based on image processing and recognition can provide rapid, economic, and
precise solutions for grain pest identification and detection.

The popular detection methods of grain pests include manual sampling [7], acoustic
detection [8], and computer vision [9]. Manual sampling involves labor-intensive efforts to
probe specified locations in the granary, drawing 1 kg of grains for screening pests through
sieves. Inspectors visually assess the presence and quantity of pests using their naked eyes.
Despite the fact that inspectors have good eyesight and good sense of subtilizing, manual
inspection methods are labor-intensive, time-consuming, and subjective [10]. Acoustic
detection methods monitor the activities of grain pests with the moving and feeding sound.
The effectiveness of acoustic methods depends on understanding the relationship between
acoustic waves and pest distribution. The acoustic receiver is also expensive and sensitive
to background noise [11]. Advancements in computer vision have led to the integration of
various technologies, such as optical instrumentation, near-infrared spectroscopy, X-ray
imaging, electromagnetic sensing, image processing, and machine learning, for internal and
external grain pest detection and recognition [3]. The USDA (United States Department of
Agriculture) and FGIS (Federal Grain Inspection Service) utilize visual reference images for
insect infestation and grain grading [12]. Li et al. designed a multi-scale pyramid network
with both classification and box regression subnets to detect the common stored-grain
insects [13]. Shi et al. proposed an RPN-based convolutional neural network to predict
the classification of eight common stored grain insects [14]. Chen et al. [15] introduced an
automated pest detection and counting system to address the limitations of dataset context
and pest trap-based methods in grain pest detection. The proposed automatic system and
YOLOv4 model achieved a mean average precision (mAP) of 97.55%, meeting the practical
accuracy requirements for detecting and counting granary pests.

Visual saliency detection [16] refers to the computational process of identifying the
most visually prominent regions in an image or video, which are likely to capture human
attention. The goal of visual saliency detection is to highlight areas or objects that are
perceptually distinct from their surroundings, based on features such as color, texture,
shape, or contrast. Coincidentally, humans and birds can identify pests in grains at a
glance with the mechanism of visual saliency detection. In the context of our research,
salient object detection (SOD) plays a crucial role in identifying and highlighting regions in
images that potentially contain grain pests, making grain pest detection more efficient and
effective in complex environments. While many solutions based on both traditional image
processing algorithms [17] and deep learning models [18] have been proposed in recent
years for SOD, some issues remain open for real-world applications such as grain pest
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detection [19]. Motivated by the visual systems of humans and birds, we aim to address
the more complex real-world scenario of grain pest detection.

To address the above issues, the main contributions and novelties of this paper can be
summarized as follows:

(1) GrainPest: A challenging and benchmark dataset for salient grain pest detection.
This dataset has the following characteristics: a diversity of grain pests, a high proportion
of small-sized objects, the presence of non-salient objects, and pixel-level annotation.

(2) CACNet: A novel one-branch model for saliency detection based on a reverse
cascaded feature aggregation convolution network is proposed. We have designed a
cascaded atrous convolution module to increase the receptive field and enhance multi-scale
feature representations for small targets.

(3) Experiments: We conducted comparative experiments to evaluate the performance
of the proposed CACNet by comparing it with both traditional visual saliency detection
methods and several state-of-the-art deep learning models on GrainPest and MSRA-B
datasets. Quantitative and qualitative results demonstrate that CACNet achieves high
detection accuracy, especially for small salient objects.

2. Materials and Methods
2.1. Cascaded Aggregation Convolution Network

Convolutional Neural Networks (CNNs) can accurately segment images into distinct
areas of interest by utilizing convolutional layers to extract features and learn spatial pat-
terns. However, due to the presence of pooling and stride operations, the spatial resolution
of these feature maps is usually reduced. This reduction poses challenges in generating
visual saliency maps at the original image size using conventional network structures,
consequently affecting the accuracy of grain pest saliency detection. To address this is-
sue, we propose a cascaded atrous convolution approach that mimics the visual attention
mechanism of humans, involving glancing, searching, and focusing. As shown in Figure 1,
we introduce a U-like network called the Cascaded Aggregation Convolution Network
(CACNet). CACNet employs cascaded atrous convolution to expand the receptive field
of convolutional layers, effectively resolving the challenge of limited spatial resolution in
feature maps encountered in conventional convolutional networks. This helps in capturing
large-scale contextual information and improving the performance of small pest detection
and segmentation. Additionally, we apply reverse cascade feature enhancement and feature
aggregation techniques to produce a visual saliency map with high precision.

In the coding process, we utilize well-established image-processing backbone net-
works, specifically the VGG16 and ResNet50. These networks have demonstrated robust
capabilities in representing images and come with pre-trained parameters derived from
extensive datasets like ImageNet, eliminating the need for training models from scratch.
The backbone network is organized into five stages, each consisting of various components,
including 2D convolutions, ReLU activation functions, and average pooling layers. In
the lower layers, the image resolution remains higher, resulting in convolution outputs
with more detailed edge and positional information. Conversely, the higher layers exhibit
an increase in the number of image channels, a decrease in resolution caused by pooling
operations, and convolution outputs that incorporate more profound semantic information
for classification and segmentation.

In the decoding process, we employ a reverse cascade feature aggregation structure,
as shown in the lower half of Figure 1. Directly upsampling or deconvolving deep features
would result in a segmented image lacking fine details. Hence, it is essential to aggregate
the output results from different stages, considering both high-level semantic information
(stage 3 to stage 5) and low-level structural information (stage 1 to stage 2). To increase
the receptive field, the output features from layer 3 to layer 5 of the backbone undergo
Cascaded Atrous Convolution (CAC) modules. In order to obtain a saliency map that
has the same size as the original image, a reverse feature fusion process is applied. The
feature fusion process encompasses several upsampling, convolution, and concatenation



Insects 2024, 15, 557 4 of 14

operations. The reverse cascade feature aggregation involves two primary operations:
feature enhancement and feature aggregation. Feature enhancement involves mapping the
convolution results from higher layers back to the corresponding layers in the lower level,
followed by enhancing this feature map through bitwise multiplication. On the other hand,
feature aggregation combines the mapped results from higher layers with the enhanced
features of the lower-level layer to create a more comprehensive and informative feature
combination. Finally, a 1 × 1 convolution is performed on the final aggregated features to
generate a visual saliency map.
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Figure 1. The architecture of the proposed Cascaded Aggregation Convolution Network (CACNet).
The encoding process uses a backbone of VGG or ResNet, which is divided into 5 stages. The decoding
process involves two operations of feature enhancement (Multiplication) and feature aggregation
(Concatenation) to aggregate the output results of different layers.

The results obtained from the reverse cascade aggregation process are compared with
the ground truth to evaluate their performance using the cross-entropy loss function. Since
determining pixel membership within the salient target is the main objective of saliency
detection, the resulting saliency probability maps can be easily converted into binary
features. Hence, we employ the binary cross-entropy loss function in this context. In order
to simplify the network architecture, we decide to evaluate the loss solely based on the
aggregated features of the last layer in the reverse cascade, diverging from methods such
as the Cascaded Partial Decoder (CPD) that incorporate both low-level structural features
and high-level semantic features in the loss calculation. Additionally, for the specific task
of grain pest detection, our primary focus lies in detecting and quantifying salient pest
targets, rendering the detailed delineation of target edges unnecessary. As a result, we
do not incorporate an edge-preserving loss function like the Pyramid Feature Attention
Network (PFA).

2.2. Cascaded Atrous Convolution for Receptive Field

Enhancing the detection ability of small objects requires a dual approach, involving the
development of multi-scale feature representations for small targets and the incorporation
of contextual information fusion techniques. Grain pests, due to their small size and ability
to camouflage and mimic the color of grain kernels, pose a significant challenge for grain
pest detection. In contrast, human observers excel in this task by quickly assimilating
global and local image information through glancing, searching, and focusing actions. As a
result, humans consistently achieve high rates of detection and recognition in identifying
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grain pests. To replicate the visual processes of human observation, specifically glancing,
searching, and focusing, and enhance the detection of grain pest targets, we propose a novel
solution: the cascaded atrous convolution module. This module is designed to facilitate the
multiscale representation of targets and the fusion of contextual information.

In Figure 2, our module begins by performing a non-linear combination on the channel
dimension of the features from the backbone network using a 1 × 1 convolution. These
features serve as the foundation for subsequent atrous convolutions and feature aggre-
gation. The operation of 1 × 1 convolution can not only reduce model parameters but
also increase the expressive power of the network. We incorporate three sets of atrous
(dilated) convolution to increase the receptive field of the convolutional layer and enhance
the multiscale feature representation, specifically for small targets. To mitigate grid effects,
we employ a combination of ternary primes, such as 3, 5, 7, as dilation rates, which have
proven to be effective. These three atrous convolution layers are sequentially concatenated
and then aggregated with other branches. Finally, the aggregated features are subjected to
element-wise addition with the residual results from the first convolutional layer, followed
by an activation function to produce the final output. This mechanism emulates the human
visual attention process from coarse to fine details, thereby expanding the model’s receptive
field while reducing the model parameters.
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Figure 2. Cascaded atrous convolution module to increase the receptive field. Three atrous convolu-
tions are linked in a cascaded manner to progressively expand the receptive field. Subsequently, the
output features from each atrous convolution are concatenated in parallel for extracting enriched
representations of the input data.

2.3. Evaluation Metrics

We employ the commonly used evaluation metrics, including the Structure-measure
(Sm), Mean Absolute Error (MAE), mean E-measure (Em), and weighted F-measure (Fm) to
assess the performance of our salient object detection models. To compute these metrics,
we utilize the MATLAB toolbox provided by Fan [20].

The S-measure (structure measure) takes into account both the object-aware (So)
similarity and the region-aware (Sr) contrast between the predicted saliency map and the
ground truth map. It provides a single score that reflects the overall quality of the saliency
map, considering both local and global consistency.

Sm = α × So + (1 − α)× Sr (1)

Mean Absolute Error (MAE) is used to evaluate the pixel-level error between the
generated saliency map M and the ground truth G. W and H denote the width and height
of the image, with:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1

∥M(x, y)− G(x, y)∥ (2)
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E-measure (Enhanced-alignment measure) uses the alignment matrix ϕs to capture
the pixel-level matching and image-level statistics of the predicted saliency map.

Em =
1

W × Q∑ W
i=1∑ H

j=1ϕs(i, j) (3)

Precision (P) refers to the accuracy of the algorithm which is the percentage of salient
pixels correctly assigned. While recall (R) refers to the relationship of detected salient
pixels to the ground truth salient pixels. For a given saliency map, we convert it to a
binary mask M using a varying threshold from 0 to 255. The precision and recall can be
computed by comparing the binary mask (M) of the saliency map with its ground truth (G)
as described in:

P =
|M ∩ G|

M
(4)

R =
|M ∩ G|

G
(5)

F-measure, as a weighted summed average of precision and recall, has non-negative
weights and its evaluation results are more reliable, and it is calculated as follows:

Fβ =
(1 + β2)P × R

β2P + R
(6)

where, β2 = 0.3 is a suggested threshold by previous work. β2 is computed across the
thresholds, and Fβ_max represents the maximum overlap between precision and recall. If Fβ

score is closer to 1, the overlap between the saliency map and the ground-truth is larger.

3. Experiments and Results
3.1. Dataset

Deep neural networks play an important role in acquiring knowledge from extensive
images in many computer vision tasks. Consequently, the quality of the dataset becomes a
determining factor in the level of knowledge that can be acquired by the model. Previous
studies have revealed that deep learning-based salient object detection models experience
significant performance degradation when detecting small targets. In addition to the
model’s structure, the choice of the datasets also serves as a critical factor influencing model
performance. Many saliency detection datasets, including DUTS-TE [21], DUTS-TR [21],
ECSSD [22], HKU-IS [23], and MSRA-B [24] presume the presence of a single salient object
in an image. Moreover, several methods rely on center bias to detect the salient object at the
image center. However, these biases in data selection can reduce the model’s generalization
and performance when applied in complex real-world scenarios.

The SOC (Salient objects in clutter) [20] dataset acknowledges that images composed
of cluttered scenes, such as landscapes and textures, typically lack salient objects. To
address this, the dataset includes approximately 50% more images with non-salient objects.
On the other hand, other datasets often overlook the non-salient objects and primarily
focus on medium or large objects. Experimental results indicate that existing saliency
detection algorithms, such as PoolNet [25], experience a significant decline in performance
when images with non-salient objects are introduced. Furthermore, inconsistencies in the
distribution of object scales between training and test sets, as observed in DTUS-TR and
DTUS-TE, also impact the performance of trained models. Therefore, it is necessary to
construct a dataset composed of small grain pests or pure grain backgrounds without
grain pests.

Overall, our dataset comprises 500 images, specifically curated for evaluation purposes,
with a focus on small salient objects. Figure 3 illustrates exemplars from the GrainPest
dataset, along with their corresponding ground-truth binary masks, which we have labeled
to facilitate the evaluation of saliency detection methods.
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Figure 3. Sample images and challenges in saliency detection of stored-grain pests. The challenges
described in each column are as follows: (a) variety of grains such as wheat, corn, rice, etc.; (b) diverse
grain pests; (c) cluttered backgrounds; (d,e) showing pest number variations from zero to more
than five.

The sample images and corresponding ground truth saliency maps are illustrated in
Figure 3. Existing salient object detection (SOD) models and datasets usually assume that
there are one or two big salient objects in the image. The performance of these models
will decrease significantly when the image contains many small objects or just non-salient
objects. We have to face more challenges as described in Figure 3 from column (a) to (e).
Firstly, the image background consists of various grains, including wheat, rice, corn, and
unshelled paddy. Secondly, a variety of pests including red flour beetle (Tribolium castaneum
Herbst), rice weevil (Sitophilus zeamais Motschulsky), corn borer larva, wheat moth, and
sawtoothed grain beetle (Oryzaephilus surnamensis) are parasitized in the grains. Thirdly,
the image background is highly cluttered due to the activities of pests. Fourthly, there are
always more than two salient objects in each image. Finally, in a lot of cases, the grains
are not infected with pests and the image is pure background with non-salient objects.
Moreover, most of the pests are as small as grains and they are more easily overlooked than
the big and salient objects. Consequently, grain pest detection is a challenging task that
requires a novel dataset and network architecture based deep learning.

We have collected a novel dataset, GrainPest, consisting of 500 images. Most of the
images contain one or more small grain pests such as weevils, saw-toothed beetles, and
moths in stored grain. For the construction of this dataset, we captured some images in the
controlled laboratory environment and searched for additional images from Insect Images
https://www.insectimages.org/ (accessed on 10 December 2022), which is a project led by
the University of Georgia. To take the non-salient objects into account, we included 50 pure
background images with rice, wheat, and corn. Additionally, we provided ground truth
annotations in the form of binary masks for the salient grain pests.

Since small objects are often more challenging to detect due to their low resolution
and limited visual features, accurately detecting them is an important research topic in
computer vision. The COCO (Common Objects in Context) dataset defines small objects as
those with a bounding box area of less than 32 × 32 pixels. We evaluate the size of salient
objects with the ratio of their pixels, and the ratio can be calculated using Formula (7). In
(1), W and H are the width and height of the image, and pix(x,y) = 1 represents the pixel of
the ground truth.

R =

W
∑

x=1

H
∑

y=1
(pix(x, y) = 1)

W × H
(7)

https://www.insectimages.org/
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Salient object size can be categorized into four levels based on the percentage (R) of
the object’s pixels in the image: H1 (R ≤ 10%), H2 (10% < R ≤ 20%), H3 (20% < R ≤ 30%),
and H4 (R > 30%). These levels correspond to different object sizes, with H1 denoting the
absence of salient objects or small objects, H2 representing medium objects, H3 denoting
medium-large objects, and H4 representing large objects. The scale information for com-
monly used saliency datasets is presented in Table 1 and depicted in Figure 4. Notably, the
GrainPest dataset primarily consists of small target images, accounting for 57.4% of the
dataset. Additionally, 16% of the images in the GrainPest do not contain salient objects,
while only a mere 0.8% of the images contain large targets. As such, the GrainPest dataset
represents a typical dataset primarily focused on small objects.

Table 1. Dataset summary: image counts and object size distribution in popular saliency detection
datasets. H1 to H4 indicate the object size levels of Small, Medium, Medium-Large, and Large Object.

Dataset Images H1 H2 H3 H4

DTUS-TE 5019 45.8% 29.99% 12.49% 11.72%
DTUS-TR 10,556 11.74% 25.16% 24.19% 38.91%

ECSSD 1000 15.4% 32.6% 24.4% 27.6%
HKU-IS 4445 22.12% 35.5% 26.52% 15.86%
MSRA-B 5000 14.24% 38.0% 28.52% 19.24%

SOC 3600 66.22% 11.89% 8.81% 13.08%
GrainPest 500 73.4% 22.6% 3.2% 0.8%
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3.2. Experimental Setup

We assessed the performance of our proposed model on two datasets: GrainPest and
MSRA-B. The GrainPest dataset, tailor-made for saliency detection related to grain pests,
comprises 500 images meticulously annotated by hand. In contrast, the MSRA-B dataset
consists of 5000 images encompassing diverse content categories, including natural scenes,
animals, indoor settings, outdoor environments, and more. The datasets are split into
training and testing sets in a ratio of 8:2.

Experiments are conducted on Pytorch with Python 3.7 as the programming language.
VGG16 [26] is used as the backbone. The learning rate starts at 1 × 10−4 and the batch
size is set to 1 during the training process. The training time is about 70 min for 30 epochs
(early-stop strategy) on dataset GrainPest. In other words, it takes about 78.6 s each epoch
for every 400 images. The running time is measured on the platform of Intel Core i7-8700
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CPU @3.20GHz × 6 (Intel, Santa Clara, CA, USA) and GeForce GTX TITAN X (NVIDIA,
Santa Clara, CA, USA) equipped with Ubuntu 18.04.5LTS.

3.3. Compared Results

In order to assess the effectiveness of the CACNet model in saliency detection, a com-
prehensive evaluation was conducted. The performance of CACNet was compared against
traditional saliency detection methods, such as GBVS [27], CA [28] and RARE [29], as well
as five state-of-the-art deep learning approaches, namely PFA [30], DHS [31], DSS [32],
CPD [33], U2Net [34]. Table 2 presents the quantitative evaluation results, including the
trainable parameters, as well as four evaluation metrics on two datasets. The best three
results are highlighted in red, blue, and green font, respectively. Notably, on the GrainPest
dataset, CACNet outperforms other models in nearly all four evaluation metrics. Similarly,
on the MSRA-B dataset, CACNet and CPD demonstrate outstanding performance.

Table 2. Quantitative evaluation results on dataset GrainPest and MSRA-B with traditional saliency
detection methods and 5 SOTA deep learning models. ↑ indicates larger is better and ↓ indicates
smaller is better. The results in bold indicate the best.

Methods
Params
(Mb)↓

GrainPest MSRA-B

Sm↑ MAE↓ Em↑ Fm↑ Sm↑ MAE↓ Em↑ Fm↑
GBVS - 0.625 0.190 0.585 0.508 0.658 0.227 0.536 0.615

CA - 0.643 0.186 0.603 0.509 0.613 0.250 0.529 0.548
RARE - 0.702 0.127 0.627 0.533 0.619 0.220 0.501 0.581
PFA 65.6 0.749 0.109 0.822 0.583 0.854 0.058 0.911 0.834
DHS 375.1 0.819 0.031 0.889 0.671 0.872 0.050 0.927 0.881
DSS 249.0 0.875 0.022 0.951 0.720 0.882 0.044 0.931 0.885
CPD 183.0 0.912 0.018 0.958 0.756 0.905 0.039 0.931 0.900

U2Net 176.3 0.899 0.024 0.912 0.742 0.902 0.048 0.918 0.896
CAC-

NoRFB 64.7 0.798 0.064 0.830 0.589 0.890 0.051 0.913 0.887

CACNet 16.0 0.919 0.017 0.949 0.764 0.909 0.044 0.927 0.910

To demonstrate the effectiveness of the CACNet model, we present sample results in
Figure 5, comparing its performance with that of state-of-the-art methods. As shown, CAC-
Net exhibits superior capabilities in dealing with grain insect images that are characterized
by small sizes and cluttered backgrounds. It excels in accurately segmenting grain pests
from the grain background, offering a more effective strategy for the detection and control
of pests in stored grain.

3.4. Ablation Study

To evaluate the effectiveness of our cascaded atrous convolution module, we con-
ducted an ablation study by constructing two distinct models. The first model adhered to
the standard CACNet architecture, while the second model, denoted as CAC-NoRFB, omit-
ted the Receptive Field Block (RFB) of the cascaded atrous convolution module. The results,
presented in the bottom two rows of Table 2, demonstrate our evaluation of these models
on the GrainPest and MSRA-B datasets using four performance metrics. These evaluations
highlight the exceptional performance of our method on both datasets, emphasizing the
importance of a cascaded atrous convolution module in saliency detection.
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4. Discussion
4.1. Traditional Solutions

Since the 1990s, both domestic and international research efforts have been committed
to the advancement of image recognition technology for detecting and counting grain
insects. Notably, the U.S. Federal Grain Inspection Service pioneered the use of visual
reference images in their pest infection and grain grading inspection system since 1997. In
prior research, Ridgway et al. [35] employed machine vision techniques to detect wheat
pests, such as sawflies. Neethirajan et al. [7] conducted an evaluation of advancements in
research encompassing sound detection, image recognition, and infrared sensors for stored-
product insect detection. Some conventional approaches to grain insect detection and
recognition, as outlined by [36], have centered on fundamental feature extraction, including
image color, edges, and textures, followed by grain insect localization and detection.
Alternatively, certain methodologies involve grain pests counting through region growing
and connected component labelling algorithms, while others employ neural networks and
support vector machines, leveraging various image features to achieve class recognition
of grain pests. However, traditional techniques face challenges in practical grain storage
settings due to the variety of grain pest species, their small size, different shapes, occlusion,
and various grain storage conditions [37].

Before the era of deep learning, there were quite a few visual methods can get the
saliency map using local or global contrast techniques. The resulting saliency map high-
lights the regions that stand out from the background. Itti and Koch [38] proposed a
method which uses a bottom-up approach to compute the saliency map by combining
several feature maps, such as color, intensity, and orientation, using a center-surround oper-
ation. Bernhard et al. [27] constructed a graph to model the image, where nodes represent
image pixels and edges capture the relationships between pixels. The Graph-based Visual
Saliency (GBVS) method combines multiple visual cues to accurately identify salient re-
gions in images. Paper [28] introduced a context-aware saliency model (CA) based on four
psychological principles to detect the salient objects that are most likely to attract human
attention. Literature [39] computes the saliency maps using the topological structure of
Boolean maps. The BMS model is efficient for both eye tracking and salient object detection.
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In [40], the color saliency map and regional stability are combined to detect the small
target. Riche et al. [29] introduced a novel saliency prediction model named RARE2012
for identifying regions of interest within an image based on their spatial rarity at multiple
scales.

In addition to the above-mentioned methods based on the spatial domain, many
scholars try to detect salient objects in the frequency domain. Hou et al. [41] point out that
humans are more sensitive to the changing part of the image. They use a spectral residual
(SR) model to extract the salient features of an image by computing the residual of the
image’s Fourier spectrum after removing the low-frequency components. The residual
image is then binarized to obtain the saliency map. According to [42], the phase spectrum of
an image contains more detailed information than the amplitude spectrum. They propose
a method called PFT for image reconstruction using solely the phase information. In a
similar vein, [43] introduces a saliency detection model based on the amplitude spectrum
of the quaternion Fourier transform, taking into account human visual sensitivity. Another
saliency detection model called HFT is presented in [44], utilizing the hypercomplex
Fourier transform of the color image. By analyzing the amplitude spectrum at different
scales, HFT is capable of detecting salient regions of various sizes. In [45], a frequency-
tuned (FT) model is introduced, aiming to generate a saliency map at full resolution while
preserving most of the frequency information of the image, consequently achieving better
segmentation. Additionally, in [46], a new contrast measure is devised for each block in
the spectral domain, allowing for the detection of salient regions based on both local and
global contrast.

In our experiments, we compared our designed CACNet with three traditional solu-
tions, as presented in Table 2. Traditional methods rely on manually crafted features, which
may result in poor detection performance due to the small size of pest targets and cluttered
backgrounds in pest images. When compared to deep learning approaches, traditional
methods have inherent limitations.

4.2. Solutions in the Deep Learning Era

Significant advancements in object detection have been observed in recent years,
owing to the development of deep learning techniques [47] and their potent representation
learning abilities. Among these techniques, convolutional neural networks (CNNs) [48]
have been widely employed in various computer vision tasks such as image classification,
object detection, and image segmentation. CNNs, particularly deeper architectures, possess
the ability to extract high-level information, enabling effective detection of salient objects.

There are several studies that have explored the use of object detection algorithms
for detecting stored grain pests. These studies typically utilize deep learning-based object
detection models, such as Faster R-CNN and YOLO [15], to identify and locate pests in
storage facilities. To effectively train the object detection model, a substantial number of
images containing both healthy and infested grains is required. These models are designed
to learn and identify visual patterns indicative of pest presence, such as discoloration or the
physical appearance of the pests. Once trained, the model can be employed to automatically
detect and accurately localize pests within new images or video frames.

While significant progress has been made in object detection based on deep learning,
there is relatively limited research on pixel-wise segmentation of pests or the application of
visual saliency detection methods for detecting grain pests. However, the need for such
research is crucial due to the challenges associated with accurately identifying and repre-
senting pests within storage images. The ability to perform precise pixel-level segmentation
or leverage visual saliency for segmentation is essential for obtaining detailed insights into
the extent of infestation, distinguishing pests from other objects, and facilitating proper
control strategies. Overcoming these challenges through dedicated research efforts can
significantly enhance the efficiency of pest management and contribute to minimizing grain
storage losses.
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Salient object detection (SOD) aims to identify the focal objects within an image
that attract the most attention and subsequently extract their pixel-level silhouettes [20].
The survey discusses various deep learning-based techniques for salient object detection,
including fully convolutional networks (FCNs), recurrent neural networks (RNNs), and
generative adversarial networks (GANs).

Over the past few decades, numerous SOD methods have been proposed, including
multi-layer perceptron-based methods, fully convolutional network-based methods and
hybrid network-based methods, and generative adversarial network-based methods [20,25].
Recent advancements in deep convolutional neural networks have established new state-
of-the-art performance in salient object detection. Hou et al. introduce a DSS [32] network
for saliency detection, short connections, which incorporates short connections within the
deep neural network architecture to leverage both low-level and high-level information.
Liu [31] proposed the DHS network to enhance the accuracy of salient object detection by
capturing hierarchical features and contextual information. Another deep learning model,
CPD [33], utilizes a cascaded partial decoder network to efficiently and accurately identify
salient objects in images. Qin et al. [34] introduce U2Net, a nested U-structure designed for
salient object detection. U2Net aims to capture complex details and features by delving
deeper into the network architecture, facilitating accurate saliency detection. Furthermore,
edge and boundary cues are utilized to further refine the saliency map [49]. Attention
mechanisms [50] are employed to enhance features, contributing to their effectiveness in
saliency detection.

The comparative experiments involving CACNet illustrate the superior performance
of deep learning algorithms over traditional solutions. CACNet, comprising reverse cascade
feature aggregation structure, enhances various metrics on both datasets compared to
the SOTA deep learning models. CACNet achieves top performance in metrics such as
MAE, S-Measure, and F-Measure, while also having the smallest model size and trainable
parameters. Furthermore, CACNet exhibits the lowest computational complexity in terms
of FLOPs among the tested models.

5. Conclusions

In response to the challenges posed by cluttered backgrounds and small pest sizes in
grain images, we propose a novel Cascaded Aggregation Convolution Network (CACNet)
for the saliency detection of grain pests. Drawing inspiration from attention mechanisms
observed in human and avian vision, our approach introduces a cascaded atrous convo-
lution module to increase the receptive field of the model. Experimental results indicate
the superior performance of the proposed CACNet compared with the state-of-the-art
models. By simplifying the architecture and controlling the number of channels for feature
aggregation, our model effectively reduces the number of parameters and FLOPs, making it
well-suited for application in the grain storage industry. Furthermore, we demonstrate our
commitment to advancing this field by releasing a benchmark dataset specifically collected
for the saliency detection of pests in stored grain. This study presents a dataset benchmark
and an effective model for grain pest detection and segmentation. These contributions lay
the foundation for subsequent tasks such as insect species recognition, grain pest density es-
timation, pest control decisions, and more. To enhance the system’s future applications, we
are contemplating the integration of specialized sensors to ensure consistent performance
across various environmental conditions.
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