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Abstract: Patient response after treatment of renal cell cancer (RCC) with systemic agents, which
include various drug categories, is generally poor and unpredictable. In this context, the ideal drug
administration includes tools to predict the sensitivity of the disease to therapy. The aim of this study
was to systematically summarize the reports on the predictive value of the methylation status in the
systemic therapy of RCC. Only original articles reporting on the association of promoter methylation
with the response of patients or cell lines to systemic agents were included in this review. We applied
PRISMA recommendations to the structure and methodology of this systematic review. Our literature
search concluded with 31 articles conducted on RCC cell lines and patient tissues. The majority of
the studies demonstrated a methylation-dependent response to systemic agents. This correlation
suggests that the methylation pattern can be used as a predictive tool in the management of RCC
with various classes of systemic agents. However, although methylation biomarkers show promise
for predicting response, the evidence of such correlation is still weak. More studies on the gene
methylation pattern in patients under systemic therapy and its correlation with different degrees of
response are needed.

Keywords: renal cell cancer; DNA methylation; drug sensitivity; predictive biomarkers

1. Introduction

Renal cell cancer (RCC) is one of the most common urological cancers, accounting for
2.2% (431,288 cases) of the total new cancer cases worldwide in 2020. The percentage of
cancer-related deaths attributed to RCC is 1.8% [1]. The incidence of RCC varies across
regions, with higher rates observed in Europe and North America, among older patients,
and in men [2]. Treatment options for localized RCC include the surgical removal of the
tumor-bearing kidney, selective surgical excision of the tumor (partial nephrectomy), or
destruction of the tumor tissue using thermal ablation techniques [3]. In contrast, locally
advanced or metastatic RCC is primarily managed with systemic treatments that prolong
life, such as antiangiogenic factors and immunotherapy [3]. RCC is highly resistant to
chemotherapy and radiotherapy, but immune checkpoint inhibitors (ICI) have shown
promising results in terms of response rates and prolonged time to disease recurrence or
cancer-related death, with some patients achieving a complete response [4,5]. However,
acquired resistance to treatment often leads to disease recurrence, requiring the use of
second-line systemic agents. This cycle of acquired resistance, disease recurrence, and
subsequent treatment options is known as therapy sequencing [3].

Given that the success of both first-line therapy and therapy sequencing depends on
the biological resistance of RCC, it is reasonable to explore methods for predicting resistance
patterns. Pharmacoepigenetics, a subdiscipline of epigenetics, offers a potential strategy for
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maximizing therapeutic outcomes and avoiding side effects from ineffective systemic agents.
Pharmacoepigenetics focuses on studying epigenetic factors that influence drug response
and identifying new pharmacologic targets and biomarkers with prognostic or predictive
value [6]. Both genetic and epigenetic factors contribute to different responses to systemic
therapies, and evaluating both can help develop personalized protocols that adhere to
the principles of precision medicine, maximizing therapeutic effects and minimizing side
effects [7].

In recent years, a deeper understanding of RCC molecular biology has led to the
introduction of new targeted agents and the identification of molecular pathways that may
play a role in RCC’s response to systemic therapies. Several molecular factors involved in
these pathways are potential predictive biomarkers. Epigenetic alterations, which have
also been linked to renal carcinogenesis and tumor aggressiveness [8], offer a promising
molecular mechanism with predictive value in the metastatic setting of RCC. Certain genes
appear to influence the response to systemic agents in a methylation-dependent manner [9].
Moreover, the frequency of methylation pattern modifications is 2–5 times higher than
that of gene mutations [10], suggesting that epigenetic alterations have a stronger effect
than mutations in the development of therapy resistance. However, the evidence for the
use of predictive biomarkers in clinical practice is inconclusive. The absence of clinically
relevant predictive biomarkers is a complex issue [11], indicating that the introduction of
such biomarkers into clinical practice may be more challenging than initially anticipated.

The objective of this article is to present the results of a systematic review on the
contribution of DNA methylation studies in patient tissues or RCC cell lines to the discovery
of predictive biomarkers in RCC and the potential for guiding systemic therapy selection
in these patients.

2. Results
2.1. Study Selection

The search of PubMed, Web of Science, Scopus, and ScienceDirect, along with articles
from other sources, provided a total of 5540 articles. After removing duplicates, there were
4,825 articles remaining. The evaluation process began with the appraisal of titles and/or
abstracts, resulting in the exclusion of 4,659 irrelevant articles. This left 171 articles for full-text
evaluation. After evaluating the full text, 140 articles were excluded for not meeting the
eligibility criteria. The remaining 31 articles were included in the present systematic review.
The flow diagram of the systematic review is depicted in Figure 1 (the distribution of included
articles per electronic database is depicted in Supplementary Table S1).

A summary of the 31 selected articles and their basic extracted data can be found
in Table 1, where studies are organized chronologically. In this table, we used both the
recent nomenclature of the investigated genes and the gene names as stated in the included
studies [12].

Table 1. List of the included studies included in chronological order and their basic characteristics.

Author (Year)
Gene Name (as

Stated in the
Study)

Gene Name
(As Stated in the
Recent HUGO
Nomenclature

Molecular Path-
way/Function

Systemic
Agent

Experimental
Model Study Design Ref

To (2006) ABCG2 ABCG2
ATP—binding

cassette half
transporter

Mitoxantrone,
topotecan,

SN38
cell lines experimental

(cell lines) [13]

Reu (2006) RASSF1 RASSF1
Death receptor-

dependent
apoptosis

Interferons cell lines experimental
(cell lines) [14]

Reu (2006) XAF1 XAF1
Interferon-
induced

apoptosis
Interferons cell lines experimental

(cell lines) [15]
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Table 1. Cont.

Author (Year)
Gene Name (as

Stated in the
Study)

Gene Name
(As Stated in the
Recent HUGO
Nomenclature

Molecular Path-
way/Function

Systemic
Agent

Experimental
Model Study Design Ref

Lee (2006) XAF1 XAF1

Binding to and
counteracting the
inhibitory effect

of XIAP

Etoposide,
5-FU

cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[16]

Shen (2007) 32 promoter CpG
islands

Respective
pathways 170 agents cell lines experimental

(cell lines) [17]

Takano (2010) Cx32 GJB1
GJ-dependent

transfer of small
molecules

Vinblastine cell lines experimental
(cell lines) [18]

Dubrowinskaja
(2013) NEFH NEFH

Type IV
intermediate

filament protein

Anti—VEGF
agents

Cell lines,
patient
tissues

experimental
(cell lines),

cohort (tissues)
[19]

Choueiri (2013) VHL VHL VHL-HIF
pathway Pazopanib patient

tissues cohort (tissues) [20]

Weygant (2014) DCLK1 DCLK1 EMT, stemness
regulation Sunitinib

cell lines,
patient
tissues,

databases

experimental
(cell lines),

cross-sectional
(tissues)

[21]

Peters (2014) CST6, LAD1 CST6, LAD1

CST6 (cysteine
protease

inhibitor), LAD
(stability of the

epithelial–
mesenchymal

interaction)

sunitinib,
sorafenib,

axitinib, be-
vacizumab

patient
tissues cohort (tissues) [22]

Motzer (2014) VHL VHL VHL-HIF
pathway Sunitinib patient

tissues cohort (tissues) [23]

Ponnusamy
(2015) MSH2 MSH2

MMR-
dependent
apoptosis

doxorubicin,
cisplatin cell lines experimental

(cell lines) [24]

Kim (2015) FLT1, KDR FLT1, KDR VEGF-VEGFR
signaling

Bevacizumab,
sunitinib,
axitinib,

anti-FLT1
peptide,

anti-KDR
antibody

cell lines,
patient
tissues

experimental
(cell lines),

cohort (tissues)
[25]

Stewart (2015) VHL VHL VHL-HIF
pathway Sunitinib patient

tissues
case-control

(tissues) [26]

Liu (2015) ASC/TMS1 PYCARD
Caspase-9
dependent
apoptosis

doxorubicin,
etoposide

cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[27]

Nogales (2015) SLFN11 SLFN11

Inhibition of
DNA replication

in response to
DNA damage

Cisplatin,
carboplatin cell lines experimental

(cell lines) [28]

Beuselinck
(2015) Multiple genes Respective

pathways Sunitinib patient
tissues cohort (tissues) [29]

Liu (2016) OCT2 SLC22A2
Polyspecific

organic cation
transporter

Oxaliplatin
cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[30]
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Table 1. Cont.

Author (Year)
Gene Name (as

Stated in the
Study)

Gene Name
(As Stated in the
Recent HUGO
Nomenclature

Molecular Path-
way/Function

Systemic
Agent

Experimental
Model Study Design Ref

Zhou (2016) DAB2IP DAB2IP Ras -GTPase
activation

mTOR
inhibitors

cell lines,
patient
tissues

experimental
(cell lines),

cohort(tissues)
[31]

Winter (2016) Multiple
pharmacogenes

Respective
pathways Cisplatin

cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[32]

Pompas-
Veganzones

(2016)
SYNPO2 SYNPO2

Actin-binding
and actin

-bunding activity

Antiangiogenic
agents

patient
tissues cohort (tissues) [33]

Wang (2017) ASPP1 ASPP1
Apoptotic

stimulation of
P53 protein

5-FU
cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[34]

Verbiest (2018) Multiple genes Respective
pathways Pazopanib patients

tissues cohort (tissues) [35]

Lei (2018) LIFR LIFR
Signal

transduction of
the IL-6

Verteporfin,
PHA—
665752,

PF—2341066

cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[36]

Kammerer
(2018) VHL VHL VHL-HIF

pathway Sunitinib patient
tissues

case-control
(tissues) [37]

Li (2019) PON1 PON1
Ca2+-dependent

high-density
lipoprotein”

Sunitinib
cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[38]

Zhao (2019) QPCT QPCT
Posttranslational

protein
modification

Sunitinib
cell lines,
patient
tissues

experimental
(cell lines),

cohort (tissues)
[39]

De Cubas
(2020)

Transposable
elements (TE)

Endogenous
retroviruses
activating
antiviral
signaling

PD-1/PD-L1
cell lines,
patient
tissues

experimental
(cell lines),

cohort (tissues)
[40]

Miyakuni
(2021) UQCRH UQCRH

Mitochondrial
complex III
component

Everolimus
cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[41]

Klümper
(2021) CTLA4 CTLA4

Immune
checkpoint

receptor

Immune
checkpoint
inhibitors

patient
tissues cohort (tissues) [42]

Ye (2022) TCAIM TCAIM
Priming capacity
and activation of

T cells
Sunitinib

cell lines,
patient
tissues

experimental
(cell lines),

cross-sectional
(tissues)

[43]

Abbreviations: HUGO: Human Genome Organisation; GJB1: Gap junction protein beta 1; PYCARD: PYD And
CARD Domain Containing; SLC22A2: Solute Carrier Family 22 Member 2; ATP: Adenosine triphosphate; XIAP:
X-linked inhibitor of apoptosis protein; 5-FU: 5-Fluoruracil; VEGF: Vascular endothelial growth factor; VHL-HIF:
Von Hippel Lindau-Hypoxia Inducible Factor; EMT: Epithelial–mesenchymal transition; MMR: DNA mismatch
repair; IL-6: Inteleukin-6; PD-1/PD-L1: Programmed cell Death1/Programmed cell Death-Ligand1.
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Figure 1. Flow diagram of the literature search.

2.2. Study Characteristics

All included studies were published between 2006 and 2023, indicating that interest
in uncovering possible correlations between promoter methylation and drug sensitivity
of RCC emerged several years ago and remains strong today. Seven articles reported
results only from RCC cell lines; nine articles reported outcomes from patient tissues, and
15 studies included both methodologies (Table 1).

The in vitro studies conducted with RCC cell lines revealed the correlations between
the gene methylation status and sensitivity to specified systemic agents. Various molecular
methods, such as gene expression analysis (reverse transcription polymerase chain reaction,
RT-PCR), protein expression analysis (Western blot), protein identification assays (immuno-
histochemistry, IHC), methylation status analysis (methylation-specific PCR or MSP and
pyrosequencing), and mutation analysis (PCR) were used to establish the relationship
between the methylation and gene function. Additionally, several studies applied treat-
ment with demethylating agents (DNA methyltransferase and DNMT inhibition) to induce
sensitivity changes through gene demethylation. Functional tests on the same RCC cell
lines included DNMT depletion (transfection with antisense DNMT RNA), gene knocking
down with short hairpin RNA (shRNA) or small interfering RNA (siRNA), and enforced
expression with transfection with gene vectors. These experiments aimed to correlate the
gene functional status (inactivation or enforced expression) with the sensitivity in a similar
way to the methylation status, which also allows or represses gene function, resulting in
changes in sensitivity. In general, in vitro studies aimed for either a direct connection of
the methylation status to the sensitivity or an indirect connection through gene expression
changes, an effect that can be methylation—driven by or a result of gene manipulations in
combination with gene-function-dependent sensitivity. Supplementary Figure S1 depicts
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both approaches in the form of the Population, Intervention, Comparison, Outcomes, and
Study (PICOS) framework. The extracted data from the in vitro studies are summarized in
Supplementary Table S2.

The majority of tissue studies had a cohort design, with 10 cross-sectional studies
and two case-control studies (Table 1). Many of these tissue studies were combined with
results from RCC cell lines to clarify the underlying association of the methylation status
of a specified gene with its sensitivity to a specified agent. Researchers suggested that the
epigenetic state of a gene could predict the therapy response if the gene was found to be
methylated in patient tissues, and the cell line experiments showed different responses
to systemic therapy based on different epigenetic states. In four studies [21,31,36,38],
researchers retrieved methylation status data for RCC tissues from The Cancer Genome
Atlas (TCGA) databank. A more direct approach included the comparison of survival
curves, progression-free survival (PFS), and the OS of patients under systemic therapy who
had differently methylated tumor tissues in nephrectomy specimens. In one study [26],
researchers looked into the possible correlation between epigenetic changes in paired
tumor tissues (before and after systemic therapy) and the response to systemic agents.
Supplementary Figure S2 depicts the sequence of demonstrating the correlation of promoter
methylation to drug sensitivity in any design of included tissue study using the PICOS
framework. The extracted data from the tissue studies are summarized in Supplementary
Table S3.

2.3. Risk of Bias within Studies

The risk of bias assessment for cell line studies did not show significant subjectivity
issues. More precisely, critical elements of the methodology, such as the concealment of
allocation to groups, experimental conditions, concealment of group characteristics, expo-
sure characterizations, and outcome assessments, were mainly unproblematic or showed
minimal flaws concerning bias risk. On the contrary, the assessment of randomization of
exposure and completeness of outcome recording and reports demonstrated subjectivity
issues, which were detected in seven [16,27,31,32,34,36,38] and three studies [14–16], re-
spectively. The majority of studies had up to one item positive for bias risk, while one
study [14] had two positive items, and two studies [15,16] had three and four positive
items out of nine items. Supplementary Table S4 presents analytical data regarding bias
assessment in cell line studies.

Regarding tissue studies, bias risk assessment revealed important issues relating to the
objectivity of the formation of the comparing groups and their comparability in terms of
confounding factors that can also affect the outcomes. Several studies [32,34,36,41,43] demon-
strated significant flaws in the selection process with subsequent suboptimal representative-
ness of the groups, which resulted in a two-point loss in the study rating. Other studies com-
pared groups uncontrolled for important factors like age, sex, or others [19–23,26,29,37,39,40],
which also resulted in a two-point loss in the comparability rating. In the outcome/exposure
ascertainment field, several studies [16,23,25,27,33,38,41,43] showed bias elements, which
reduced their respective ratings by one point. Supplementary Table S5 depicts analytical data
regarding bias assessment in tissue studies.

2.4. Results from Studies on Cell Lines
2.4.1. ATP Binding Cassette Subfamily G Member 2 (ABCG2)

In 2006, To et al. tested three RCC cell lines in terms of the methylation status of the
promoter of the ABCG2 gene and the respective gene expression [13]. The UOK121 and
UOK143 cell lines were found hypermethylated at the promoter of the ABCG2 gene, and
the gene expression was downregulated. On the other hand, the ABCG2 expression was
normal in UOK181 cells in correlation with its unmethylated promoter. The expression
differences were abolished after treatment with decitabine. The cytotoxicity assay showed
that the methylated UOK121 and UOK143 cell lines were significantly more sensitive
than the unmethylated UOK181 under treatment with any of the ABCG2 substrate drugs.
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ABCG2 inhibition with fumitremorgin C (FTC) pretreatment reduced the half-maximal
inhibitory concentration (IC50) of UOK 181 under any of the previous drugs by 66%, while
the respective sensitivities of UOK121 and UOK143 under the same conditions showed
only a limited effect of FTC.

2.4.2. Ras Association Domain Family Member 1 (RASSF1)

The RASSF1 gene was found to be silenced due to its promoter hypermethylation
in 90–100% of RCC specimens. To investigate if the resistance to the interferons (IFNs)-
induced apoptosis was due to RASSF1 hypermethylation, Reu et al. tested the effect of IFNs
after preventing DNA hypermethylation, either with a decitabine pretreatment or DNMT1
depletion [14]. Initially, resistant RCC cell lines showed increased apoptosis after treatment
with decitabine or DNMT depletion, while RASSF1 was re-expressed after treatment. The
enforced expression of RASSF1 by a lentiviral infection resulted in the same effect. On the
contrary, inhibition of RASSF1 by siRNA decreased the apoptotic effect of IFN.

2.4.3. XIAP-Associated Factor 1 (XAF1)

In 2006, Reu et al. assessed the dependence of IFN-induced apoptosis on the XAF1
gene methylation status by applying DNMT inhibition (treatment with decitabine) or
DNMT depletion (transfection with antisense RNA) on the RCC cell lines ACHN and
SK-RC-45 [15]. The pretreatment resulted in an increase in apoptotic cells by up to 85%
under IFN treatment, while RCC cell lines without pretreatment were resistant to IFNs
(<10% TdT-mediated dUTP-biotin nick end labeling, TUNEL+ cells). Simultaneous treat-
ment of ACHN cells with XAF siRNA and decitabine resulted in XAF1 knocking down
and reduced apoptosis under IFN β (18%), compared to cells treated only with decitabine
plus IFN β (58%). Enforced XAF1 expression through a plasmid vector on DNMT-depleted
ACHN cells resulted in a low apoptosis ratio (6.5%) under a low IFN dose, while treatment
with 500 U/mL IFN-β apoptosis reached up to 80%. Empty vector-carrying cells were
resistant even to high IFN β doses.

2.4.4. p73, a Homolog of p53

In 2007, the National Cancer Institute drug-screening panel (NCI-60 panel), which
includes seven renal cancer cell lines, was used by Shen et al. to determine the methylation
status across 32 promoter-associated CpG islands and to correlate the methylation status
with the response to systemic agents [17]. Two renal cancer cell lines, TK10 and 786-O,
were found to have different responses to cisplatin. The increased sensitivity to cisplatin
treatment of the 786-O cell line was correlated with the hypermethylation of the p73 gene
promoter and the minor expression of the gene. On the other hand, the cisplatin-resistant
TK10 cell line expressed p73, and the promoter of p73 was unmethylated. Experimentally,
p73 knocking down by siRNA downregulated the expression of p73 and increased the
sensitivity to cisplatin treatment.

2.4.5. Connexin 32 (Cx32)

In 2010, Takano et al. found that Cx32, a tumor suppressor gene, was frequently silent
in RCC due to the hypermethylation of its promoter [18]. The pretreatment of Caki-1,
a representative RCC cell line, with decitabine, resulted in the restoration of Cx32 gene
expression. Cx32 repressed the expression of P-glycoprotein (P-gp) and, therefore, enhanced
the vinblastine (VBL)-induced cytotoxicity.

2.4.6. DNA Mismatch Repair Gene (MSH2)

Ponnusamy et al. developed the Caki-1LA and Caki-1HA renal cancer cells as a model
for the low (LA) and high adoption (HA) to chronic exposure to oxidative stress [24]. In par-
ticular, Caki-1 cells were exposed for six months to H2O2. The cells were adapted to chronic
oxidative stress and had developed an enhanced resistance to doxorubicin and cisplatin.
The oxidative-stress-induced resistance to the chemotherapeutics was correlated with the
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decreased expression of the MSH2 gene. DNA pyrosequencing revealed hypermethylation
in one of the six CpG sites in the promoter region of the MSH2 gene, thus suggesting the
possible role of oxidative-stress-induced DNA hypermethylation in silencing the MSH2
gene. Subsequently, treatment with decitabine resulted in the restoration of MSH2 gene
expression and enhanced sensitivity to doxorubicin-induced cytotoxicity.

2.4.7. Schlafen 11 (SLFN11)

In 2016, the NCI-60 panel was used by Nogales et al. to unveil the correlation of
CpG methylation with the response to the platinum-derived chemotherapeutic drugs
cisplatin and carboplatin [28]. TK10 and A498 RCC cell lines were found to have the
CpG island region of the SLFN11 gene hypermethylated. The absence of SLFN11 protein
expression, a putative DNA/RNA helicase, was associated with reduced sensitivity to the
above chemotherapeutic compounds. In general, the methylation status of the SLFN1 gene
promoter across all cell lines proved to be predictive of the response to the platinum drugs.

2.5. Results from Studies on Cell Lines and Tissues
2.5.1. XIAP-Associated Factor 1 (XAF1)

In 2006, Lee et al. investigated the relationship between the XAF1 promoter gene
methylation and protein expression within urogenital malignancies [16]. In total, 10 of
the 15 RCC cell lines showed very low or no XAF1 protein expression. The MSP analysis
showed that the lack of protein expression was due to the gene promoter methylation. On
the contrary, the rest of the cell lines with normal XAF1 protein expression showed no
promoter methylation. Moreover, a significant reduction in XAF1 expression was revealed
in 7 out of 20 RCC samples, and six out of these seven samples showed increased gene
promoter methylation. On the other hand, no methylation was detected in the sum of
noncancerous and normal XAF1 protein-expressing RCC tissues. Transfection assays with
the 253J and HT1376 bladder cancer cell lines were performed to elucidate the relation
between XAF1 gene expression and cell chemosensitivity. The ectopic overexpression of
the XAF1 protein in the 253J cell line, which lacks endogenous XAF1 protein expression,
significantly increased the apoptotic response to chemotherapeutic drugs, such as etoposide
and 5-fluorouracil (5-FU) (p < 0.01). On the contrary, the HT1376 cells showed an attenu-
ated response to chemotherapeutics after targeted inhibition of XAF1 protein expression
with siRNA.

2.5.2. Neurofilament Heavy Chain (NEFH)

Using the quantitative methylation-specific PCR (qMSP), Dubrowinskaja et al. found that
the NEFH promoter was methylated both in RCC cell lines, with relative methylation >25%
in two of six cell lines and in cancerous tissues compared to the paired normal speci-
mens [19]. A survival analysis showed that NEFH methylation was a significant prognos-
tic factor (a significantly shortened PFS was recorded in patients with relative methy-
lation higher than 5.9%, p < 0.001, hazard ratio (HR) = 8.61 [3.03–24.5, 95%CI]). Pa-
tients undergoing antiangiogenic therapy showed OS depending on the methylation
status (29.8 vs. 9.8 months for patients with low and high methylation, respectively,
p = 0.028). By using a cut-off of 6 months for PFS, NEFH methylation was correlated with
therapy failure with a sensitivity of 0.91 [0.62–0.98. 95%CI].

2.5.3. Fms-Related Receptor Tyrosine Kinase 1 (FLT1), Kinase Insert Domain
Receptor (KDR)

In 2015, Kim et al. investigated the effect of the methylation status of FLT1 and
KDR genes, which express vascular endothelial growth factor (VEGF) receptors 1 and 2,
respectively, on the efficacy of drugs acting on the VEGF pathway, namely, bevacizumab
(monoclonal antibody against VEGF-A), axinitinib, and sunitinib (tyrosine kinase inhibitors,
TKIs, both blocking the signaling pathways of VEGF receptors). The researchers performed
in vitro experiments, which showed that growth inhibition induced by bevacizumab or
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anti-KDR antibodies was not dependent on the methylation of FLT1 or KDR genes [25].
On the contrary, cell lines with FLT1 hypermethylation were more resistant to anti-FLT
peptides, sunitinib, and axitinib. Pretreatment with decitabine increased the effect of
sunitinib and axitinib on FLT1 hypermethylated cell lines. Only FLT1 knocking down
decreased the effect of anti-FLT1 peptides, sunitinib, and axitinib on respective cell line
models. The methylation status of normal adjacent tissue was found to be significantly
different compared to cancerous tissue for both genes. Responders to sunitinib showed
significantly lower FLT1 methylation compared to non-responders. The results of the study
showed that hypermethylation of FLT1, but not KDR, affects the efficacy of both TKIs
in RCC.

2.5.4. Apoptosis-Associated Speck-like Protein Containing a Card/Target of
Methylation-Induced Silencing 1 (ASC/TMS1)

In 2015, Liu et al. assessed the pro-apoptotic gene ASC/TMS1 for its methylation status
in RCC cell lines and tumor/normal tissues [27]. All cell lines were methylated, while
ASC/TMS1 was downregulated or silenced. Tumor-specific methylation of ASC/TMS1 was
demonstrated from the methylation percentage in tumor tissues (83/202, 41.1%) compared
to normal tissues (3/25, 12%). Pretreatment with decitabine or enforced ASC/TMS1 ex-
pression potentiated cell death of initially ASC/TMS1-silenced 786-O cells after treatment
with a chemotherapeutic agent etoposide or doxorubicin. Knocking down the ASC/TMS1
gene on Caki-2 cells induced an attenuated p53 activation after treatment with etoposide
or doxorubicin.

2.5.5. Organic Cation Transporter 2 (OCT2)

According to a study by Liu et al., the OCT2 gene was hypermethylated in tumor
tissues with strong OCT2 repression (p = 0.0001) and in tumor tissues with weak OCT2
repression (p = 0.006) compared to respective non-tumor tissues [30]. The difference in
OCT2 expression was also revealed on the RCC tissue microarray (positive OCT2 staining
in 24 of 31 non-tumor samples, negative in all tumor samples). Pretreatment of RCC cell
lines with decitabine increased oxaliplatin cellular accumulation and resulted in a multifold
decrease in IC50. This effect did not take place in modified RCC cell lines after OCT2
knocking down. The combination of decitabine with oxaliplatin resulted in the inhibition of
rapid tumor growth in xenografts, while monotherapy with either decitabine or oxaliplatin
had no effect.

In 2016, Winter et al. assessed the OCT2 methylation status across discrete CpGs in
primary tumor samples, metastases, and cell lines and found no significant differences
between primary tumor tissues and metastatic tissues [32]. On the contrary, RCC cell lines
had significantly higher methylation levels than primary tumors or metastases. Treatment
of Caki-2 cells with decitabine resulted in a four-fold increase in OCT2 mRNA and a
significant increase in induced apoptosis by the addition of cisplatin compared to treatment
with cisplatin alone (p < 0.01).

2.5.6. Disabled Homolog 2-INTERACTING Protein (DAB2IP)

In 2016, Zhou et al. processed TCGA data and found that the DAB2IP gene was
methylated in 82% of tumor tissues (130/159) after comparison to their matched renal
tissues [31]. DAB2IP expression was detected in 95% of normal kidney tissues, while it
was decreased in 54% of tumor tissues in the patient cohort, suggesting gene silencing
in tumor tissues. RCC cell line treatment with decitabine increased DAB2IP expression,
revealing the association between DAB2IP methylation and expression. RCC cell lines with
dysfunctional DAB2IP (knocked down 786-O cells, 786-O KD and Sut002 vector control,
Sut002VC) showed higher resistance to temsirolimus compared to RCC cell lines with
relatively functional DAB2IP (786-O and DAB2IP-expressing Sut002 cells, Sut002DAB2IP).
Tumor enlargement in xenografts under treatment with temsirolimus was faster in cases of
inoculation with 786-OKD and Sut002VC. Survival curves of a small patient cohort treated
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with a mammalian target of rapamycin (mTOR) inhibitors revealed a decreased median
survival (23.6 vs. 46 months, p = 0.41) for patients with low DAB2IP expression (data
from TCGA).

2.5.7. Apoptosis Stimulating Protein of p53 1 (ASPP1)

According to a study by Wang et al., in vitro experiments showed that ASPP1 hy-
permethylation at the promoter region suppressed the ASPP1 expression, while the latter
was restored after treatment of RCC cells with decitabine [34]. At the patient level, ASPP1
expression was found to be downregulated by 3.9-fold in the mRNA transcript level and
4.9-fold in the protein level in RCC tissues compared to paired normal controls (p < 0.01).
The influence of ASPP1’s functional status in response to chemotherapy was tested through
5-FU treatment of cell lines after enforced ASPP1 expression, which showed higher sensi-
tivity compared to cell lines with non-functional ASPP1.

2.5.8. Leukemia Inhibitory Factor Receptor (LIFR)

In 2018, Lei et al. found that the LIFR protein level was significantly lower in
25 tumor samples compared to normal matched samples (p < 0.001), while transcrip-
tomic data from TCGA showed that LIFR mRNA levels were significantly lower in tumor
samples than in normal samples (p < 0.001) [36]. Methylation data analysis from TCGA
revealed hypermethylation in RCC samples (p < 0.001). A significant negative correlation
between methylation and LIFR transcription resulted in three LIFR gene sites (cg03864479:
r = −0.435, p < 0.001, cg06182018: r = −0.379, p < 0.001, cg06182018: r = −0.140, p = 0.012).
LIFR knockdown on Caki-2 cells increased sensitivity to verteporfin (IC50 value = 10.38
vs. 16.91 µmol for control cell line), while a correlation analysis between drug sensitivity
and LIFR mRNA levels on nine RCC cell lines in the CCLE database revealed a strong
correlation for two drugs (PHA-665752 with r = 0.707, p = 0.033, PF2341066 with r = 0.707,
p = 0.033).

2.5.9. Doublecortin-like Kinase 1 (DCLK1)

Weygant et al. performed a methylation data analysis of 159 paired RCC plus normal
adjacent tissues from TCGA–KIRC, which showed a strong DCLK1 promoter hypomethyla-
tion that could perform as a diagnostic biomarker in distinguishing cancerous tissue (Area
Under Curve, AUC = 0.838 ± 0.024 for β-promoter) [21]. DCLK1 overexpression was also
revealed by immunochemistry in stage 2–3 vs. stage 1/normal tissues (p < 0.002). DCLK1
knocking down by treatment of Caki-2 cells with DCLK1 siRNA reduced viability by 30%
in proliferation assay under sunitinib therapy.

2.5.10. Paraoxonase 1 (PON1)

According to a study by Li et al., methylation data analysis of the TCGA databank
showed significant hypermethylation of the PON1 gene in RCC tissues [38]. The same
result was found in the methylation study of 15 fresh frozen RCC samples compared to
matched adjacent renal tissue specimens, with 12 of 15 RCC tissues found hypermethylated
for the PON1 gene. The effect of DNMT inhibition (decitabine) on the sensitivity of RCC
cell lines with proven hypermethylation to sunitinib suggests a possible connection of the
PON1 methylation status to the sensitivity of RCC to sunitinib.

2.5.11. Glutaminyl-Peptide Cyclotransferase (QPCT)

In 2019, a study by Zhao et al. showed that the treatment of RCC cells with decitabine
could induce an intense QPCT expression through modification of the methylation sta-
tus [39]. Increased QPCT expression was associated with reduced sensitivity to sunitinib,
while QPCT suppression with siRNA resulted in reduced viability after sunitinib treatment.
Patients considered as responders to sunitinib had tumors with higher QPCT methylation,
while an adjuvant treatment with sunitinib was associated with a significant improvement
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in PFS only in the patient subgroup with low QPCT expression. Interestingly, the QPCT
protein level was higher in the plasma of non-responsive patients.

2.5.12. Transposable Elements (TE)

Transposable elements are mainly endogenous retroviruses, which have been inte-
grated into the human genome and are normally repressed via epigenetic mechanisms.
Activated TE in cancer cells induces viral mimicry and, consequently, an immune response.
In this study by de Cubas et al., TE expression was modulated via the hypomethylating
effect of decitabine on RCC cell lines [40]. Activated TE expression triggered antiviral
signaling through the upregulation of pattern recognition receptors (PRR). Expression of
corresponding genes (DDX58, IFIH1, DHX58) was upregulated in RCC tissues of a group of
patients with good response to Programmed cell Death1/Programmed cell Death-Ligand 1
(PD1/PD-L1) inhibitors in contrast to non-responders (p: 0.006, p: 0.011, p: 0.027).

2.5.13. Ubiquinol Cytochrome c Reductase Hinge (UQCRH)

The UQCRH gene controls the production of a mitochondrial complex III component,
which is functionally associated with the Warburg effect and has a putative role in the
induction of apoptotic cell death. In the study by Miyakuni et al., immunohistochemical
analysis showed that the UQCRH expression in RCC tissues was lower compared to
normal adjacent tissues, regardless of the malignity grade [41]. Methylation analysis results
showed that the highly malignant OS5K cell line was methylated, which was in line with
methylation data from a database analysis relating to RCC cells. Everolimus treatment
induced more intense apoptosis in the less-methylated OS-RC-2 cells than in OS5K cells,
while the apoptosis of the latter was restored after pretreatment with decitabine. The
inoculation of pretreated decitabine OS5K cells in mice was associated with an increased
therapeutic effect of everolimus on the primary tumor of the mice.

2.5.14. T-Cell Activation Inhibitor, Mitochondrial (TCAIM)

The TCAIM gene encodes a mitochondrial protein that associates with mitochondrial
calcium uptake and additionally plays a role in T-cell priming capacity and activation. Ye
et al. found that the TCAIM gene was more methylated in RCC tissues compared to normal
adjacent tissues, while the TCAIM protein levels of the latter were higher [43]. TCAIM
functional manipulations in RCC cell lines revealed the importance of the gene functional
status to sensitivity under treatment with sunitinib. More precisely, TCAIM-enforced
expression provoked an augmented sensitivity, while TCAIM silencing had the opposite
effect. Respective gene manipulation in inoculated RCC tumors in mice affected tumor
growth in the same way; namely, gene-enforced expression decelerated tumor growth,
while gene silencing had an accelerating effect.

2.6. Results from Studies on Tissues
2.6.1. Von Hippel-Lindau (VHL)

VHL gene status analysis was performed by Choueiri et al. as part of a clinical trial on
metastatic RCC (mRCC) patients treated with pazopanib [20]. The methylation status and
mutational status of 78 tissue samples were assessed before treatment and did not correlate
with the overall response rate (ORR) and PFS. In conclusion, the VHL gene status had no
predictive value for pazopanib activity.

Data from a prospective study by Motzer et al., which focused on different sunitinib–
based treatment schedules of patients with advanced RCC, were analyzed to discover
predictive biomarkers relating to patients under sunitinib treatment [23]. VHL methylation
was detected in 14 out of 132 patients. Methylation prevalence across patient groups with
different outcomes (0% in the complete response group, 10% in the partial response group,
8% in the stable disease group, and 17% in the progressive disease group) showed no
correlation between the methylation status and patient clinical course.
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According to a study by Stewart et al., a methylation status analysis in 14 paired
RCC specimens (before and after treatment with sunitinib) showed that the VHL promoter
region 7896829 was significantly more methylated after sunitinib (14% of patients with
hypermethylation before treatment, 64% post-treatment, p < 0.001, False Discovery Rate,
FDR = 0.077) [26]. The response of each patient did not correlate with the extent of VHL
hypermethylation (p = 0.896), suggesting that VHL methylation changes take place due to
sunitinib regardless of therapy resistance and disease progression.

In 2019, Kammerer-Jacquet et al. divided a cohort of 90 patients into an LTR (long-term
responders) group, with a minimum response of 18 months to sunitinib and to other patient
groups [37]. The VHL methylation status was assessed in samples taken at diagnosis or
during follow-up. Promoter methylation was found in 10 out of 90 cancerous tissues
(2 from the LTR group, 8 from other patients). No association was found between the VHL
methylation status and the response duration to sunitinib (p = 0.718).

2.6.2. Cystatin-M and Ladinin 1 (CST6, LAD1)

In 2014, Peters et al. analyzed primary tumor tissues from 18 patients receiving antiangio-
genic therapy in terms of CST6 and LAD1 methylation status, and the results were evaluated
for their predictive value in a clinical disease course [22]. Hypermethylation was found in 8/18
and 10/18 tumor samples for LAD1 and CST6, respectively. Kaplan–Meier curves revealed a
shorter PFS and OS for patients under antiangiogenic therapy with LAD1 hypermethylation
(median PFS = 2 vs. 11.4 months for low methylation, p = 0.004, HR = 6.4 [1.6–26, 95% CI]
and median OS= 3.4 vs. 16.4 months for low methylation, p = 0.043, HR = 2.9 [1.0–8.6, 95%
CI] or with CST6 hypermethylation (median PFS = 2 vs. 11.4 months for low methylation,
p = 0.009, HR = 4.1 [1.3–12.6, 95% CI] and median OS = 3.4 vs. 22.9 months for low methylation,
p = 0.011, HR = 4.1 [13.0–13.4, 95% CI]. Using a cut-off of 6 months to distinguish between
responders and non-responders, the LAD1 methylation status predicted therapy failure with
specificity = 1.0 [0.65–1.0, 95% CI], sensitivity = 0.727 [0.43–0.90, 95% CI], while the CST6
methylation status had specificity = 0.857 (0.49–0.97, 95% CI] and sensitivity = 0.818 (0.52–0.95,
95% CI] in predicting therapy responses.

2.6.3. Genome-Wide Methylation Study for Prediction of Response to Sunitinib

In 2015, Beuselinck et al. performed a transcriptomic analysis in primary tumor tissues
of mRCC patients who were treated with sunitinib and followed up for an estimation
of the PFS and OS, and they identified four discrete clear cell RCC (ccrcc) molecular
subtypes (1–4) with different clinical courses (shorter PFS and OS for ccrcc1/4, p = 0.001 and
0.0003 respectively) [29]. The methylation pattern of ccrcc1/4 was characterized by global
hypermethylation. Genes related to polycomb targets (PRC2, SUZ12, H3K27m3) were
found downregulated by hypermethylation in ccrcc1/4, while genes involved in immune
responses and mitotic cycles in ccrcc4 tumors were upregulated by hypomethylation.
Methylation status differences were part of the molecular differences, which divided
mRCC patients into the above subtypes and were of predictive value in RCC cases treated
with sunitinib.

2.6.4. Synaptopodin 2 (SYNPO2)

In the study by Pompas-Veganzones et al., the SYNPO2 methylation status was as-
sessed in 63 cancerous tissue specimens from RCC patients before antiangiogenic ther-
apy [33]. Univariate analyses of patients under therapy showed an association between
methylation and PFS (p = 0.004, HR = 0.43 [0.24–0.77, 95%CI]), while CSS (p = 0.003,
HR = 0.30 [0.2–0.72, 95%CI]) and OS (p = 0.003, HR = 0.42 [0.23–0.78, 95%CI]) were
found increased for methylated cases by a Kaplan–Meier curve analysis. Multivariate
Cox analyses corroborated the predictive value of methylated SYNPO2 as an independent
factor for PFS (p = 0.009, HR = 0.45 [0.25–0.82, 95%CI]) and disease-specific survival (DSS)
(p = 0.006, HR = 0.4 [0.2–0.76, 95%CI]), OS (p = 0.01, HR = 0.45 [0.25–0.82, 95%CI]) for patients
under therapy.
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2.6.5. Multiple Genes

In this study, Verbiest et al. applied the molecular classification of RCC into ccrcc1-4
subtypes, which was established experimentally by Beuselinck et al. (above-mentioned
study in the results on tissues section of the current manuscript) [29], in a cohort of
28 mRCC patients treated with pazopanib [35]. A class effect of VEGFR-TKIs across
ccrcc1-4 subtypes was confirmed, with a PFS of 9 months (mo), 5 mo, and 3 mo (p: 0.011)
and an OS of 69 mo, 19 mo, and 5 mo (p: 0.003) for ccrcc2+3, ccrcc1, and ccrcc4 patients,
respectively. Survival differences were confirmed from the tumor volume reduction at
the time of best response, with −34%, −6%, and −2% for ccrcc2+3, ccrcc1, and ccrcc4,
respectively. The dichotomization of patients into ccrcc2+3 vs. ccrcc1+4 groups provided a
significant predictive factor in the bivariate Cox proportional hazards model, both for PFS
(p: 0.026) and OS (p: 0.04).

2.6.6. Cytotoxic T Lymphocyte–Associated protein 4 (CTLA-4)

The CTLA4 gene expresses an immune checkpoint receptor, which downregulates
immune responses and comprises a target for a specific ICI class (anti-CTLA4). In 2021,
Klümper et al. aimed to investigate the prognostic and predictive value of the CTLA4
methylation status in RCC patients [42]. A methylation analysis showed a significant
hypomethylation in tumor specimens. Survival analyses demonstrated that CTLA4 hy-
pomethylation can predict a shorter OS in patients without ICI therapy. Interestingly,
CTLA4 hypomethylation predicted a favorable PFS (HR = 1.94 [1.09–3.44, 95% CI], p = 0.024)
and OS (HR = 2.14 [1.01–4.57, 95% CI], p = 0.048) in patients who underwent ICI therapy.
The above effect remained statistically significant after adjustment for the International
Metastatic RCC Database Consortium (IMDC) risk score.

3. Discussion
3.1. Summary of Evidence

Systemic therapy is one of the main treatment options for cancer, but resistance and
toxicity can occur after the use of these drugs. Drug resistance, whether intrinsic or acquired,
is caused by factors such as poor drug accumulation, increased drug exportation, altered
drug targets, increased DNA repair, and repression of apoptosis. These changes in cell
function may also have a genetic basis, but the high prevalence and reversibility of drug
resistance suggest that epigenetic changes may also play a role [44]. Promoter methylation
patterns can change reversibly with a frequency 2–5 fold higher than the frequency of gene
mutations, which are irreversible [10,45]. The prognostic value of promoter methylation in
RCC tissues, as reflected by the increasing number of prognosis-relevant gene epigenetic
alterations [46], suggests that it could be a useful predictive marker. These epigenetic
alterations can also be detected in normal adjacent tissues [47].

To investigate the role of promoter methylation in drug resistance, we conducted a
systematic search of the literature for original articles on the prediction of drug resistance
in RCC using epigenetic biomarkers. Our search yielded 31 articles that met the inclusion
criteria. Researchers used either cell lines or tissues as material for methylation or functional
studies, plus data from patient clinical courses. Several of the genes that demonstrated a
putative role as predictive biomarkers are either well-known tumor suppressors (RASSF1,
XAF1, ASC/TMS1, ASPP1, DAB2IP) or DNA damage response regulators (SLFN11). In
addition to the above genes, other biological pathways showed a putative role in the
prediction of response to systemic therapy. These pathways included the VEGF pathway
(FLT1 gene), the regulation of transmembrane molecule transportation (ABCG2, Cx32,
OCT2 genes), the regulation of an epithelial–mesenchymal balance (DCLK1, CST6, LAD1
genes), and the regulation of immunogenic function (TEs, TCAIM, CTLA4 genes). Several
studies reported the existence of discrete transcriptomic profiles (multigene classifiers) with
different metabolic characteristics among RCC cases, and methylation was one of the most
determining factors for transcriptomic differentiation. Interestingly, the VHL gene, which
comprises a tumor suppressor with a role in RCC carcinogenesis, did not demonstrate
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methylation alterations with predictive value. Regarding the methodology of the included
studies, the researchers applied laboratory assays, statistical methods, and a study design,
which were heterogeneous. Moreover, the selection of the systemic agents that were
evaluated in the included studies depended on the time period of the respective research
protocol; namely, several classical chemotherapeutics and initial forms of immunotherapy
were tested in the older reports, while TKIs and the newest immunotherapeutic regiments
were evaluated in the most recent studies. Notably, the vast majority of the analyzed
cell lines had a clear-cell origin, which suggests that the results apply mostly to the same
RCC histology (Supplementary Table S6). Among the analyzed cell lines, only ACHN
and SKRC39 (from metastatic lesions of primary papillary RCC), UOK112 and SNU482
(from primary papillary RCC), and two additional cell lines (SN12C, TK-10) represented
the non-clear-cell histologies [48]. Regarding the representability of the tissue samples of
the included studies for the various RCC histological subcategories, only a minority of the
analyzed tissue specimens were related to non-clear-cell RCC cases (Supplementary Table
S7). This finding may render the results applicable for the most frequent RCC subtype
(clear-cell histology) but is not representative of the non-clear-cell histologies. Moreover,
the studies that performed bioinformatical data analysis used the information from the
TCGA-KIRC cohort (relating to clear-cell RCC), except from a report by Li et al., which
performed an analysis of TCGA-KIRP (relating to papillary RCC) data [38].

Cell line studies aim for direct or indirect evidence of the relationship between gene
methylation and sensitivity. Direct evidence came from methylation data obtained from
methylation studies or methylation manipulations (DNMT inhibition) combined with
sensitivity data from cell lines exposed to chemotherapeutics and with a known methylation
status. On the contrary, indirect evidence came from chemosensitivity data combined
with gene manipulations (knocking down, enforced expression), given that methylation
also affects gene function by repressing its expression. Several studies provided both
direct and indirect evidence [13–15,17,18,25,27,30]. Among them, studies on RASSF1
and XAF1 genes [14,15] were characterized by a moderate risk of bias, with two and
three positive items, respectively, while studies on FLT1, KDR, ASC/TMS1, and OCT2
genes combined outcomes in the experimental part with results from an observational
part on tissues [25,27,30]. Five studies provided only direct evidence [24,28,32,38,41] and
had no major bias issues, and three of them presented combined results from cell lines
and tissues [32,38,41]. Seven studies included only indirect evidence, and all of them
corroborated results on cell lines by adding outcomes from tissues [16,21,31,34,36,40,43].
Only one study on the XAF1 gene [16] was assessed as having significant bias issues. Lastly,
one study on the NEFH gene [19] provided methylation data but no chemosensitivity data
of the cell lines. Methylation studies of this article resulted in unbiased outcomes, yet they
did not point to the possible relationship between gene methylation and chemosensitivity.

Regarding reports from tissues, 10 studies had a cross-sectional design. These studies
provided outcomes on tissues and experimental data on cell lines, combining methyla-
tion prevalence or gene expression data in tissues with methylation- or gene-function-
dependent sensitivity of cell lines. Six studies tested the methylation status in samples
in the form of fresh frozen tissues, formalin-fixed paraffin-embedded (FFPE), or tissue
microarray [16,27,30,32,38,41], while three articles reported results of expression studies
on tissues and outcomes of methylation studies from TCGA data [21,31,36]. In one study
on the ASPP1 gene, the researchers found reduced mRNA and protein expression in
fresh frozen cancerous tissues and conducted in vitro experiments, which showed that
ASPP1 hypermethylation suppressed ASPP1 expression, and additionally, chemosensi-
tivity to 5-FU was analogous to ASPP1 expression [34]. The above findings suggest a
putative inverse association of methylation to chemosensitivity. Twelve studies on tis-
sues [19,20,22,23,25,29,31,33,35,39,40,42] had a cohort design and demonstrated the differ-
ence in the clinical course of patient groups with different methylation or gene function
characteristics. Five cohort studies on NEFH, FLT1, KDR, DAB2IP, QPCT, and TE genes
included outcomes from cell line experiments as corroborating the association of drug
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sensitivity with gene methylation [19,25,31,39,40]. Almost all cohort studies tested the
methylation status by comparing tissue groups in the form of fresh frozen samples or
FFPE. Most cohort studies [19,20,22,23,29,39,40] tested were not adjusted for other factors
tissue groups, with subsequent low ratings in comparability. Minor bias issues in group
formation [19,25,35,39,40] and outcome assessment [23,25,33] were recorded in the bias
risk rating. Two studies, which had a case-control design, compared the VHL methyla-
tion status of patient groups with different outcomes (responders, non-responders) and
concluded that there was no association of response to systemic therapy with VHL methy-
lation [26,37]. Both studies tested were unadjusted for other factor groups, which resulted
in a low comparability rating.

This review is the first attempt to examine the body of evidence on predicting responses
to systemic agents in RCC through DNA methylation studies. The discovery of predictive
biomarkers based on promoter methylation in RCC is still in its infancy. Nevertheless,
this initial evaluation of biomarker candidates is the first step in planning and performing
large-scale studies. In the current review, these initial evaluations were based on cell lines
and tissue studies.

Cell line studies are useful for investigating the biological properties of biomarker
candidates and predicting the reactions to treatments. They can be considered the first
step in biomarker discovery because their results are necessary for further designing and
conducting multi-institutional validation studies. The cost-effectiveness and simplicity
of epigenetic manipulation and molecular characterization are additional advantages.
However, associating the gene methylation status with chemosensitivity requires several
steps and assumptions. In the included studies with in vitro experiments, researchers
mostly manipulated the cell line methylome through decitabine treatment and measured
the alteration of cell chemosensitivity, a process that does not exclude the effect of other
genes on the measured outcome (chemosensitivity). To further emphasize the role of the
gene of interest, most studies included additional functional tests, which demonstrated
the association of gene function (enhanced by gene vectors, silenced by siRNA/shRNA)
with cell chemosensitivity. Since methylation manipulation induces similar gene function
alterations, the researchers extrapolated that the methylation status could affect the gene of
interest-dependent chemosensitivity. The above logical sequence distinguishes the gene of
interest as the important determinant of the drug effect in cancer cells and compensates for
the lack of applied targeted methylation manipulation methods on a specific genetic locus
(epigenetic editing of DNA methylation) in the included studies. Another drawback of
in vitro experiments is that the epigenetic signature of cell lines may not reflect epigenetic
profiles found in RCC cases. According to a study [32], RCC cell lines displayed not only
genome-wide hypermethylation compared to primary tumors or metastases but also altered
DNA methylation of drug targets and other pharmacogenes. These data are in line with
corresponding data of other tumor entities (breast, prostate, colon, etc.) [49], which makes
usage of RCC cell lines for epigenetic studies on predicting therapy response questionable.

Tissue samples seem to provide more direct evidence for the discovery of predictive
epigenetic biomarkers. However, tissue sampling and clinical data registration are strenu-
ous operations that require the strict implementation of legal precautions and standardized
procedures in the sample acquisition, storage, and analysis. According to a study, sam-
pling procedures and hypoxia/ischemia induce epigenetic modifications, in particular
DNA demethylation, and their impact on RCC clinical epigenetic studies should be consid-
ered [50]. Another issue is the extent of tumor heterogeneity, which is expected to affect the
results of epigenetic studies and the performance of potential biomarkers since subclones
are likely responsible for progression and resistance to therapy [51]. From a methodological
point of view, the vast majority of studies cannot be considered as evaluating acquired
drug resistance along the course of systemic therapy but only inherent drug resistance
since tissue samples originate from therapy-naive patients, and there are no publications
reporting results from multiple tissue analyses at different time points along the patient
clinical course [52]. In the current review, only one study [26] examined the dynamic
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changes in the VHL methylation status during therapy with sunitinib and concluded that
these changes take place in the same way in both patient groups with favorable vs. poor
therapy responses, which suggests no predictive value.

By definition, predictive biomarkers can help in the decision between two or more
therapy options and/or can reveal the development of resistance along the course of the
disease. Initially, biomarker discovery takes place through functional intervention studies,
which include cell lines and animal models. This first step is necessary for investigating
mechanisms of resistance to systemic agents and their dependence on epigenetic modifi-
cations. This technical validation should be followed by clinical validation to evaluate a
potential predictive biomarker on the patient level. The best setting to achieve this clinical
validation and further implementation of biomarkers in the treatment strategy is a random-
ized clinical trial (RCT) of targeted therapy vs. standard treatment or more treatments [53].
This multi-arm design is mandatory for sufficient demonstration of the predictive value
of a potential biomarker because a biomarker that discriminates a patient group with a
favorable clinical course from a cohort uniformly treated with the targeted therapy may
be simply prognostic. Acquired resistance should be evaluated by longitudinal studies,
which include comparing newly diagnosed tumors with matched samples taken at re-
currence [54]. Up to now, there are only a few studies that examine acquired resistance
by investigating longitudinal epigenetic changes pre- and post-therapy in various cancer
entities. Considerations about obtaining multiple tumor samples along clinical courses or at
the time of relapse present a clear barrier to longitudinal studies, but non-invasive methods
of tumor sampling using circulating tumor cells or cell-free plasma DNA may help address
this problem.

3.2. Limitations

Certain limitations were found in the present systematic review. At the study selection
level, only articles in English were included. No defined criteria about the methodology,
sample type, and size were applied in the selection process. The included studies were
characterized by heterogeneity, and a number of them reported results relating to the
association between gene methylation and drug sensitivity only as a secondary outcome.
Another drawback is that the study design of several included publications does not exclude
the possibility that methylation of a certain gene is just prognostic and not predictive.

At the outcome level, a major drawback in tissue studies is that many of the comparing
groups are not adjusted for other factors affecting response to systemic therapy. Another
issue is that outcome definition and reporting across studies are inconsistent. Only a
number of studies report outcomes with measures of statistical significance. Conducting a
quantitative synthesis of results was deemed inappropriate because outcomes are related
to a variety of genes and are characterized by inconsistency.

4. Materials and Methods
4.1. Eligibility Criteria

This review is registered at the Open Science Framework (OSF) registry (registration
DOI: https://doi.org/10.17605/OSF.IO/8PSQ4, accessed on 9 December 2023). In the
selection process, articles with the following inclusion criteria were included: articles in
English, all study designs, and only research articles on RCC with a focus on the correlation
between methylation pattern of patient tissues and differences in clinical outcomes or RCC
cell lines and cell sensitivity after delivery or exposure to systemic agents as chemother-
apeutic drugs, immunotherapy, targeted substances. Studies reporting cell sensitivity
data or clinical outcomes, which were retrieved only from bioinformatical databases, were
excluded. No restrictions related to publication date, sample size, study design, or risk of
bias were imposed.

Biologic material from patients, mainly normal and cancerous tissues, and various
cell lines with known or unknown methylation patterns were used by the researchers to
uncover possible correlations between modified methylation motifs and various degrees
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of response after exposure to systemic agents. The primary outcome measures included
the correlation between hypermethylation of one or more genes and different therapy
responses or different sensitivity for patients or RCC cell lines, respectively.

Using the PICOS approach, eligible studies on cell lines had the following charac-
teristics: (i) population: RCC cell lines, (ii) intervention: treatment with a systemic agent
with the gene under study in a methylated state, (iii) comparison: treatment with a sys-
temic therapeutic agent with the gene under study in an unmethylated state, (iv) outcome:
cell viability, apoptosis, cell cycle arrest, (v) study design: in vitro study. The respective
characteristics for tissue studies were as follows: (i) population: patient RCC tissues, (ii)
intervention: systemic therapy on patients with the gene under study in methylated state,
(iii) comparison: systemic therapy on patients with the gene under study in unmethy-
lated state, (iv) outcome: differences in clinical course, survival analysis, (v) study design:
observational study

4.2. Literature Search Strategy

The majority of the studies were identified by searching four electronic databases
(PubMed, Scopus, ScienceDirect, Web of Science). The search was performed by the authors
of this article (A.K., M.P.) with an end-of-search date of 31 October 2023. No date range
was set as a filter during the search. A few studies resulted from scanning the reference list
of articles, especially reviews about biomarkers in RCC.

To maximize the discovery of articles related to epigenetic predictive biomarkers in
RCC, we used a combination of search terms and Boolean operators. This combination was
applied in the same manner in all 4 electronic databases and was synthesized as follows:
“renal AND cancer” AND “DNA AND methylation” AND (biomarkers OR resistance OR
sensitivity OR “epigenetic AND silencing” OR response).

4.3. Study Selection

Studies were selected and systematically reviewed following the PRISMA state-
ment [55]. Eligibility assessment was conducted separately in an unblinded standardized
manner by reviewers (A.K, M.P). The following terms were applied as exclusion criteria
during the screening process at the abstract or full-text level: histone modification, non-
coding RNA, prognostic biomarkers, diagnostic biomarkers, upper tract urothelial, cancer,
and transitional cell cancer. Significant variation in the article evaluation was resolved by
consensus. A full-text assessment was performed in the case of articles without a clear
indication of exclusion during title and abstract appraisal, which took place on the records
of the initial search.

4.4. Data Extraction Process

Reviewers created a data extraction sheet based on Microsoft Excel and initially
tested on 8 randomly selected reports from the sum of included studies. After testing
and refinement, A.K. performed data extraction, while M.P. checked the extracted data.
Different aspects of some of the extracted data were resolved by discussion or reassessment
by the third reviewer (G.D.).

Information was extracted from each included study on the (1) author and publication
year, (2) gene under study, (3) molecular function of the gene, (4) systemic agent under study,
(5) material under study, (6) study design, (7) testing on the control group, (8) results from
electronic databases (TCGA), (9) molecular studies on cell lines (gene expression, protein
expression), (10) functional studies on cell lines (DNMT inhibition, DNMT depletion, gene
knockdown, gene vector-mediated enforced expression), (11) methylation status of the gene
under study, (12) growth inhibition effect on cell cultures, (13) results of the application
of RCC cells and systemic agents on xenografts, (14) results of cell sensitivity to systemic
agents with respective evaluation methods, and (15) results of methylation-dependent
patient clinical outcome with respective evaluation methods.
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4.5. Risk of Bias in Individual Studies

The best method to evaluate a predictive biomarker for a targeted therapy is a prospec-
tive randomized clinical trial of the targeted therapy vs. a standard therapy, in which the
biomarker status is evaluated for its predicting accuracy on both arms [56]. No such studies
were discovered after a systematic search in electronic databases. Both reviewers consid-
ered the articles that included studies on patient tissues or cell lines, with a corroborating
set of molecular tests that support the relationship between gene methylation status and
response after exposure to a systemic agent.

Even though the evidence from these studies is not considered as strong as the respective
results from randomized controlled trials, bias assessment is still necessary as a measure of
outcome validity. Studies on tissues were appraised for bias by applying a scoring system
based on the Newcastle–Ottawa Scale, which includes the same areas of interest (selection,
comparability, and exposure or outcome) but slightly different criteria for each type of obser-
vational study (cohort, case-control, cross-sectional) [57]. Studies on cell lines were assessed by
extending the application of the Office of Health Assessment and Translation (OHAT Risk of
Bias Rating) Tool to mechanistic studies [58]. This bias assessment tool includes a four-grade
rating for each of the nine criteria, which pertain to possible bias factors such as allocation to
different exposures, experimental conditions, exposure characterization, outcome assessment,
outcome report, and other threats to internal validity.

The risk of bias was appraised for each study independently by the two reviewers
(A.K., M.P). In the case of a disagreement, the third reviewer (G.D) acted as a mediator.
Bias assessment was performed only as a validity measure, and no studies were excluded
because of a high risk of bias. Studies on both cell lines and tissues were assessed separately
for the experimental part on cell lines and the observational part on tissues.

4.6. Outcome Measurements

Differences in cell sensitivity or therapy response in the context of different methylation
patterns were the primary measure of the correlation between different biological behaviors
to systemic agents and gene hypermethylation, suggesting the predictive value of the
latest. The main summary effect measures in cell line studies included IC50 for cell growth
inhibition, preG1 population for flow cytometry, and ratio of apoptotic cells for apoptosis
assays. Respective measures in tissue studies included survival analysis and HR for patient
cohorts with differences in methylation pattern, as well as methylation status in tissues of
patients with different outcomes. Molecular tests were also considered to corroborate the
relationship between gene methylation patterns and biological behavior.

4.7. Data Synthesis

Due to differences in genes and methodology among the included studies, statistical
combination and meta-analysis of results were deemed inappropriate. Instead, outcomes
were qualitatively appraised as demonstrating or not demonstrating a relationship between
gene methylation and sensitivity/response to systemic agents.

5. Conclusions

The prediction of response to systemic therapy in RCC is an ongoing research problem
that will continue to receive attention for many years. Despite the scarcity of studies on the
role of methylation in predicting therapy response, there is evidence suggesting that such
a relationship exists and that the development of a predictive clinical tool in the future is
feasible. More mechanistic studies are required to shed light on the methylation of various
genes in RCC and their correlation to drug effectiveness. Data from these experiments
need to be validated in replication cohorts and prospectively assessed with longitudinal
observations over time. Another intriguing possibility is predicting a therapy response
by studying methylation in the blood, which suggests a non-interventional and more
convenient method for personalizing treatment for the patient.
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