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Simple Summary: Detoxification genes play a crucial role in insect resistance to chemical pesticides,
and exposure to biopesticides such as Bacillus thuringiensis (Bt) can modify their expression. Chlo-
rantraniliprole (CAP)-resistant diamondback moth strains from China showed different expression
of the detoxification genes tested (GST1, CYP6B7, and CarE-6) after treatment with CAP and Bt
pesticides. The upregulation of CYP6B7 was observed after exposure to CAP, while the same gene
was downregulated after larvae were exposed to Bt. Downregulation of CYP6B7 using RNAi without
pretreatment with Bt resulted in increased susceptibility to CAP in resistant DBM strains, signifying a
contribution of this gene to the resistant phenotype.

Abstract: Detoxification genes are crucial to insect resistance against chemical pesticides, yet their
expression may be altered by exposure to biopesticides such as spores and insecticidal proteins
of Bacillus thuringiensis (Bt). Increased enzymatic levels of selected detoxification genes, including
glutathione S-transferase (GST), cytochrome P450 (CYP450), and carboxylesterase (CarE), were
detected in chlorantraniliprole (CAP)-resistant strains of the diamondback moth (DBM, Plutella
xylostella) from China when compared to a reference susceptible strain. These CAP-resistant DBM
strains displayed distinct expression patterns of GST 1, CYP6B7, and CarE-6 after treatment with
CAP and a Bt pesticide (Bt-G033). In particular, the gene expression analysis demonstrated significant
upregulation of the CYP6B7 gene in response to the CAP treatment, while the same gene was
downregulated following the Bt-G033 treatment. Downregulation of CYP6B7 using RNAi resulted in
increased susceptibility to CAP in resistant DBM strains, suggesting a role of this gene in the resistant
phenotype. However, pretreatment with a sublethal dose of Bt-G033 inducing the downregulation of
CYP6B7 did not significantly increase CAP potency against the resistant DBM strains. These results
identify the DBM genes involved in the metabolic resistance to CAP and demonstrate how their
expression is affected by exposure to Bt-G033.

Keywords: resistance; CYP6B7; Bt-G033; RNAi; gene expression; chlorantraniliprole; diamond-
back moth
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1. Introduction

The diamondback moth (DBM), Plutella xylostella (L.), poses a significant threat to
cruciferous vegetable production worldwide. Chemical pesticides have become the primary
tool for DBM management [1], yet their inappropriate use and the inherent ability of DBMs
to rapidly develop resistance have resulted in multiple cases of resistance. Chlorantranilip-
role (CAP), an innovative anthranilic diamide insecticide that targets the ryanodine receptor
(RyR) [2–4], has been widely used for managing lepidopteran pests, including DBM [5].
However, China, Thailand, the Philippines, and Brazil have all reported high levels of
resistance to CAP in DBM populations [6–8]. A more effective metabolic detoxification
mechanism from the increased activity or metabolic capacity of detoxification enzymes has
been described in CAP-resistant insect populations [9–11]. In DBMs, the resistance to CAP
involves increased detoxification through transport proteins [12] and metabolism by detox-
ifying enzymes, including members of the cytochrome P450 (CYP450), carboxylesterase
(CarE), and glutathione S-transferase (GST) families [12–16].

Despite the resistance cases, CAP and other diamide insecticides remain effective
tools for controlling DBM and other insect pests [17,18]. Therefore, strategies that delay
resistance to CAP are highly desirable. Previous reports suggest negative cross-resistance
(i.e., resistance to one pesticide resulting in increased susceptibility to an alternative pesti-
cide) to abamectin and spinetoram in Helicoverpa armigera resistant to insecticidal proteins
from the bacterium Bacillus thuringiensis (Bt) [19]. In that case, resistance to Bt proteins
was linked to the lack of an ABC transporter that also reduced the detoxification of other
pesticides. While the effect of Bt treatment on DBM larval susceptibility to pesticides,
including CAP, has not been thoroughly studied, these Bt pesticides are commonly used
in controlling DBM [20]. If DBM exposure to a Bt-based biopesticide induces reduced
CAP detoxification, it could provide a valuable tool for enhancing CAP efficacy and help
delay and overcome resistance. In testing this hypothesis, we identified the detoxification
enzymes involved in CAP resistance in two DBM strains. We then tested the effect of the
exposure to a commercial Bt pesticide used against DBM (Bt-G033) on the expression of
these detoxification genes, focusing on enzymes previously shown to be upregulated in
CAP-resistant DBM strains (GST 1, CYP6B7, and CarE-6) [5,13]. Pretreatment with Bt-G033
did not affect the subsequent susceptibility to CAP, suggesting a complex detoxification
mechanism and a complex response to Bt-G033 in CAP-resistant DBM. The results from
this study provide further insight into the mechanisms contributing to CAP resistance and
advance the development of better approaches to managing DBM.

2. Materials and Methods
2.1. Insects

A susceptible DBM (DBM-S) strain was collected in 2002 from vegetable fields in
Guangdong Province, China. It has been kept isolated in the laboratory for fourteen years
without exposure to insecticides. The CAP-resistant DBM strains HZ-R and GZ-R were
collected in 2023 from two cabbage fields in the Guangdong Province in China (Huizhou
and Guangzhu cities, respectively) with a history of excessive application of pesticides.
Larvae from all strains were reared on Brassica rapa under laboratory conditions of 25 ± 2 ◦C,
65 ± 10% RH, and a 16:8 (L:D) photoperiod without pesticide exposure. The adults were
fed a 10% honey solution.

2.2. Insecticides

The Bt-G033A biopesticide is based on a Bt strain expressing multiple insecticidal
proteins active against lepidopteran larvae [21] and was provided by the Huazhong Agri-
cultural University (China). CAP (50 g L−1 SC) was purchased from DuPont Agricultural
Chemicals Ltd. (Wilmington, DE, USA).
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2.3. Leaf-Dip Bioassays

Bioassays involved the cabbage leaf-dip method [22]. Distilled water containing 0.1%
Triton X-100 (v/v) as a wetting agent was used as a diluent to prepare insecticide solutions
at the required concentrations. A control (diluent) and five doses of each insecticide were
tested in triplicate for each strain, with a dosage ranging between 0.003 and 0.6 ppm for
Bt-G033A and 0.2 and 150 ppm for CAP. Cabbage leaf discs (6.5 cm in diameter) were made
using a hole punch and then immersed into an insecticide solution for 15 s and left to air
dry for 2 h at room temperature. Ten third-instar DBM larvae were used per leaf disc, and
mortality based on lack of larval movement after being prodded with a fine brush was
assessed after 48 h. The lethal concentration killing 50% of the individuals (LC50) was
estimated for each pesticide and strain from experiments with <10% control mortality.

2.4. Enzyme Assays

The enzymatic activity of carboxylesterases (CarEs), glutathione S-transferases (GSTs),
and monooxygenase function oxidases (MFOs) was tested in vitro using homogenized
third-instar DBM larvae. To create DBM homogenates, 10 larvae were homogenized
in sodium phosphate buffer (0.1 M, pH 7.4) using a glass homogenizer. The resultant
mixture was centrifuged at 12,000× g at 4 ◦C for 10 min, and the supernatant was used for
testing enzymatic activity. The protein content was evaluated with a bicinchoninic acid
(BCA) assay with bovine serum albumin as a standard, using a commercially available
protein test kit (Transgen Biotech Co., Beijing, China). The CarE, GST, and MFO activities
were assessed using the model substrates acetate naphetyl acetate (NA), 1-choloro-2,4-
dinitrobenzene (CDNB), and phenol naphetyl acetate (p-NA), respectively [23–25]. Three
to four enzyme assays with three technical replicates were performed for each sample.
Statistical evaluations were carried out utilizing SAS version of 9.2 software [26] and the
means compared with Tukey’s test statistic (p ≤ 0.05).

2.5. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)

The LC10, LC25, LC50, and LC80 concentrations estimated from leaf-dip bioassays for
the CAP-resistant DBM strains were used in treatments of 100 larvae each. Following
treatment, test insects were collected after 6, 24, and 48 h and then quickly frozen in liquid
nitrogen and stored at −80 ◦C until used for qRT-PCR. Each of the three biological replicates
performed for each concentration consisted of a pool of 5 larvae.

Previously, a co-expression network analysis detected upregulation of three key genes
(GST 1, CYP4506B7, and CarE-6) in CAP-resistant DBM strains [13]. Therefore, the ex-
pression of these three DBM genes, glutathione S-transferase 1 (GenBank: 105392138),
carboxylesterase-6 (GenBank: 105382360), and PCYP6B7 (GenBank: 105380553), was in-
vestigated in response to different concentrations and time exposures to Bt-G033A and
CAP. Gene-specific primers (Supplementary Table S1) were designed and synthesized by
Invitrogen Trading Co. Ltd. (Shanghai, China). An EASYspin RNA isolation kit (Biomed,
Beijing, China) was used to purify total RNA from each of the three pools of 5 larvae
per treatment and time point, following the manufacturer’s instructions. M-MLV reverse
transcriptase (Takara Bio Inc., Kusatsu, Shiga, Japan) was then used to synthesize the
first-strand cDNA. Triplicate technical replicate reactions were performed in a Rotor-Gene
thermal cycler (BioRad). Each 20 µL reaction mixture contained 10 µL of green qPCR
superMix, 1 µL of cDNA, and 8.2 µL of ddH2O in addition to 0.4 µL of each primer at 0.2 M.
Melting curves were analyzed to verify single amplicons, demonstrating primer specificity.
Relative transcript levels were standardized by the 2−∆∆CT method [27] using the ribosomal
protein RPL32 housekeeping gene (Genbank accession: AB180441) as a reference.

2.6. Functional Verification of CYP6B7 by RNAi

Gene-specific primers based on genomic DBM information [13] were created to amplify
target CYP6B7 gene (GeneBank accession number 105380553) segments using cDNA from whole-
DBM-larval-body RNA isolates as a template. Primers were designed using the SnapDragon
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dsRNA design tool (https://www.flyrnai.org/cgi-bin/RNAi_find_primers.pl/; accessed on 25
May 2023). A T7 polymerase promoter sequence was added to the 5′ end of the designed primers
(forward primer 5′GAATTAATACGACTCACTATAGGGAGACAGGGTGGTGGAAGTGAAGT-
3′ and reverse primer 5′-GAATTAATACGACTCACTATAGGGAGA CACCTTCTTGTTTCCACCGT-
3′). The following conditions were employed for the PCR: initial denaturation at 95 ◦C
for 3 min; followed by 35 cycles of 45 s each at 95 ◦C, 60 ◦C, and 72 ◦C; followed by a
final extension of 5 min at 72 ◦C. Amplicons were gel-purified using a Gel Extraction
Mini Kit (Transgen) and used in an in vitro transcription system (RiboMAX T7 large-scale
RNA production system, Promega, Madison, WI, USA) to synthesize dsRNA targeting
the CYP6B7 gene, according to the manufacturer’s instructions. The synthesized dsRNA
was treated with DNase I to remove the DNA template, precipitated with absolute ethyl
alcohol, and then redissolved in RNase-free water. dsRNA targeting the green fluorescent
protein (GFP) (GenBank accession number MN623123.1) was also synthesized for use as a
control treatment.

Third-instar larvae received an injection of dsRNA (300 ng/larva), and CYP6B7 tran-
script levels were assessed by quantitative PCR 24 h later, as described elsewhere [28].
Briefly, TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA
from whole bodies of treated DBM larvae, which was quantified using a NanoDrop™ One
microvolume UV–Vis spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The
quality of the purified RNA was verified using the OD260/280 ratio and observation in 1%
agarose gel electrophoresis. First-strand cDNA was prepared using TransScript One-Step
gDNA Removal and cDNA Synthesis SupperMix kits (Transgen). Quantitative PCR was
performed using the primers detailed in Supplementary Table S1 under the following con-
ditions: denaturation at 94 ◦C for 30 s, followed by 40 cycles of 5 s each at 94 ◦C, followed
by an extension of 30 s at 60 ◦C. The 2−∆∆Ct method [27] was employed to determine the
relative quantification of gene expression, with the ribosomal protein RPL32 serving as the
reference gene.

At 24 h after dsRNA injection, susceptibility to CAP was tested using leaf-dipping
bioassays as detailed above. Three replicates and 10 larvae in every replicate were used
per treatment. An injection of dsRNA targeting the green fluorescent protein (dsGFP) was
given to the control group. The PoloPlus (LeOra software, version 1, Parma, MO, USA)
package was used to determine the LC25 from mortality data.

2.7. Effects of Resistant-Strain Exposure to a Sublethal Dose of Bt-G033

For this experiment, we used leaf bioassay test conditions from experiments outlined
in Section 2.3. Twenty third-instar DBM larvae were employed per leaf disc in five replicates.
Larvae were exposed to leaf discs containing the LC10 of Bt-G033A, and controls were
exposed to leaves coated with diluent. After 6 h, the larvae from control and experimental
treatments were transferred to leaf discs treated with the LC50 of CAP, or either water or an
LC10 of Bt as controls. Mortality was assessed 48 h later.

3. Results
3.1. Resistance to Chlorantraniliprole (CAP) and Bt-G033A of DBM Strains

Leaf-dip bioassays were employed to assess the toxicities of CAP and Bt-G033A in
three strains of DBM. The HZ-R and GZ-R strains exhibited >1000- and >500-fold resis-
tance to CAP, respectively, compared to the DBM-S strain (Table 1). In contrast, marginal
differences in susceptibility to Bt-G033A, considering natural variations in susceptibility
among field populations and typical resistance levels in Bt-resistant DBM strains [29], were
observed between DBM-S and either HZ-R (12-fold) or GZ-R (7-fold). These observations
supported that the HZ-R and GZ-R strains were resistant to CAP but remained susceptible
to Bt-G033A.

https://www.flyrnai.org/cgi-bin/RNAi_find_primers.pl/
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Table 1. Toxicity of chlorantraniliprole (CAP) and Bt-G033A against three strains of DBM.

Insecticide Population N a LC50 (µg/mL) 95% CI b χ2 (df) RR c

CAP

DBM-S 150 0.05 0.044–0.056 0.9(3) 1

GZ-R 150 27.4 21.3–34.8 0.8(3) 548

HZ-R 150 52.84 45.67–62.37 0.7(3) 1057

Bt-G033A

DBM-S 150 0.012 0.01–0.0142 0.7(3) 1

GZ-R 150 0.08 0.07–0.088 0.8(3) 7

HZ-R 150 0.15 0.1–0.25 0.7(3) 12
a N = number of insects tested per strain and insecticide. b CI = confidence interval. c RR: resistance ratio = LC50
of the resistant strain/LC50 of the susceptible strain.

3.2. Specific Activity of Detoxification Enzymes in CAP-Resistant and -Susceptible DBM Strains

The results of the enzyme activity tests using the homogenates of DBM larvae are
summarized in Table 2. Both of the CAP-resistant DBM strains (GZ-R and HZ-R) had
significantly higher levels of all detoxification enzymatic activities tested in comparison to
the those of the susceptible (DBM-S) strain. Esterase (α-NA) activity was 2.8 and 1.9 times
higher in HZ-R and GZ-R, respectively, than in the DBM-S strain. On the other hand,
glutathione S-transferase (GST) activity was 3.5- and 1.6-fold higher in GZ-R and HZ-R,
respectively, than in the susceptible strain. More modest differences were detected when
testing for mixed-function oxidase (MFO) activity. These MFOs are cytochrome P-450-
dependent intracellular enzymes, and their activity was higher in the GZ-R (1.7-fold) and
HZ-R (1.2-fold) strains than in DBM-S.

Table 2. Esterase, glutathione S-transferase (GST), and mixed-function oxidase (MFO) activities in
homogenates of larvae from three different DBM strains. Shown are mean specific activity values
from 5 replicates using homogenates of 10 larvae each. Activities were measured using α-NA as a
substrate for esterase, 1-chloro-2,4-dinitrobenzene (CDNB) for GST, and ϱ-NA for MFO. Significant
differences (p < 0.05, Tukey’s test) between means in a column are denoted by a different letter.

Strain
Esterase

Mmol/min/mg
Protein ± SE

a AR
GST

Mmol/min/mg
Protein ± SE

AR MFO nmol/min/mg
Protein ± SE AR

DBM-S 0.014 ± 0.005 a 1 0.12 ± 0.01 a 1 3.9 ± 0.02 a 1

GZ-R 0.027 ± 0.001 b 1.9 0.43 ± 0.03 b 3.5 5.6 ± 0.04 b 1.4

HZ-R 0.040 ± 0.003 c 2.8 0.20 ± 0.03 c 1.6 4.8 ± 0.01 c 1.2
a AR: activity ratio = activity in the resistant strain/activity in the susceptible strain.

3.3. Differences in Detoxification Enzyme Gene Expression between Strains

A complex pattern of expression was detected in members of the cytochrome P450
(CYP6B7), carboxylesterase (CarE-6), and glutathione S-transferase (GST1) detoxification
gene families in response to treatment with different doses (LC10, LC25, LC50, and LC80) of
CAP or Bt-G033A. Importantly, the treatments with Bt-G033A in both the GZ-R and HZ-R
strains induced an overall downregulation of CYP6B7, which was overexpressed in the
same CAP-resistant strains after the treatment with CAP.

In the HZ-R strain (Figure 1), treatment with Bt-G033A induced the increased expres-
sions of GST1 (Figure 1A) and CarE-6 (Figure 1C) in some concentrations and exposure
times. Generally, the most substantial increase was detected after 6 h, followed by a re-
duction in expression levels after that time point. In contrast, treatment with Bt-G033A
reduced the expression of CYP6B7 (Figure 1B). Overall, the expression of the three tested
genes increased after the CAP treatment but followed different temporal patterns. Thus,
GST1 expression increased after 6 h, then had reduced expression to a level similar to the
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control levels (Figure 1D). On the other hand, the expressions of both CYP6B7 (Figure 1E)
and CarE-6 (Figure 1F) increased from 6 to 48 h.
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Figure 1. Relative expression levels of GST1 (A,D), CarE-6 (C,F), and CYP6B7 (B,E) genes in larvae
from the HZ-R strain exposed to Bt-G033A (Bt-treatment) or CAP (CAP treatment) at LC10, LC25,
LC50, and LC80 concentrations for 6, 24, and 48 h. Data shown are mean ± SE from three biological
replicates each tested in triplicate. Different letters indicate significant differences (Tukey’s test,
p < 0.05).

When comparing the treatments of HZ-R larvae based on the concentration of the
toxicant, the sublethal (LC10) treatment with Bt-G033A induced increased the expressions
of GST1 and CarE-6 genes, but the expression of CYP6B7 reduced, while the sublethal
treatment with CAP increased the expressions of all three tested genes. Treatment with
an LC25 dose of Bt-G033A only induced the upregulation of GST1, while treatment with
an LC50 dose induced increased CarE-6 expression, and treatment with the highest dose
(LC80) induced GST1 and CarE-6 expressions. Treatment with an LC25 of CAP increased the
expression of all tested genes, an LC50 dose increased the expression of GST1 and CYP6B7,
and an LC80 treatment increased dramatically the expression of CYP6B7.

Some similarities to the HZ-R response were detected in the response of the larvae
from the GZ-R strain to treatment with Bt-G033A (Figure 2). For instance, treatment with
Bt-G033A generally increased GST1 (Figure 2A) and reduced both CYP6B7 (Figure 2B) and
CarE6 (Figure 2C) expression levels. However, CYP6B7 and CarE6 downregulation at the
lowest Bt-G033A doses was more drastic in the GZ-R than in the HZ-R strain. As observed
for HZ-R, increased GST1 expression was observed in GZ-R after 6 h, which decreased at
subsequent time points. In contrast, treatment with CAP induced different responses in
HZ-R than in GZ-R. For instance, while GST1 expression increased after CAP treatment in
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both strains, expression was highest in GZ-R after 48 h. Sublethal (LC10) treatment with
Bt-G033A in GZ-R induced increased expressions of GST1 and CarE-6 genes and also the
downregulation of CYP6B7 for more than 50%. In contrast to HZ-R, sublethal treatment
with CAP in GZ-R increased the expression of GST1 but reduced the expressions of CYP6B7
and CarE-6 (except for the LC10 treatment after 6 h). Using LC25 or LC50 doses of Bt-G033A
in GZ-R only induced the upregulation of GST1 at the 6 h timepoint, while an LC80 did not
upregulate any of the tested genes. In treatments with CAP, increasing doses resulted in
the increased overexpressions of GST1 and CYP6B7, but the downregulation of CarE-6.
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Figure 2. Relative expression levels of GST1 (A,D), CarE-6 (C,F), and CYP6B7 (B,E) genes in larvae
from the GZ-R strain after exposure to Bt-G033A (Bt treatment) and CAP (CAP treatment) at LC10,
LC25, LC50, and LC80 concentrations for 6, 24, and 48 h. Data shown are mean ± SE from three
biological replicates tested in triplicate. Different letters indicate significant differences (Tukey’s test,
p < 0.05).

3.4. Functional Test for Participation of CYP6B7 in Resistance to CAP

Based on CYP6B7 expression being significantly increased after CAP treatment but
reduced after exposure to Bt-G033A in both GZ-R and HZ-R strains, we selected this gene
for further functional tests. The CYP6B7 gene was silenced using RNA interference (RNAi)
and then silenced larvae were tested for susceptibility to CAP in bioassays. The injection of
dsRNA reduced CYP6B7 expression by 40% compared to the injection with dsGFP in the
larvae from both HZ-R and GZ-R strains (Figure 3A). In bioassays with third-instar larvae
using the LC25 dose of CAP, the larvae from both the HZ-R and GZ-R strains with CYP6B7
knockdown displayed up to 35% higher mortality compared to the larvae injected with
dsGFP (Figure 3B).
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Figure 3. Relative expression levels of CYP6B7 (A) and percentage mortality (B) in larvae from the
GZ and HZ strains after CYP6B7 knockdown by RNAi. (A) Data shown are mean ± SE from three
biological replicates (individual whole larvae) tested in triplicate. (B) Bioassays were performed with
larvae injected with dsRNA targeting CYP6B7 or GFP (control) and then treated with an LC25 of CAP
one day after injection. Mortality was determined after three days. Data shown are mean ± SE from
5 replicates of 100 larvae for each strain. The significance of differences between control (dsGFP) and
treatments was analyzed by a t-test (p < 0.05) and is denoted by different letters on each column.

3.5. Sublethal Bt-G033 Pretreatment Does Not Significantly Increase Susceptibility to CAP in
Resistant DBM

Based on the contribution of CYP6B7 in reducing the susceptibility to CAP and its
downregulation after treatment with Bt-G033A, we tested the potential for increasing
susceptibility in CAP-resistant DBM strains via the downregulation of CYP6B7 through
pretreatment with Bt-G033A. The exposure of the larvae from the HZ-R and GZ-R strains
to a sublethal dose (LC10) of Bt-G033A caused 10% and 16.7% mortality, respectively. In
contrast, the exposure to an LC50 concentration of CAP resulted in 40% and 54% mortality
in the larvae from the HZ-R and GZ-R strains, respectively (Table 3). Pre-exposure to
Bt-G033A for 6 h followed by treatment with CAP for 42 h did not induce a significant
difference in mortality compared to CAP treatment alone in either of the two strains tested
(Table 3).

Table 3. Mortality of third-instar DBM larvae from two CAP-resistant strains after exposure to water
or an LC10 of Bt-G033A (Bt) for 6 h followed by exposure for 42 h to an LC50 of CAP. The data are
expressed as the mean percentage mortality ± SE from 5 bioassay replicates with 20 DBM larvae
each. Different letters within a column indicate significant differences as determined by the Duncan
test (p < 0.05).

Strain Treatment Larval Mortality (%)

GZ-R

Bt + CAP 45.0 ± 1.6 ab

Water + CAP 54.0 ± 1.9 b

Bt 16.7 ± 6.7 c

Water 6.7 ± 3.3 de

HZ-R

Bt + CAP 45.0 ± 1.6 ab

Water + CAP 40.0 ± 2.2 b

Bt 10.0 ± 5.8 cd

Water 0.0 ± 0.0 e

4. Discussion

The effectiveness of DBM control with chemical pesticides is threatened by resis-
tance [30,31], yet CAP and other pesticides continue to play an important role in DBM
control in China. Some studies have indicated that the combined or sequential use of insec-
ticides can increase susceptibility and reduce the resistance risk in the target pest [32,33].
The goal of the present study was to test the role of detoxification enzymes in the resistance



Insects 2024, 15, 595 9 of 12

to CAP of DBM and to test the possibility of reducing the expression of relevant enzymes
through exposure to Bt-G033A.

Resistance to CAP has been previously reported in strains of DBM [13,15,34]. A point
mutation in the ryanodine receptor (RyR) gene has been reported as the main allele re-
sponsible for DBM resistance to diamide insecticides [7,30,35,36]. However, the elevated
activity of various detoxifying enzymes, including GST [15,37], monooxygenase [38], ABC
transporters [12], and cytochrome P450 genes [5,39,40], has also been reported to be in-
volved in resistance. The results from the enzyme assays in the present study showed
an association between higher levels of GST, CarE, and MFO activities with resistance
to CAP in both the HZ-R and GZ-R strains. An investigation into CAP-resistant DBM
using pairwise comparisons discovered the direct participation of GST1, CYP6B7, and
CarE-6 in resistance [13]. The two CAP-resistant strains examined in this study displayed
differential regulation of those detoxification enzyme genes. Thus, while both GST1 and
CYP6B7 showed increased expression over time after exposure to CAP, CarE-6 expression
was upregulated in HZ-R but dramatically reduced in GZ-R. While speculative at this
point, the upregulation of all three tested detoxification genes in HZ-R may contribute to
the higher levels of resistance observed in that strain relative to GZ-R.

The role of insect cytochrome P450 monooxygenases (CYP450), such as CYP6 genes,
in the detoxification of and resistance to pesticides is well established in the literature [41].
In Lepidoptera, the overexpression of CYP6 family genes is associated with resistance
to pyrethroids [42–47] and oxadiazine pesticides [48]. Previous reports indicated an as-
sociation of CYP6BG1 and CYP6B6 overexpression with resistance to CAP in strains of
DBM [5,39,40]. This CYP6 gene upregulation observed in CAP-resistant DBM larvae could
be a result of increased expression. In this regard, cis-regulators have been associated with
the overexpression of CYP450 genes in mosquitoes, leading to pesticide resistance [49]. Mul-
tiple cis-acting sequences increased the CYP6FU1 promoter activity in a strain of Laodelphax
striatellus resistant to deltamethrin [50]. Both the FTZ-F1 transcription factor and cis-acting
elements have been associated with the overexpression of CYP6BG1 in chlorantraniliprole-
resistant DBM [39]. Further research into the regulation of CYP450 genes in DBM would be
needed to identify molecular mechanisms underpinning the upregulation of CYP6B7 in
CAP-resistant strains.

The contribution of CYP6B genes to resistance is supported by the results from knock-
down experiments. As in the GZ-R and HZ-R strains in our study, previous reports have
detected that CYP6B knockdown results in reduced resistance to CAP [5,39,40]. Similarly,
the knockdown of CYP6B7 expression reduced resistance to fenvalerate in a strain of H.
armigera [51]. Based on the observed downregulation of CYP6B7 after treatment with
Bt-G033A in both CAP-resistant strains in this study, we hypothesized that pre-exposure to
Bt-G033A could increase susceptibility to CAP. Previous observations already indicated
increased toxicity in DBM when CAP was mixed with Bt-G033A [13]. Moreover, the two
field-derived DBM strains used in this study (HZ-R and GZ-R) displayed resistance to CAP
but not to Bt-G033A, supporting the lack of cross-resistance and the combined use of these
products in DBM control to delay resistance evolution. However, pretreatment of CAP-
resistant larvae with Bt-G033A did not increase susceptibility to CAP, thus not supporting
our hypothesis. One possibility explaining these results is that multiple detoxification en-
zymes are needed to obtain the complete the CAP-resistance phenotype. Pretreatment with
Bt-G033A pesticide downregulated CYP6B7 expression but generally had compensatory
effects of increasing GST1 and CarE6 expressions. Consequently, larvae could maintain
increased detoxification activity when subsequently exposed to CAP, possibly masking any
effect of CYP6B7 downregulation. The findings in this study lay a foundation for further
studies to identify specific genes linked to CAP resistance in DBMs and develop resistance
management strategies against this pest.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects15080595/s1, Table S1: Primers used in this study.
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