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Abstract

:

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including butterfly species. Research has focused primarily on high latitude species in North America, with no known studies examining responses of taxa in the southeastern United States. The Diana fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing from lowland sites and now persisting in two phylogenetically distinct high elevation populations. These findings are consistent with the predicted effects of a warming climate on numerous taxa, including other butterfly species in North America and Europe. We used ecological niche modeling to predict future changes to the distribution of S. diana under several climate models. To evaluate how climate change might influence the geographic distribution of this butterfly, we developed ecological niche models using Maxent. We used two global circulation models, the community climate system model (CCSM) and the model for interdisciplinary research on climate (MIROC), under low and high emissions scenarios to predict the future distribution of S. diana. Models were evaluated using the receiver operating characteristics area under curve (AUC) test and the true skill statistics (TSS) (mean AUC = 0.91 ± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for representative concentration pathway (RCP) = 4.5; and mean AUC = 0.87 ± 0.0031 SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5), which both indicate that the models we produced were significantly better than random (0.5). The four modeled climate scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in the southern Appalachian Mountains were predicted to suffer the most severe fragmentation and reduction in suitable habitat, threatening an important source of genetic diversity for the species. The geographic and genetic isolation of populations in the west suggest that those populations are equally as vulnerable to decline in the future, warranting ongoing conservation of those populations as well. Our results suggest that the Diana fritillary is under threat of decline by 2050 across its entire distribution from climate change, and is likely to be negatively affected by other human-induced factors as well.
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1. Introduction


Understanding how species distributions might shift with the changing climate is a critical component of managing and protecting future biodiversity. Hundreds of species in the United States and elsewhere have responded to the warming climate by shifting to higher latitudes or elevations [1,2,3,4]. Such range shifts have been documented in a number of taxa [5,6,7], including alpine plants [8], marine invertebrates [9], marine fish [10], mosquitoes [11], birds [12,13], and butterflies [1,14,15,16,17,18]. A number of species distribution models have been developed to predict the impacts of climate change on species distributions, including bioclimate envelope models, which are useful first estimates of the potential effects of climate change on altering species’ ranges [19]. Bioclimate envelope models work by identifying the climatic bounds within which a species currently occurs, and then delineating how those climatic bounds will shift under various future climate projections [20,21,22,23].



Most often, researchers are limited to presence-only occurrence data, requiring the use of indirect methods to infer a species’ climatic requirements [8,24,25]. One of the best performing models using presence-only data is maximum entropy modeling, or Maxent [26], which performs well even with low sample sizes typical of rare species [19,27,28]. Maxent works by comparing climate data from occurrence sites with those from a random sample of sites from the larger landscape to minimize the relative entropy of statistical models’ fit to each data set. Species distribution models such as Maxent have been criticized for being overly simplistic, because they do not incorporate external biotic factors such as species interactions [20,27,29]. However, such bioclimate envelope models have been used to project with reasonable accuracy whether species ranges will increase or decrease under a changing climate [19,30,31,32], which was the primary objective of this study.



Speyeria diana (Nymphalidae) (Cramer 1777) is a butterfly species endemic to the southeastern United States and is currently threatened across portions of its range. This species is of particular conservation interest because it has experienced a range collapse in recent decades resulting in an 800-km geographic and genetic disjunction between western populations in the Ouachita and Ozark Mountains and populations in the southern Appalachian Mountains, and has shifted to a higher elevation at an estimated rate of 18 m per decade [33]. This range contraction is consistent with the predicted effects of a warming climate, and might represent the first such documented case in the southeastern United States, though the region has experienced other environmental changes in recent decades as well [33]. Previous research using coalescent-based population divergence models dated the earliest splitting of the western population from the east at least 20,000 years ago, during the last glacial maximum [34]. In addition, recent geometric morphometric evidence from the wings of S. diana further support this long-term spatial and genetic isolation [35]. In light of these pieces of evidence, we used Maxent to model the future distribution of S. diana under several future climatic scenarios, in order to forecast how the range of the butterfly might shift under predicted conditions. Forecasts of large range reductions (over 50%), or small overlaps between current and future ranges (less than 50%), would suggest high vulnerability to climate change. Range reductions of any size in the western distribution would likely threaten those populations that are genetically isolated and adapted to relatively low dispersal, with the negative effects of genetic drift [34,35].




2. Methods


2.1. Study Species


The Diana fritillary, Speyeria diana, is a large and sexually dimorphic nymphalid butterfly, endemic to the southeastern United States. Adult males emerge in late May to early June, with females flying several weeks to a month later [36]. Once mated, each female can lay thousands of eggs singly on ground litter during the months of August and September in the vicinity of Viola spp., the larval host plant for all Speyeria [37]. After hatching, first instar larvae immediately burrow deep into the leaf litter layer of the forest floor, where they overwinter [38]. In spring, larvae feed on the foliage of freshly emerging violets. Adult Diana butterflies are often found along forest edges or dirt roads containing tall, conspicuous nectar sources such as milkweeds, butterfly bushes, or other large summer and fall composites [39,40,41,42]. While males begin to die off in late July, females may persist in large numbers, although somewhat cryptically, through October [42].




2.2. Distributional Dataset


We searched for all known records of S. diana, from publications, catalogued and uncatalogued specimens in public and private collections in the United States and Europe, online databases, contemporary field surveys by scientists and amateurs, and our own field surveys. We obtained distributional data from 1323 pinned S. diana specimens from 33 natural history museum collections in the United States and Europe (Table 1). Four hundred thirty-five additional records (1938–2012) were provided by the Butterfly and Moth Information Network and the participants who contribute to its BAMONA project. Our literature survey produced 153 records (1818–2011) across 54 U.S. counties (Table 2). We also collected 469 S. diana butterflies in our own field surveys (Table 3). Our dataset essentially represents a complete dataset of all publicly available records for the species, and is as comprehensive as for any taxon in the region [33]. For this reason, our dataset should be especially informative in creating an accurate bioclimate envelope for the species, as collection bias is a major consideration with ecological niche modeling [43,44].




2.3. Species Distributional Modeling


We developed species distribution models using the popular machine-learning algorithm for ecological modeling, Maxent [26]. Maxent estimates a species’ probability distribution that has maximum entropy (closest to uniform), subject to a set of constraints based on the sampling of presence-only data [45]. Because of the difficulty and impracticality of obtaining accurate absence data, presence-only data are most often used in species distribution modeling. In order to offset the lack of absence data, Maxent uses a background sample to compare the distribution of presence data along environmental gradients with the distribution of background points randomly drawn from the study area [46,47,48]. Locality data and the randomly sampled background points are combined with climatic data to predict the probability of the species’ occurrence within each raster grid cell. We used environmental climate data from WorldClim [49] at 30 arc-second resolution or approximately 1 km2 grid cells. Bioclimate variables and elevation layers were each clipped to the extent of North America using ESRI (Environmental Systems Research Institute) ArcMap 10.0, and data extracted to S. diana sample localities. Additionally, we collected the same types of locality data for three other species of North American butterflies (Speyeria cybele, Speyeria idalia, Battus philenor), which served as 5628 random background points for our models. We utilized these background data to minimize spatial bias in our modeling, as data represented by similar butterfly species can be used as pseudo-absence data with the same collection bias as our occurrence data, improving the accuracy of the model [50,51].



Climatic variables included 19 derived bioclimatic variables that describe annual and seasonal variation in temperature and precipitation, as well as elevation, averaged for 1950–2000 (Table 4). One concern when modeling species distributions is the strong correlation that occurs between multiple climate variables, which can significantly influence model predictions of species distributions [52]. To test for co-linearity, we performed spatial autocorrelation statistics between all pairs of the 19 bioclimate variables using ESRI ArcMap 10.0. We then selected the most biologically meaningful variable for each group of two or more variables with Pearson correlation coefficients higher than 0.7 (Table 4). This allowed us to reduce the number of bioclimate variables to the nine potentially most important ones, which were: Minimum Temperature of Coldest Month, Mean Temperature of Driest Quarter, Precipitation of Wettest Month, Precipitation of Driest Month, Precipitation of Driest Quarter, Isothermality, Mean Diurnal Range (Mean of monthly (maximum temperature—minimum temperature)), Temperature Annual Range, and Annual Precipitation, along with elevation (Table 4). These variables are typically considered to be important determinants of butterfly distributions, as they relate to life history traits. Butterflies are highly sensitive to weather and climate, particularly changes in temperature and rainfall [53]. For example, mean temperature of the coldest month is related to the overwintering survival of first instar larvae, growing degree days above 5 °C are regarded as a surrogate for the developmental threshold of the larvae, water balance corresponds to the moisture availability for the larval host and adult nectar plants, and the mean temperature of late summer ensures proper adult emergence and mating [54,55,56,57,58,59]. Temperature changes affect all aspects of butterfly life history, from their distribution and abundance [14,54], to their realized fecundity [60,61]. Changes in rainfall levels can influence butterfly larvae indirectly through changes in host plant quality, and generally rainfall is considered to be beneficial because it enhances host plant growth [62].



One concern when modeling species distributions is whether the occurrence records are spatially biased with respect to site accessibility (e.g., towns, roads, trails) [63]. To address this concern, we applied a spatial filter to remove all sampling points that were within 5 km of each other using ESRI ArcMap 10.0. The spatial filter resulted in 254 unique presence points for S. diana that were used in the final model. We first modeled the distribution of these 254 occurrences in present-day climate, and then projected the fitted species distribution under two future climate scenarios for the period 2040–2069 (hereafter referred to as 2050). Future climate scenarios were taken from two global circulation models (GCMs) obtained from www.worldclim.org; the community climate system model (CCSM) [64] and the model for interdisciplinary research on climate (MIROC) [65,66]. These GCMs differ in the reconstruction of several climatic variables and are well known to produce different outcomes for butterfly species [67,68]. For example, in hind-casting Mediterranean butterflies, the CCSM model projects narrower distributions at the last glacial maximum than does MIROC [65,66]. For each of these two GCMs, we considered two different representative concentration pathways (RCPs) [69,70,71,72,73], which are cumulative measures of human emissions of greenhouse gases from all sources expressed in Watts per square meter. These pathways were developed for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [67] and correspond to a total anthropogenic radiative forcing of RCP = 4.5 W/m2 (low) and RCP = 8.5 W/m2 (high) [72,73].



We used Maxent’s default parameters [26,50] and a ten-fold cross-validation approach to further reduce bias with respect to locality data. This method divides presence data into ten equal partitions, with nine used to train the model, and the tenth used to test it. These partitions generate ten maps (one map per run), with each raster grid cell containing a value representing the probability of occurrence. These values were used to designate habitat suitability ranging from 0 (unsuitable habitat) to 1 (highly suitable habitat) (Figure 1). We averaged the resulting maps for the current climate, and for the two GCMs under RCP = 4.5 and RCP = 8.5. This method resulted in the production of a “low” and “high” average prediction for S. diana species distribution in 2050, represented with habitat suitability maps. We measured the goodness of fit for the models using the area under the curve (AUC) of a receiver-operating characteristic (ROC) plot [74]. We used criteria of Swets [75] and considered AUC values higher than 0.7 representative of model predictions significantly better than random values of 0.5 or less [26,27,74]. Because AUC has been recognized as a somewhat questionable measure of accuracy, especially when used with background data instead of true absences [74,76], we also calculated the TSS (true skill statistics), a threshold-dependent evaluation metric [76,77]. The relative importance of each variable’s contribution was assessed by sequential variable removal by Jackknife [26].





3. Results


Species distributional modeling resulted in “excellent” model fits for Speyeria diana, with a mean AUC = 0.91 ± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for RCP = 4.5; and a mean AUC = 0.87 ± 0.0031 SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5 (Table 1). Annual precipitation explained the largest fraction of the distribution of S. diana under both RCPs (17.9%, RCP = 4.5; 19.4%, RCP = 8.5). Among the remaining bioclimatic variables, mean temperature of driest quarter had the next highest average percent contribution (10.3%, RCP = 4.5; 25.0%, RCP = 8.5), followed by minimum temperature of coldest month (20.1%, RCP = 4.5; 10.4%, RCP = 8.5), isothermality (7.3%, RCP = 4.5; 7.6%, RCP = 8.5), precipitation of wettest month (3.5%, RCP = 4.5; 3.9%, RCP = 8.5), precipitation of driest month (1.4%, RCP = 4.5; 5.4%, RCP = 8.5), precipitation of driest quarter (3.3%, RCP = 4.5; 2.4%, RCP = 8.5), Elev (1.5%, RCP = 4.5; 3.5%, RCP = 8.5), mean diurnal range (1.8%, RCP = 4.5; 2.8%, RCP = 8.5), and temperature annual range (1.6%, RCP = 4.5; 1.3%, RCP = 8.5) (Table 1).



Modelling with Maxent under the selected climate-change scenarios predicted that habitat suitability would decrease for S. diana by 2050 (two-tailed paired t-tests comparing current Maxent values with those of 2050; all p < 0.01). The MIROC model resulted in more loss of suitable habitat than CCSM under both RCP scenarios (88.2% versus 92.4% of suitable habitat retained for RCP 4.5, and 90.2% versus 94.3% of suitable habitat retained for RCP 8.5 in CCSM and MIROC, respectively). Both climate models indicate that the loss of core distributional area is modest, with an average of 91.3% of present distributional areas retained. The most drastic reduction in habitat is apparent across the southern Appalachian Mountains (Figure 2).




4. Discussion


Our ecological niche models predicted that the amount of suitable habitat for Speyeria diana will decline substantially by the year 2050 across its entire distribution. Both CCSM and MIROC climate models predicted severe habitat loss and fragmentation in the southern Appalachian Mountains by 2050, with some range expansion predicted into higher latitudes in both eastern and western populations. High elevation habitat will be an important refuge for the species across the entire distribution, as the range of S. diana is already shifting to higher elevations at an estimated rate of 18 m per decade [33]. Recent evidence further suggests that some S. diana populations may already be adapting to high elevations, as S. diana female forewings from high elevation populations were found to be narrower than low elevation populations, indicating that these females may be more mobile than those from low elevations with wider forewings [35].



Unlike populations in the eastern distribution, the wing shape of western populations of S. diana appears to be better adapted for lower dispersal, which is in alignment with findings that western populations of S. diana are both spatially and genetically isolated [35]. Our models predicted that the southern edge of the highly suitable habitat in the west will recede by 2050; However, as was found in the southern Appalachian Mountains, the suitable habitat was predicted to expand in the higher elevations of the Ozark and Ouachita mountains of Arkansas. The genetic isolation of western populations may ultimately prevent them from adapting to higher elevations as successfully as populations in the eastern distribution of the species. If this is the case, lower elevation populations will be even more vulnerable to climate change than our models predict.



We would like to note that all ecological niche models should be used and interpreted with caution because of various sources of bias and error that result in inaccurate predictions [78]. Some have questioned the applicability of bioclimatic modeling at regional scales because of the somewhat coarse resolution [79]. However, we are confident that the size of our study area, and our uniquely extensive dataset, provide sufficient data to forecast climate-driven range shifts in S. diana with accuracy. Both global circulation models (CCCM and MIROC) were very closely aligned in their outcomes, indicating strong agreement between them. Climate is well understood to play a primary role in shaping the distributions of species [80], and we are confident in our overall findings that the suitable habitat for S. diana will decline and become increasingly fragmented by 2050.




5. Conclusions


These results highlight the importance of maintaining connectivity of the suitable habitat for S. diana, especially in the eastern populations that appear most vulnerable to increased fragmentation and loss of suitable habitat. These populations in the eastern distribution of S. diana harbor important genetic diversity that may become lost through genetic drift if these populations become small and isolated. The Ozark and Ouachita Mountains of Arkansas and Missouri appear to be least vulnerable to loss of suitable habitat from climate change, and therefore will be important for the future conservation of S. diana after 2050. As a result of the geographic and genetic isolation of the western populations, conservation of suitable habitat in the west is equally as important as in the east. Our climate models show that the 800-km disjunction across the center of the range of S. diana is not due to complete absence of suitable habitat, but more probably a result of the extensive habitat fragmentation regionally across the Ohio River Valley from agricultural land use change, and other human related factors that were not included in our models. We conclude that maintaining well-connected low and high elevation habitats across the entire distribution of S. diana, both now and into the future, will be necessary for this species, even under conservative forecasts of climate change.
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Figure 1. The present-day geographic distribution of Speyeria diana, with indices of habitat suitability as predicted by maximum entropy modelling (Maxent) under current climatic conditions (1950–2010). 
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Figure 2. (a) Habitat suitability indices for the projected future distribution of Speyeria diana under the community climate system model (CCMA) and model for interdisciplinary research on climate (MIROC) representative concentration pathways (RCP) 4.5 climate change scenarios; (b) habitat suitability indices for the projected future distribution of Speyeria diana under the CCMA and MIROC RCP 8.5 climate change scenarios. 
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Table 1. Summary of Speyeria diana distributional data sources (adapted from Wells and Tonkyn 2014).
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National Museums (N. American)

	
Location

	
No. of S. diana

	
Range of Specimen Dates

	
No. of Counties






	
Carnegie Museum of Natural History

	
Pittsburgh, Pennsylvania

	
142

	
1889–2000

	
26




	
National Museum of Natural History

	
Washington, DC

	
129

	
1907–2002

	
26




	
American Museum of Natural History

	
New York, NY

	
104

	
1921–1985

	
28




	
The Field Museum

	
Chicago, IL

	
98

	
1889–1995

	
23




	
California Academy of Sciences

	
San Francisco, CA

	
88

	
1886–2000

	
12




	
Georgia Museum of Natural History

	
Athens, GA

	
15

	
1935–1987

	
8




	
Cleveland Museum of Natural History

	
Cleveland, Ohio

	
6

	
1921–1965

	
6




	
Denver Museum of Nature and Science

	
Denver, Colorado

	
4

	
1939–1973

	
3




	
Mount Magazine State Park

	
Paris, Arkansas

	
4

	
1997

	
1




	
National History Museums (European)




	
British Natural History Museum

	
London, UK

	
31

	
1777–1989

	
17




	
Paris Muséum national d’Histoire naturelle

	
Paris, France

	
8

	
1890

	
1




	
Oxford Museum of Natural History

	
Oxford, UK

	
4

	
1937–1971

	
4




	
Zoölogisch Museum Amsterdam

	
Amsterdam, The Netherlands

	
4

	
1884–1921

	
3




	
Naturalis Biodiversity Center

	
Leiden, Netherlands

	
4

	

	




	
Royal Ontario Museum

	
Ontario, Canada

	
3

	
1933–1968

	
3




	
University Collections




	
University of Florida

	
Gainesville, Florida

	
409

	
1900–2007

	
43




	
University of Michigan

	
East Lansing, Michigan

	
66

	
1909–1985

	
13




	
Clemson University

	
Clemson, South Carolina

	
43

	
1926–1978

	
5




	
Peabody, Yale University

	
New Haven, Connecticut

	
29

	
1904–1961

	
8




	
University of Missouri

	
Columbia, Missouri

	
29

	
1886–1980

	
8




	
University of Wyoming

	
Laramie, Wyoming

	
13

	
1955–1979

	
4




	
University of Arkansas, Little Rock

	
Little Rock, Arkansas

	
12

	
2005–2007

	
5




	
University of California, Berkley

	
Berkley, California

	
12

	
1926–1981

	
6




	
University of Nebraska

	
Lincoln, Nebraska

	
14

	
1954–2003

	
7




	
North Carolina State University

	
Raleigh, North Carolina

	
10

	
1904–1964

	
9




	
University of Arkansas, Fayetteville

	
Fayetteville, Arkansas

	
10

	
1977–1994

	
5




	
Virginia Polytechnic Inst

	
Blacksburg, Virginia

	
8

	
1911–1977

	
1




	
Louisiana State University

	
Baton Rouge, Louisiana

	
7

	
1984–1988

	
1




	
University of Wisconsin

	
Madison, WI

	
5

	
1926–1951

	
2




	
College of Charleston

	
Charleston, South Carolina

	
4

	
2008

	
2




	
West Virginia University

	
Morgontown, West Virginia

	
3

	
1977–1995

	
2




	
Furman University

	
Greenville, South Carolina

	
3

	
1929–1990

	
3




	
Dalton State College

	
Dalton, Georgia

	
2

	
2001

	
1




	
State Agencies, online databases, listserves, individuals, and organizations




	
Field Surveys

	

	
469

	
1995–2012

	
46




	
Butterflies and Moths of America (BAMONA)

	

	
435

	
1938–2012

	
39




	
North Carolina 19th Approximation (http://149.168.1.196/nbnc/)

	

	
276

	
1938–2011

	
31




	
West Virginia Divisions of Natural Resources (wvdnr.gov)

	

	
204

	
1978–1999

	
11




	
Literature survey

	

	
153

	
1818–2011

	
54




	
Kentucky Dept. of Fish and Wildlife Resources (fw.ky.gov)

	

	
146

	
1936–2006

	
21




	
NABA annual count data (naba.org)

	

	
103

	
1999–2010

	
27




	
Georgia Dept. of Natural Resources (gadnr.org)

	

	
77

	
1994–2001

	
15




	
Global Biodiversity Information Facility (GBIF)

	

	
75

	
1974–2004

	
49




	
North Carolina Natural Heritage Program (nchp.org)

	

	
69

	
1989–2003

	
21




	
The Lepidopterists’ Society (lepsoc.org)

	

	
50

	
1973–2008

	
25




	
All Taxa Biodiversity Inventory (ATBI) (dlia.org/atbi)

	

	
46

	
1936–2007

	
4




	
Carolina Butterfly Society (CBS)

	

	
44

	
2001–2009

	
5




	
Carolinaleps

	

	
41

	
2007–2009

	
9




	
Washington Area Butterfly Club

	

	
29

	
2007

	
1




	
Oklahoma Leps

	

	
21

	
2005–2009

	
5




	
Insect.net

	

	
21

	
2007–2009

	
9
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Table 2. Summary of literature referencing the distribution of Speyeria diana (adapted from Wells and Tonkyn 2014).
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	Reference
	Location
	Date of Record(s)
	Description





	Cramer & Stoll 1775
	Jamestown, Virginia
	1775
	holotype; male described by Pieter Cramer



	Blatchley 1859
	Vanderburgh County, Indiana
	1850s
	first record from Indiana, most northern record



	Edwards 1864
	Kanawha, West Virginia
	20–31 August 1864
	first description of female, took over 30 specimens



	Edwards 1874
	Coalburgh, West Virginia
	August, September 1873
	description of rearing Argynnis larvae



	Aaron 1877
	Tennessee/North Carolina
	1877
	populations are ample along Blue Ridge



	
	Kentucky
	1877
	locally abundant populations



	Strecker 1878
	
	1878
	West Virginia, Georgia, Kentucky, Tennessee, Arkansas



	Thomas 1878
	Kentucky, Arkansas, southern Illinois
	1878
	common in Kentucky & Arkansas



	Fisher 1881
	Illinois
	1880
	present in southern Illinois



	Holland 1883
	Salem, North Carolina
	1858–1861
	described as “first pinned female specimen”



	Edwards 1884
	southern Ohio
	1880s
	first description in Ohio



	Hulst 1885
	Waynesville, North Carolina
	1882
	locally abundant populations



	
	Warren Springs, North Carolina
	1882
	very common along the French Broad River



	Blatchley 1886
	Evansville, Indiana
	early 1900s
	locally abundant populations



	French 1886
	eastern United States
	1886
	W. Virginia to Georgia, Southern Ohio to Illinois, Kentucky, Tennessee, Arkansas



	Hine 1887a, b
	Medina County, Ohio
	9 August 1887
	single worn male, northernmost record in OH



	Kingsley 1888
	Virginia
	1887
	Argynnis diana is described as the handsomest insect found in the United States



	Scudder 1889
	southeast United States
	1880s
	Semnopsyche diana; an inhabitant of hilly country of the south, 38th parallel of latitude, taken as far west as Missouri and “Arkansaw”



	Skinner & Aaron 1889
	Pennsylvania
	1880s
	stray individual found in Pennsylvania



	Dixey 1890
	eastern United States
	1889
	description of Argynnis diana wing spot pattern



	Blatchley 1891
	Illinois
	1890s
	female specimen from northern Danville, IL



	Skinner 1896
	southern Illinois
	1890s
	Diana specimens from southern Illinois are larger than those further east



	Holland 1898
	southern United States
	1890s
	in two Virginias and Carolinas, northern Georgia, Tennessee, Kentucky, occasionally in southern Ohio and Indiana, and in Missouri and Arkansas; the most magnificent and splendid species of the genus



	Snyder 1900
	Clay County, Illinois
	1900
	northern limit of S. diana in Illinois



	Strecker 1900
	Missouri
	1853
	pair captured in copula, very early female



	Maynard 1901
	
	
	habitat is West Virginia to Georgia, southern Ohio to Illinois, Tennessee, and Arkansas



	Sell 1916
	Greene County, Missouri
	22 August 1900
	southeast of Springfield



	Smyth 1916
	southeast United States
	1880–1916
	Asheville, Brevard, North Carolina, Caesar’s Head, South Carolina, Montgomery, Washington and Giles Counties, Virginia



	Wood 1916
	Camp Craig, Virginia
	August 1914
	describes female color variation



	Murrill 1919
	Virginia
	1919
	Poverty Valley



	Holland 1931
	
	1930s
	The Virginias and Carolinas, northern GA Tennessee, Kentucky, occasionally in southern OH, Indiana, and in Missouri and Arkansas



	Knobel 1931
	Hope, Arkansas
	1930
	from Mrs. Louise Knobel



	Kite 1934
	Taney County, Missouri
	31 July 1925
	male and female reported



	Clark 1937
	Virginia
	1930s
	ranges from Bath County, Virginia to FL east almost to tidewater, and west to Illinois and Arkansas



	Clark & Williams 1937
	Virginia
	late 1800s–1935
	Bath, Alleghany, Giles, Bland, Dickenson, Smyth, Patrick, Montgomery & Washington Counties



	Allen 1941
	West Virginia
	1940
	Pocahontas County, west to Kanawha and Lincoln Counties; abundant in Jefferson NF (Monroe County), Babcock State Park (Fayette County), and Fork Creek Wildlife Management Area (Boone County)



	Chermock 1942
	Conestee Falls, North Carolina
	summer 1941
	southern. Ohio and West Virginia, through the Appalachian mountains into Georgia and South Carolina, most abundant in mountains south of Great Smoky Mountains National Park



	Bock 1949
	Cincinnati, Ohio
	1947
	author collects hundreds of specimens from North Carolina mountains; gone from Indiana and Ohio



	Clark & Clark 1951
	Southern Illinois
	early 1900s
	



	
	Chesterfield County, Virginia
	1930
	last known county record



	
	Northampton County, Virginia
	1930
	last known county record



	Klots 1951
	Brevard, North Carolina
	1950
	in large numbers along roadsides; Chiefly in mountains and piedmont, W. Virginia s. to Georgia, w. to southern Ohio, Indiana, Missouri, and Arkansas



	Mather & Mather 1958
	Madison Parish, Louisiana
	1958
	record is a stray individual



	Evans 1959
	Smoky Mountains of Tennessee
	September 1957
	identification of an unknown S. diana larva



	Curtis & Boscoe 1962
	Buncombe County, North Carolina
	27 June 1962
	collecting record near Asheville



	Hovanitz 1963
	Salem, Roanoke County, Virginia
	13 June 1937
	comprehensive distribution data



	Ross & Lambremont 1963
	Louisiana
	1950s
	stray record from Mather & Mather 1958



	Masters 1968
	Newton County, Missouri
	1960s
	locally very common



	Masters & Masters 1969
	Perry County, Indiana
	15 July 1962
	last record known from Indiana



	Shull & Badger 1971
	Indiana
	1971
	no longer resident in Indiana



	Harris 1972
	Georgia
	1972
	summarizes historic reports from White, Union, Fannin, Habersham, Rabun Counties



	Irwin & Downey 1973
	Vermilion County, Illinois
	20 August 1960
	female, last known Illinois record



	
	Southern Illinois
	1880
	Illinois natural history survey



	Howe 1975
	
	1950s
	extirpated from type locality, Jamestown



	
	Kentucky, West Virginia
	1970s
	species is scarce in Kentucky and West



	
	Virginia
	
	



	
	Georgia
	1970s
	not uncommon in northern Georgia



	
	Ceasar’s Head, South Carolina
	1970s
	stable populations, not uncommon



	Nelson 1979
	Ozark plateau of Oklahoma
	1969
	only found in eastern counties



	Schowalter & Drees 1980
	Poverty Hollow, Virginia
	1973, 1978
	field-captured and lab-reared S. diana gynandromorphs described in detail



	Pyle 1981
	eastern United States
	1980s
	has decreased its range because of forest loss, common in the Great Smoky Mountains



	Hammond & McCorkle 1983
	Virginia & Tennessee
	1975–1978
	Appalachian populations are expanding



	Opler 1983
	eastern United States
	1980s
	some populations under decline



	Opler & Krizek 1984
	
	1950s
	extirpated from Virginia Piedmont and coast



	
	
	1800s
	extirpated from Ohio River valley



	Shuey et al. 1987
	Cincinnati, Ohio
	1900s–1930
	eliminated by deforestation by early 1900s



	Shull 1987
	Indiana
	late 1800s
	occurs in mountains and piedmont of West Virginia south to Georgia, west to southern Ohio, Indiana, Missouri, and Arkansas



	Watson & Hyatt 1988
	Tennessee
	1980s
	resident species of northeastern Tennessee



	Kohen 1989
	Cumberland, Kentucky
	July 1984
	aberrant male on milkweed



	Cohen & Cohen 1991
	Bath County, Virginia
	1990
	George Washington National Forest



	
	Montgomery County, Virginia
	1990
	photograph of pair in copula



	Krizek 1991
	western Virginia
	11 July 1991
	males preferred nectar over horse manure



	Adams 1992
	Fannin County, Georgia
	28 August 1992
	female netted by Irving Finkelstein



	Opler & Malikul 1992
	eastern United States
	1992
	central Appalachians west to Ozarks, formerly Atlantic coastal plain of Va., NC, and Ohio River Valley, rich forested valleys



	Skillman & Heppner 1992
	Coopers Creek WMA Georgia
	10 June 1988
	Gynandromorph specimen found in n. GA



	Carlton & Nobles 1996
	Arkansas, Missouri, Oklahoma
	1819–1995
	survey of Interior Highlands



	Allen 1997
	West Virginia
	1997
	ranges from Virginia and W. Virginia south to northern Georgia and Alabama. A small population persists in Ozark Mountains of Arkansas and Missouri



	Ross 1997
	Coweeta Forest, North Carolina
	1990, 1996
	classified as uncommon, 2–5 individuals sighted



	Ross 1998
	Mount Magazine, Arkansas
	30 June 1993
	photograph of male, locally abundant



	
	Mount Magazine, Arkansas
	20 August 1992
	photograph of female, locally abundant



	Glassberg 1999
	eastern United States
	1999
	formerly throughout Ohio River Valley and southeastern Virginia and northwest N.C



	Moran & Baldridge 2002
	Arkansas, Missouri, Oklahoma
	1997–1999
	22 counties inhabited, Arkansas expanding



	Scholtens 2004
	Oconee County, South Carolina
	2002
	present in Sumter National Forest



	Cech & Tudor 2005
	
	2000s
	locally common in mountain colonies, s. W. Virginia to n. GA; also e. AL/KY, Ozarks



	Vaughan & Shepherd 2005
	Red List species profile
	2005
	core of species distribution is in the southern Appalachians from central Virgina and W. VA through the mountains to northern Georgia and Alabama. Also in Ozarks of Missouri, Arkansas, and eastern Oklahoma



	Adams & Finkelstein 2006
	Fannin County, Georgia
	12 October 2006
	lots of aggregating females flying late



	Rudolph et al., 2006
	Ouachita Mountains, Arkansas
	1999–2005
	feeding records by month sites



	Spencer 2006
	Arkansas
	2006
	uncommon to locally common in colonies Scattered throughout the Interior Highlands Coastal Plain



	Campbell et al., 2007
	North Carolina
	17 June 2004
	at least four males visiting flowering sourwood



	Ross 2008
	Mount Magazine, Arkansas
	2008
	description of Mount Magazine State Park



	Wells et al., 2010
	Mount Magazine, Arkansas
	2009
	copulating pair photographed



	Wells et al., 2011
	Georgia, North Carolina, Tennessee
	2009
	females collected for rearing trial
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Table 3. Field-sampled Speyeria diana (2006–2009). Records are provided to the level of county. All voucher specimens are held at the Clemson University Arthropod Collection (adapted from Wells and Tonkyn 2014).
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	State
	County
	Ecoregion
	# S. diana (m/f)
	Survey Dates





	Arkansas
	Benton
	Ozark Plateau
	7 (7/1)
	12–14 June 2007, 22–23 June 2009



	
	Carroll
	Ozark Plateau
	9 (7/2)
	15–16 June 2007, 23–24 June 2009



	
	Boone
	Ozark Plateau
	2 (2/0)
	16 June 2007



	
	Faulkner
	Arkansas River Valley
	5 (5/0)
	18–20 June 2006, 20 June 2007, 16 June 2008, 3–6 August 2009



	
	Conway
	Arkansas River Valley
	15 (11/4)
	22 June 2007, 26 June 2008, 5 August 2009



	
	Pulaski
	Arkansas River Valley
	4 (2/2)
	28 August 2009



	
	Logan
	Arkansas River Valley
	37 (29/8)
	20–24 June 2006, 21–24 June 2007, 1–3 August 2009



	
	Montgomery
	Ouachita Mountains
	12 (7/5)
	31 July 2008, 1–3 September 2009



	
	Polk
	Ouachita Mountains
	5 (1/4)
	1–3 September 2009



	
	Saline
	Ouachita Mountains
	8 (7/1)
	14 June 2008, 18 June 2009



	Oklahoma
	Leflore
	Ouachita Mountains
	3 (0/3)
	30 August 2009



	Georgia
	Fannin
	Blue Ridge Mountains
	26 (17/9)
	12–13 July & 1 August 2006, 12 July 2007, 22 June & 20 July 2008



	
	Rabun
	Blue Ridge Mountains
	8 (2/6)
	7 September 2008, 29 August 2009



	
	Union
	Blue Ridge Mountains
	14 (6/8)
	29 July 2007, 15 June & 5–7 August 2008,



	North Carolina
	Ashe
	Blue Ridge Mountains
	4 (4/0)
	22–23 June 2007



	
	Buncombe
	Blue Ridge Mountains
	13 (8/5)
	27 July 2006, 30 July 2007, 9 August 2008



	
	McDowell
	Blue Ridge Mountains
	15 (10/5)
	9 September 2007, 24 June 2008, 30 June, 11 September 2009



	
	Transylvania
	Blue Ridge Mountains
	24 (19/5)
	5 June 2006, 16 July & 5 September 2007, 14 June 2008, 26 June 2009



	
	Watauga
	Blue Ridge Mountains
	7 (5/2)
	30 May & 9 June 2006, 25 July 2008, 19 September 2009



	South Carolina
	Greenville
	Blue Ridge Escarpment
	12 (7/5)
	31 June 2006, 27–29 July 2007, 1 September 2008, 8–13 September 2009



	Tennessee
	Blount
	Great Smoky Mountains
	42 (33/9)
	1–26 June 2007, 1–28 June & 20–29 August 2008, 1–15 September 2009



	
	Sevier
	Great Smoky Mountains
	33 (25/8)
	1–26 June 2007, 26–29 June 2008, 5 June-26 September 2009



	
	Carter
	Appalachian Mountains
	57 (35/22)
	5–9 June & 5–11 July 2006, 30–31 May 2007, 29–30 August 2008



	
	Sullivan
	Appalachian Mountains
	36 (25/11)
	13–16 July 2006, 20–22 July 2007, 5 August, 18–20 September 2009



	Virginia
	Montgomery
	Appalachian Mountains
	21 (14/7)
	3–7 July 2007, 2–4 July 2008
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Table 4. Elevation plus the 19 bioclimate variables from the WorldClim dataset (Hijmans et al., 2005) collapsed into groups of highly correlated variables (Pearson’s correlation coefficient, r ≥ ±0.70), and their corresponding contribution to the Maxent model. The ten variables kept in the final model are bold and highlighted in grey. The community climate system model (CCCM) and model for interdisciplinary research on climate (MIROC) global circulation models are shown under representative concentration pathways (RCPs) 4.5 (low) and 8.5 (high), as predicted by the Intergovernmetnal Panel on Climate Change (IPCC) 5th report on climate. AVG—average; AUC—area under curve.






Table 4. Elevation plus the 19 bioclimate variables from the WorldClim dataset (Hijmans et al., 2005) collapsed into groups of highly correlated variables (Pearson’s correlation coefficient, r ≥ ±0.70), and their corresponding contribution to the Maxent model. The ten variables kept in the final model are bold and highlighted in grey. The community climate system model (CCCM) and model for interdisciplinary research on climate (MIROC) global circulation models are shown under representative concentration pathways (RCPs) 4.5 (low) and 8.5 (high), as predicted by the Intergovernmetnal Panel on Climate Change (IPCC) 5th report on climate. AVG—average; AUC—area under curve.





	
Bioclimate Variables

	
Abbreviation

	
% Contribution




	
CCCM-45

	
MIROC-45

	
AVG

	
CCCM-85

	
MIROC-85

	
AVG






	
Annual Mean Temperature

	
Bio 1

	
4.4

	
0.7

	
2.5

	
0.5

	
1.4

	
0.96




	
Max Temperature of Warmest Month

	
Bio 5

	
0.6

	
1.7

	
1.2

	
1.4

	
0.8

	
1.1




	
Min Temperature of Coldest Month

	
Bio 6

	
3.9

	
36.3

	
20.1

	
2.6

	
3.3

	
10.4




	
Mean Temperature of Wettest Quarter

	
Bio 8

	
14.1

	
10.2

	
12.2

	
4.0

	
16.8

	
2.6




	
Mean Temperature of Driest Quarter

	
Bio 9

	
15.5

	
5.1

	
10.3

	
30.2

	
19.8

	
25.0




	
Mean Temperature of Warmest Quarter

	
Bio 10

	
0.5

	
0.8

	
0.7

	
0.1

	
0.3

	
0.2




	
Mean Temperature of Coldest Quarter

	
Bio 11

	
0.8

	
12.5

	
11.9

	
3.3

	
1.5

	
2.4




	
Precipitation of Wettest Month

	
Bio 13

	
3.7

	
0.2

	
3.5

	
2.0

	
5.8

	
3.9




	
Precipitation Seasonality

	
Bio 15

	
6.0

	
3.7

	
4.9

	
8.7

	
2.7

	
5.6




	
Precipitation of Wettest Quarter

	
Bio 16

	
0.8

	
0.6

	
0.7

	
0.2

	
0.9

	
0.6




	
Precipitation of Warmest Quarter

	
Bio 18

	
1.1

	
0.3

	
1.0

	
1.9

	
1.0

	
1.5




	
Precipitation of Driest Month

	
Bio 14

	
0.9

	
1.6

	
1.4

	
2.7

	
8.0

	
5.4




	
Precipitation of Driest Quarter

	
Bio 17

	
4.2

	
2.3

	
3.3

	
2.2

	
2.6

	
2.4




	
Precipitation of Coldest Quarter

	
Bio 19

	
0.1

	
0.2

	
0.2

	
0.2

	
1.7

	
0.9




	
Elevation

	
Elev

	
2.0

	
1.0

	
1.5

	
4.9

	
2.0

	
3.5




	
Isothermality (BIO 2/BIO 7) (*100)

	
Bio 3

	
11.0

	
3.5

	
7.3

	
8.5

	
6.6

	
7.6




	
Temperature Seasonality (standard deviation *100)

	
Bio 4

	
6.4

	
1.0

	
3.7

	
0.0

	
4.2

	
2.1




	
Mean Diurnal Range (Mean of monthly (max temp—min temp))

	
Bio 2

	
0.6

	
3.0

	
1.8

	
2.0

	
3.6

	
2.8




	
Temperature Annual Range (BIO 5–BIO 6)

	
Bio 7

	
1.2

	
1.9

	
1.6

	
1.5

	
1.0

	
1.3




	
Annual Precipitation

	
Bio 12

	
22.3

	
13.4

	
17.9

	
22.9

	
15.9

	
19.4




	
AUC

	

	
0.86

	
0.96

	
0.91

	
0.87

	
0.86

	
0.87
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