Centromere Chromatin Dynamics at a Glance
Abstract
:1. Introduction
2. The Centromere
3. Centromere Protein A (CENP-A)
4. CENP-A Nucleosome
- (a)
- CENP-A αN helix is one-turn shorter compared to that of H3 (Figure 2) at the nucleosome entry and exit sites; as a result, there are fewer DNA interactions: ~13 bp DNA segment is detached from the histone surface at both ends [41]. This leads to an increase in the flexibility of the DNA ends and this phenomenon is independent of the DNA sequence [41,42,43]. Additionally, it has been shown that the N-terminal tail of CENP-A, but not H3, promotes this DNA unwrapping [42]. CENP-A nucleosomes wrap only about ~120 bp of DNA [41,42] as compared to the 147 bp wrapped by the canonical nucleosomes [43]. This observation is further supported by the crystal structure of a heterotypic nucleosome reconstituted using H3.3 and CENP-A in which the DNA at the CENP-A side has much greater flexibility, while DNA is firmly wrapped on the H3 side [44]. Increased dynamics of the DNA ends have been observed for CENP-A nucleosome in vivo in ChIP-seq experiments [45]. Thus, the presence of CENP-A leads to an alteration in the DNA dynamics in the nucleosome, which results in unique centromeric chromatin structures. For instance, studies on nucleosomes assembled on longer DNA demonstrate that the flexible DNA at the entry/exit locations causes an alternative path for the linker DNA that does not pass over the dyad. Hence, the CENP-A nucleosome is incompatible with linker histone H1 binding [46,47]. In fact, the exclusion of H1 may be required to promote binding with the CCAN components to mediate KT assembly. This claim is supported by studies that show that deletion of the flexible DNA ends in CENP-A nucleosome impairs CCAN binding [47,48]. Interestingly, mechanical measurements have recently demonstrated that the CENP-A nucleosomes are more elastic than H3 nucleosomes [49]. Further, high-speed Atomic Force Microscopy (AFM) showed that the frequency of local DNA unwrapping events is higher in CENP-A nucleosomes as compared to canonical ones [50]. Thus, we can speculate that increased DNA flexibility may lead to increased core dynamics in the CENP-A nucleosomes. The increased flexibility of DNA in the CENP-A nucleosome also results in an increased structural heterogeneity [41]. It is known that structural heterogeneity aids in binding to numerous proteins to mediate complex signalling and multiprotein assemblies [51]. While it has been shown that this flexibility is required for centromere function [47], much is still unknown and is a topic of research.
- (b)
- CENP-A CATD L1 has extra residues called RG loop than that of H3 and protrudes out of the nucleosomes (Figure 2) and aids in the recruitment of CENP-N [33,52,53] as well as CENP-C according to a study in human cells [11]. CENP-N is essential for the recruitment of other CCAN components as mutations or depletion of CENP-N results in decreased binding with CENP-A which leads to defects in centromere assembly. Reduced CENP-A incorporation as well as reduced recruitment of CENP-H, CENP-I, and CENP-K has been observed [54]. Most recently, in vitro and in vivo experiments on CENP-A nucleosome arrays have demonstrated that CENP-N promotes the compaction of centromeric chromatin in an H1-like manner [51] to create a unique higher-order structure that may serve as an interaction platform for various centromere-specific proteins [55].
- (c)
- Additionally, CENP-C, a highly conserved CCAN component and the central player that promotes and stabilizes the KT on the centromere, also forms contacts with the CENP-A C-terminal tail residues KDQ [56] via its C-terminus and the outer KT (MT-proximal end) KMN network via its N-terminus to establish a segregation-competent KT [57]. Cryo-EM structures of CENP-A in complex with CENP-C revealed that CENP-C promotes DNA unwrapping on binding to CENP-A nucleosomes via the H2A C-terminal tail and also alters the H4 tail conformation [57], possibly to assist in H4K20me1 (monomethylation), a mark that is crucial for KT assembly [58].
- (d)
- Specific hydrogen bonds develop between CENP-A protomers (mediated by the CATD) in the CENP-A nucleosome, causing structural aberrations around the CENP-A–CENP-A interface when compared to the H3-H3 interface [41], which, we believe, may have an impact on the centromeric nucleosome dynamics.
- (e)
- As mentioned earlier, at the entrance and exit of the CENP-A nucleosome, a ~13 bp DNA segment is detached from the histone surface, giving CENP-A nucleosomes a more ‘open conformation’ compared to that of the canonical one. It is proposed that the unbound DNA constitutes a CENP-B box [61]. It is reported that CENP-B is required for the de novo assembly of CENP-A and other factors on the α-satellite DNA [62]. However, it appears that CENP-B function at the centromere is dispensable because CENP-B knockout mice are viable [63], and neocentromeres are devoid of CENP-B [7], questioning the importance of the centromeric DNA. However, since most studies involve engineered DNA sequences for in vitro nucleosome stabilization, it may result in the loss of important details about the nucleosome in its native DNA context. To summarize, the presence of CENP-A in the centromeric nucleosome (a) alters the core dynamics to create a unique chromatin structure at the centromere (b) serves as a platform for CCAN recruitment and subsequent KT assembly.
5. Post-Translational Modifications (PTMs) on CENP-A
6. H2A.Z
7. CENP-A and Human Diseases
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kursel, L.E.; Malik, H.S. Centromeres. Curr. Biol. 2016, 26, R487–R490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggins, S. The Composition, Functions, and Regulation of the Budding Yeast Kinetochore. Genetics 2013, 194, 817–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potapova, T.; Gorbsky, G. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassold, T.; Hunt, P. To Err (Meiotically) Is Human: The Genesis of Human Aneuploidy. Nat. Rev. Genet. 2001, 2, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Ahmad, K.; Malik, H.S. The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science 1993, 159, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Scott, K.C.; Sullivan, B.A. Neocentromeres: A Place for Everything and Everything in Its Place. Trends Genet. 2014, 30, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Marshall, O.J.; Chueh, A.C.; Wong, L.H.; Choo, K.H.A. Neocentromeres: New Insights into Centromere Structure, Disease Development, and Karyotype Evolution. Am. J. Hum. Genet. 2008, 82, 261–282. [Google Scholar] [CrossRef] [Green Version]
- Verdaasdonk, J.S.; Bloom, K. Centromeres: Unique Chromatin Structures That Drive Chromosome Segregation. Nat. Rev. Mol. Cell Biol. 2011, 12, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Mendiburo, M.J.; Padeken, J.; Fülöp, S.; Schepers, A.; Heun, P. Drosophila CENH3 Is Sufficient for Centromere Formation. Science 2011, 334, 686–690. [Google Scholar] [CrossRef]
- Furuyama, S.; Biggins, S. Centromere Identity Is Specified by a Single Centromeric Nucleosome in Budding Yeast. Proc. Natl. Acad. Sci. USA 2007, 104, 14706–14711. [Google Scholar] [CrossRef]
- Logsdon, G.A.; Barrey, E.J.; Bassett, E.A.; DeNizio, J.E.; Guo, L.Y.; Panchenko, T.; Dawicki-McKenna, J.M.; Heun, P.; Black, B.E. Both Tails and the Centromere Targeting Domain of CENP-A Are Required for Centromere Establishment. J. Cell Biol. 2015, 208, 521–531. [Google Scholar] [CrossRef]
- Dunleavy, E.M.; Almouzni, G.; Karpen, G.H. H3.3 Is Deposited at Centromeres in S Phase as a Placeholder for Newly Assembled CENP-A in G₁ Phase. Nucleus 2011, 2, 146–157. [Google Scholar] [CrossRef] [Green Version]
- McKinley, K.L.; Cheeseman, I.M. The Molecular Basis for Centromere Identity and Function. Nat. Rev. Mol. Cell Biol. 2016, 17, 16–29. [Google Scholar] [CrossRef]
- Meluh, P.B.; Koshland, D. Budding Yeast Centromere Composition and Assembly as Revealed by in Vivo Cross-Linking. Genes Dev. 1997, 11, 3401–3412. [Google Scholar] [CrossRef] [Green Version]
- Henikoff, S.; Dalal, Y. Centromeric Chromatin: What Makes It Unique? Curr. Opin. Genet. Dev. 2005, 15, 177–184. [Google Scholar] [CrossRef]
- Westermann, S.; Drubin, D.G.; Barnes, G. Structures and Functions of Yeast Kinetochore Complexes. Annu. Rev. Biochem. 2007, 76, 563–591. [Google Scholar] [CrossRef]
- Cleveland, D.W.; Mao, Y.; Sullivan, K.F. Centromeres and Kinetochores: From Epigenetics to Mitotic Checkpoint Signaling. Cell 2003, 112, 407–421. [Google Scholar] [CrossRef] [Green Version]
- Waye, J.S.; Willard, H.F. Structure, Organization, and Sequence of Alpha Satellite DNA from Human Chromosome 17: Evidence for Evolution by Unequal Crossing-over and an Ancestral Pentamer Repeat Shared with the Human X Chromosome. Mol. Cell. Biol. 1986, 6, 3156–3165. [Google Scholar] [CrossRef]
- Warburton, P.E. Chromosomal Dynamics of Human Neocentromere Formation. Chromosom. Res. 2004, 12, 617–626. [Google Scholar] [CrossRef]
- Howman, E.V.; Fowler, K.J.; Newson, A.J.; Redward, S.; MacDonald, A.C.; Kalitsis, P.; Choo, K.H.A. Early Disruption of Centromeric Chromatin Organization in Centromere Protein A (Cenpa) Null Mice. Proc. Natl. Acad. Sci. USA 2000, 97, 1148–1153. [Google Scholar] [CrossRef]
- Régnier, V.; Vagnarelli, P.; Fukagawa, T.; Zerjal, T.; Burns, E.; Trouche, D.; Earnshaw, W.; Brown, W. CENP-A Is Required for Accurate Chromosome Segregation and Sustained Kinetochore Association of BubR1. Mol. Cell. Biol. 2005, 25, 3967–3981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieland, G.; Orthaus, S.; Ohndorf, S.; Diekmann, S.; Hemmerich, P. Functional Complementation of Human Centromere Protein A (CENP-A) by Cse4p from Saccharomyces Cerevisiae. Mol. Cell. Biol. 2004, 24, 6620–6630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earnshaw, W.C.; Rothfield, N. Identification of a Family of Human Centromere Proteins Using Autoimmune Sera from Patients with Scleroderma. Chromosoma 1985, 91, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Earnshaw, W.C.; Migeon, B.R. Three Related Centromere Proteins Are Absent from the Inactive Centromere of a Stable Isodicentric Chromosome. Chromosoma 1985, 92, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.K.; O’Day, K.; Wener, M.H.; Andrews, B.S.; Margolis, R.L. A 17-KD Centromere Protein (CENP-A) Copurifies with Nucleosome Core Particles and with Histones. J. Cell Biol. 1987, 104, 805–815. [Google Scholar] [CrossRef]
- Palmer, D.K.; O’Day, K.; Trong, H.L.E.; Charbonneau, H.; Margolis, R.L. Purification of the Centromere-Specific Protein CENP-A and Demonstration That It Is a Distinctive Histone. Proc. Natl. Acad. Sci. USA 1991, 88, 3734–3738. [Google Scholar] [CrossRef] [Green Version]
- Bloom, K. Centromere Dynamics. Curr. Opin. Genet. Dev. 2007, 17, 151–156. [Google Scholar] [CrossRef]
- Sullivan, K.E.; Hechenberger, M.; Marsi, K. Domain That Is Required for Targeting to the Centromere. Cell 1994, 127, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Black, B.E.; Jansen, L.E.T.; Maddox, P.S.; Foltz, D.R.; Desai, A.B.; Shah, J.V.; Cleveland, D.W. Centromere Identity Maintained by Nucleosomes Assembled with Histone H3 Containing the CENP-A Targeting Domain. Mol. Cell 2007, 25, 309–322. [Google Scholar] [CrossRef]
- Pan, D.; Walstein, K.; Take, A.; Bier, D.; Kaiser, N.; Musacchio, A. Mechanism of Centromere Recruitment of the CENP-A Chaperone HJURP and Its Implications for Centromere Licensing. Nat. Commun. 2019, 10, 4046. [Google Scholar] [CrossRef]
- Foltz, D.R.; Jansen, L.E.T.; Bailey, A.O.; Yates, J.R., 3rd; Bassett, E.A.; Wood, S.; Black, B.E.; Cleveland, D.W. Centromere-Specific Assembly of CENP-a Nucleosomes Is Mediated by HJURP. Cell 2009, 137, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Dunleavy, E.M.; Roche, D.; Tagami, H.; Lacoste, N.; Ray-Gallet, D.; Nakamura, Y.; Daigo, Y.; Nakatani, Y.; Almouzni-Pettinotti, G. HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres. Cell 2009, 137, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liu, Y.; Wang, M.; Fang, J.; Huang, H.; Yang, N.; Li, Y.; Wang, J.; Yao, X.; Shi, Y.; et al. Structure of a CENP-A–Histone H4 Heterodimer in Complex with Chaperone HJURP. Genes Dev. 2011, 25, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.W.; Milks, K.J.; Straight, A.F. Dual Recognition of CENP-A Nucleosomes Is Required for Centromere Assembly. J. Cell Biol. 2010, 189, 1143–1155. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Zhou, K.; Zhang, Z.; Luger, K.; Straight, A.F. Constitutive Centromere-Associated Network Contacts Confer Differential Stability on CENP-A Nucleosomes in Vitro and in the Cell. Mol. Biol. Cell 2018, 29, 751–762. [Google Scholar] [CrossRef]
- Musacchio, A.; Desai, A. A Molecular View of Kinetochore Assembly and Function. Biology 2017, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Foltz, D.R.; Jansen, L.E.T.; Black, B.E.; Bailey, A.O.; Yates Iii, J.R.; Cleveland, D.W. The Human CENP-A Centromeric Nucleosome-Associated Complex. Nat. Cell Biol. 2006, 8, 17–30. [Google Scholar] [CrossRef]
- Goshima, G.; Kiyomitsu, T.; Yoda, K.; Yanagida, M. Human Centromere Chromatin Protein HMis12, Essential for Equal Segregation, Is Independent of CENP-A Loading Pathway. J. Cell Biol. 2003, 160, 25–39. [Google Scholar] [CrossRef]
- Dalal, Y. Epigenetic Specification of Centromeres. Biochem. Cell Biol. 2009, 87, 273–282. [Google Scholar] [CrossRef]
- McKinley, K.L.; Cheeseman, I.M. Polo-like Kinase 1 Licenses CENP-A Deposition at Centromeres. Cell 2014, 158, 397–411. [Google Scholar] [CrossRef]
- Tachiwana, H.; Kagawa, W.; Shiga, T.; Osakabe, A.; Miya, Y.; Saito, K.; Hayashi-Takanaka, Y.; Oda, T.; Sato, M.; Park, S.-Y.; et al. Crystal Structure of the Human Centromeric Nucleosome Containing CENP-A. Nature 2011, 476, 232–235. [Google Scholar] [CrossRef]
- Ali-Ahmad, A.; Bilokapić, S.; Schäfer, I.B.; Halić, M.; Sekulić, N. CENP-C Unwraps the Human CENP-A Nucleosome through the H2A C-Terminal Tail. EMBO Rep. 2019, 20, e48913. [Google Scholar] [CrossRef]
- Boopathi, R.; Danev, R.; Khoshouei, M.; Kale, S.; Nahata, S.; Ramos, L.; Angelov, D.; Dimitrov, S.; Hamiche, A.; Petosa, C.; et al. Phase-Plate Cryo-EM Structure of the Widom 601 CENP-A Nucleosome Core Particle Reveals Differential Flexibility of the DNA Ends. Nucleic Acids Res. 2020, 48, 5735–5748. [Google Scholar] [CrossRef]
- Zhou, B.-R.; Yadav, K.N.S.; Borgnia, M.; Hong, J.; Cao, B.; Olins, A.L.; Olins, D.E.; Bai, Y.; Zhang, P. Atomic Resolution Cryo-EM Structure of a Native-like CENP-A Nucleosome Aided by an Antibody Fragment. Nat. Commun. 2019, 10, 2301. [Google Scholar] [CrossRef] [Green Version]
- Luger, K.; Mä Der, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Arimura, Y.; Shirayama, K.; Horikoshi, N.; Fujita, R.; Taguchi, H.; Kagawa, W.; Fukagawa, T.; Almouzni, G.; Kurumizaka, H. Crystal Structure and Stable Property of the Cancer-Associated Heterotypic Nucleosome Containing CENP-A and H3.3. Sci. Rep. 2014, 4, 7115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasson, D.; Panchenko, T.; Salimian, K.J.; Salman, M.U.; Sekulic, N.; Alonso, A.; Warburton, P.E.; Black, B.E. The Octamer Is the Major Form of CENP-A Nucleosomes at Human Centromeres. Nat. Struct. Mol. Biol. 2013, 20, 687–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takizawa, Y.; Ho, C.-H.; Tachiwana, H.; Matsunami, H.; Kobayashi, W.; Suzuki, M.; Arimura, Y.; Hori, T.; Fukagawa, T.; Ohi, M.D.; et al. Cryo-EM Structures of Centromeric Tri-Nucleosomes Containing a Central CENP-A Nucleosome. Structure 2020, 28, 44–53.e4. [Google Scholar] [CrossRef]
- Roulland, Y.; Ouararhni, K.; Naidenov, M.; Ramos, L.; Shuaib, M.; Syed, S.H.; Lone, I.N.; Boopathi, R.; Fontaine, E.; Papai, G.; et al. The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity. Mol. Cell 2016, 63, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Yang, J.; Zhang, Z.; McLaughlin, S.H.; Chang, L.; Fasci, D.; Ehrenhofer-Murray, A.E.; Heck, A.J.R.; Barford, D. Structure of the Inner Kinetochore CCAN Complex Assembled onto a Centromeric Nucleosome. Nature 2019, 574, 278–282. [Google Scholar] [CrossRef]
- Melters, D.P.; Pitman, M.; Rakshit, T.; Dimitriadis, E.K.; Bui, M.; Papoian, G.A.; Dalal, Y. Intrinsic Elasticity of Nucleosomes Is Encoded by Histone Variants and Calibrated by Their Binding Partners. Proc. Natl. Acad. Sci. USA 2019, 116, 24066–24074. [Google Scholar] [CrossRef] [Green Version]
- Stumme-Diers, M.P.; Banerjee, S.; Hashemi, M.; Sun, Z.; Lyubchenko, Y.L. Nanoscale Dynamics of Centromere Nucleosomes and the Critical Roles of CENP-A. Nucleic Acids Res. 2018, 46, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Agarwal, P.; Kumar, A. Disordered Regions Tune Order in Chromatin Organization and Function. Biophys. Chem. 2022, 281, 106716. [Google Scholar] [CrossRef]
- Chittori, S.; Hong, J.; Saunders, H.; Feng, H.; Ghirlando, R.; Kelly, A.E.; Bai, Y.; Subramaniam, S. Structural Mechanisms of Centromeric Nucleosome Recognition by the Kinetochore Protein CENP-N. Science 2018, 359, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Li, X.; Liu, Y.; Wang, C.; Liu, X.; Bi, G.; Zhang, X.; Yao, X.; Zhou, Z.H.; Zang, J. Molecular Basis for CENP-N Recognition of CENP-A Nucleosome on the Human Kinetochore. Cell Res. 2018, 28, 374–378. [Google Scholar] [CrossRef]
- Carroll, C.W.; Silva, M.C.C.; Godek, K.M.; Jansen, L.E.T.; Straight, A.F. Centromere Assembly Requires the Direct Recognition of CENP-A Nucleosomes by CENP-N. Nat. Cell Biol. 2009, 11, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Gebala, M.; Woods, D.; Sundararajan, K.; Edwards, G.; Krzizike, D.; Wereszczynski, J.; Straight, A.F.; Luger, K. CENP-N Promotes the Compaction of Centromeric Chromatin. Nat. Struct. Mol. Biol. 2022, 29, 403–413. [Google Scholar] [CrossRef]
- Huddleston, J.E. CENPA’s Tail Rules the Centromere. Nat. Rev. Mol. Cell Biol. 2011, 12, 626. [Google Scholar] [CrossRef]
- Klare, K.; Weir, J.R.; Basilico, F.; Zimniak, T.; Massimiliano, L.; Ludwigs, N.; Herzog, F.; Musacchio, A. CENP-C Is a Blueprint for Constitutive Centromere-Associated Network Assembly within Human Kinetochores. J. Cell Biol. 2015, 210, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Hori, T.; Shang, W.-H.; Toyoda, A.; Misu, S.; Monma, N.; Ikeo, K.; Molina, O.; Vargiu, G.; Fujiyama, A.; Kimura, H.; et al. Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly. Dev. Cell 2014, 29, 740–749. [Google Scholar] [CrossRef]
- Allu, P.K.; Dawicki-McKenna, J.M.; Van Eeuwen, T.; Slavin, M.; Braitbard, M.; Xu, C.; Kalisman, N.; Murakami, K.; Black, B.E. Structure of the Human Core Centromeric Nucleosome Complex. Curr. Biol. 2019, 29, 2625–2639.E5. [Google Scholar] [CrossRef]
- Nagpal, H.; Hori, T.; Furukawa, A.; Sugase, K.; Osakabe, A.; Kurumizaka, H.; Fukagawa, T. Dynamic Changes in CCAN Organization through CENP-C during Cell-Cycle Progression. Mol. Biol. Cell 2015, 26, 3768–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachiwana, H.; Kagawa, W.; Kurumizaka, H. Comparison between the CENP-A and Histone H3 Structures in Nucleosomes. Nucleus 2012, 3, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohzeki, J.-I.; Nakano, M.; Okada, T.; Masumoto, H. CENP-B Box Is Required for de Novo Centromere Chromatin Assembly on Human Alphoid DNA. J. Cell Biol. 2002, 159, 765–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Castro, A.V.; Shamanski, F.L.; Meneses, J.J.; Lovato, T.L.; Vogel, K.G.; Moyzis, R.K.; Pedersen, R. Centromeric Protein B Null Mice Are Viable with No Apparent Abnormalities. Dev. Biol. 1998, 201, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukagawa, T. Critical Histone Post-Translational Modifications for Centromere Function and Propagation. Cell Cycle 2017, 16, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Bailey, A.O.; Panchenko, T.; Sathyan, K.M.; Petkowski, J.J.; Pai, P.-J.; Bai, D.L.; Russell, D.H.; Macara, I.G.; Shabanowitz, J.; Hunt, D.F.; et al. Posttranslational Modification of CENP-A Influences the Conformation of Centromeric Chromatin. Proc. Natl. Acad. Sci. USA 2013, 110, 11827–11832. [Google Scholar] [CrossRef] [Green Version]
- Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Sathyan, K.M.; Fachinetti, D.; Foltz, D.R. α-Amino Trimethylation of CENP-A by NRMT Is Required for Full Recruitment of the Centromere. Nat. Commun. 2017, 8, 14678. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.; Pitman, M.; Nuccio, A.; Roque, S.; Donlin-Asp, P.G.; Nita-Lazar, A.; Papoian, G.A.; Dalal, Y. Internal Modifications in the CENP-A Nucleosome Modulate Centromeric Dynamics. Epigenetics Chromatin 2017, 10, 17. [Google Scholar] [CrossRef]
- Niikura, Y.; Kitagawa, R.; Ogi, H.; Abdulle, R.; Pagala, V.; Kitagawa, K. CENP-A K124 Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev. Cell 2015, 32, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.; Dimitriadis, E.K.; Hoischen, C.; An, E.; Quénet, D.; Giebe, S.; Nita-Lazar, A.; Diekmann, S.; Dalal, Y. Cell-Cycle-Dependent Structural Transitions in the Human CENP-A Nucleosome In Vivo. Cell 2012, 150, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhou, X.; Wang, W.; Deng, W.; Fang, J.; Hu, H.; Wang, Z.; Li, S.; Cui, L.; Shen, J.; et al. Dynamic Phosphorylation of CENP-A at Ser68 Orchestrates Its Cell-Cycle-Dependent Deposition at Centromeres. Dev. Cell 2015, 32, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Takada, M.; Zhang, W.; Suzuki, A.; Kuroda, T.S.; Yu, Z.; Inuzuka, H.; Gao, D.; Wan, L.; Zhuang, M.; Hu, L.; et al. FBW7 Loss Promotes Chromosomal Instability and Tumorigenesis via Cyclin E1/CDK2–Mediated Phosphorylation of CENP-A. Cancer Res. 2017, 77, 4881–4893. [Google Scholar] [CrossRef] [Green Version]
- Zeitlin, S.G.; Shelby, R.D.; Sullivan, K.F. CENP-A Is Phosphorylated by Aurora B Kinase and Plays an Unexpected Role in Completion of Cytokinesis. J. Cell Biol. 2001, 155, 1147–1158. [Google Scholar] [CrossRef]
- Kunitoku, N.; Sasayama, T.; Marumoto, T.; Zhang, D.; Honda, S.; Kobayashi, O.; Hatakeyama, K.; Ushio, Y.; Saya, H.; Hirota, T. CENP-A Phosphorylation by Aurora-A in Prophase Is Required for Enrichment of Aurora-B at Inner Centromeres and for Kinetochore Function. Dev. Cell 2003, 5, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Eot-Houllier, G.; Magnaghi-Jaulin, L.; Fulcrand, G.; Moyroud, F.-X.; Monier, S.; Jaulin, C. Aurora A-Dependent CENP-A Phosphorylation at Inner Centromeres Protects Bioriented Chromosomes against Cohesion Fatigue. Nat. Commun. 2018, 9, 1888. [Google Scholar] [CrossRef] [Green Version]
- Barra, V.; Logsdon, G.A.; Scelfo, A.; Hoffmann, S.; Hervé, S.; Aslanian, A.; Nechemia-Arbely, Y.; Cleveland, D.W.; Black, B.E.; Fachinetti, D. Phosphorylation of CENP-A on Serine 7 Does Not Control Centromere Function. Nat. Commun. 2019, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Bao, X.; Gan, X.; Luo, S.; Rao, H. Multiple E3s Promote the Degradation of Histone H3 Variant Cse4. Sci. Rep. 2017, 7, 8565. [Google Scholar] [CrossRef] [Green Version]
- Greaves, I.K.; Rangasamy, D.; Ridgway, P.; Tremethick, D.J. H2A.Z Contributes to the Unique 3D Structure of the Centromere. Proc. Natl. Acad. Sci. USA 2007, 104, 525–530. [Google Scholar] [CrossRef]
- Rangasamy, D.; Greaves, I.; Tremethick, D.J. RNA Interference Demonstrates a Novel Role for H2A.Z in Chromosome Segregation. Nat. Struct. Mol. Biol. 2004, 11, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.Y.; Rangasamy, D.; Luger, K.; Tremethick, D.J. H2A.Z Alters the Nucleosome Surface to Promote HP1α-Mediated Chromatin Fiber Foldingfile:///Users/Shivangishukla/Downloads/10.1038_nsmb786-Citation.Ris. Mol. Cell 2004, 16, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Wang, Y.; Kallgren, S.P.; Thompson, J.; Yates, J.R., 3rd; Jia, S. Histone Variant H2A.Z Regulates Centromere Silencing and Chromosome Segregation in Fission Yeast. J. Biol. Chem. 2010, 285, 1909–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.L.; Ahn, G.S.; Staples, M.I.; Sathyan, K.M.; Karpova, T.S.; Foltz, D.R.; Basrai, M.A. Mislocalization of Centromeric Histone H3 Variant CENP-A Contributes to Chromosomal Instability (CIN) in Human Cells. Oncotarget 2017, 8, 46781–46800. [Google Scholar] [CrossRef] [Green Version]
- Heun, P.; Erhardt, S.; Blower, M.D.; Weiss, S.; Skora, A.D.; Karpen, G.H. Mislocalization of the Drosophila Centromere-Specific Histone CID Promotes Formation of Functional Ectopic Kinetochores. Dev. Cell 2006, 10, 303–315. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Cao, X.; Wang, L.; Zhu, M. Expression of centromere protein A in hepatocellular carcinoma. Zhonghua Bing Li Xue Za Zhi/Chin. J. Pathol. 2007, 36, 175–178. [Google Scholar]
- Biermann, K.; Heukamp, L.C.; Steger, K.; Zhou, H.; Franke, F.E.; Guetgemann, I.; Sonnack, V.; Brehm, R.; Berg, J.; Bastian, P.J.; et al. Gene Expression Profiling Identifies New Biological Markers of Neoplastic Germ Cells. Anticancer Res. 2007, 27, 3091–3100. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, S.; Kumar, A. Centromere Chromatin Dynamics at a Glance. Epigenomes 2022, 6, 39. https://doi.org/10.3390/epigenomes6040039
Shukla S, Kumar A. Centromere Chromatin Dynamics at a Glance. Epigenomes. 2022; 6(4):39. https://doi.org/10.3390/epigenomes6040039
Chicago/Turabian StyleShukla, Shivangi, and Ashutosh Kumar. 2022. "Centromere Chromatin Dynamics at a Glance" Epigenomes 6, no. 4: 39. https://doi.org/10.3390/epigenomes6040039
APA StyleShukla, S., & Kumar, A. (2022). Centromere Chromatin Dynamics at a Glance. Epigenomes, 6(4), 39. https://doi.org/10.3390/epigenomes6040039