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Abstract: Background/Objectives: One-carbon metabolism is a critical pathway for epigenetic
mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes
in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more
studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular,
methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and
replication of mtDNA and, when altered, can contribute to the development of human illnesses.
However, no study until now has demonstrated an association between circulating biomarkers of
one-carbon metabolism and D-loop methylation levels. Methods: In the study presented herein,
we searched for associations between circulating one-carbon metabolism biomarkers, including
folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA
obtained from the peripheral blood of 94 elderly voluntary subjects. Results: We observed a positive
correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant
correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82).
Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared
to those with normal vitamin B12 levels (p = 0.04). Conclusions: This is the first study suggesting
an association between vitamin B12 circulating levels and mtDNA methylation in human subjects.
Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in
human diseases, a deeper understanding of their interaction could inspire novel interventions with
beneficial effects for human health.

Keywords: DNA methylation; mitochondrial D-loop; one-carbon metabolism; vitamin B12; mito-
chondrial epigenetics

1. Introduction

One-carbon metabolism is a critical pathway that utilizes folates for the synthesis of
nucleotides, amino acids, antioxidant compounds, and methyl donor molecules [1]. Central
to this pathway are the folate and methionine cycles (Figure 1). In the folate cycle, folates
are reduced to 5-methyltetrahydrofolate (5-mTHF), which serves as the methyl donor
for the remethylation of homocysteine (hcy) to methionine in the methionine cycle. The
reaction is catalyzed by the enzyme methionine synthase (MTR), which transfers a methyl
group from 5-mTHF to hcy, producing methionine and tetrahydrofolate (THF). The activity
of MTR is supported by the cofactors vitamin B12 and the methionine synthase reductase
(MTRR) enzyme [2]. Methionine is then converted to S-adenosyl methionine (SAM), the
primary intracellular methyl donor, by methionine adenosyltransferase (MAT). SAM is
predominantly used in methylation reactions, where it donates its methyl group to proteins
and nucleic acids, subsequently being converted to S-adenosyl homocysteine (SAH) [3].
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The SAH hydrolase (AHCY) then converts SAH into adenosine and hcy. Hcy can either re-
enter the methionine cycle or be converted to cystathionine in the transsulfuration pathway,
ultimately leading to the production of the antioxidant compound glutathione [4]. In the
folate cycle, THF generated by MTR can be converted into 5,10-methylenetetrahydrofolate,
which is used for nucleotide synthesis or to reconstitute 5-mTHF for hcy remethylation [5].
Circulating biomarkers of one-carbon metabolism, such as folate, hcy, and vitamin B12,
are frequently assessed to evaluate the efficiency of this pathway, with altered levels being
linked to various human diseases [6]. Plasma hcy levels are known to increase with age,
leading to a hyperhomocysteinemia state, which is associated with geriatric conditions,
including cardiovascular, neurodegenerative, and chronic kidney diseases [7]. Additionally,
elevated hcy and reduced folate and vitamin B12 levels have been observed in the peripheral
blood of patients with Parkinson’s disease (PD) [8], mild cognitive impairment (MCI), and
Alzheimer’s disease (AD) [9] and individuals who have experienced an ischemic stroke [10].
Conversely, high circulating levels of folate and vitamin B12, along with low levels of hcy,
have been found to be inversely correlated with the incidence of metabolic syndrome [11].
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midilate synthase. Metabolites: 5-mTHF, 5-methyltetrahydrofolate; DHF, dihydrofolate; THF, tetrahy-
drofolate; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; SAH, S-
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Figure 1. Schematic overview of one-carbon metabolism, adapted from [12]. Main metabolites (in
rectangles), enzymes (in circles), and cofactors (in hexagons) are reported. In red are the one-carbon
metabolism biomarkers analyzed in the current study. Abbreviations: 5-mTHF, 5-methyltetrahydrofolate;
5-10-methylene THF, 5,10-Methylenetetrahydrofolate; AHCY, S-Adenosylhomocysteine hydrolase; ATP,
adenosine triphosphate; B6, vitamin B6; CBS, Cystathionine β-synthase; DNMTs, DNA methyltrans-
ferases; DHF, dihydrofolate; dUMP, deoxyuridine monophosphate; dTMP, deoxythymidine monophos-
phate; GSH, glutathione; MAT, methionine adenosyltransferase; MTHFR, methylenetetrahydrofolate
reductase; MTR, methionine synthase; MTRR, methionine synthase reductase; TYMS, thymidilate syn-
thase. Metabolites: 5-mTHF, 5-methyltetrahydrofolate; DHF, dihydrofolate; THF, tetrahydrofolate; dTMP,
deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; SAH, S-adenosylhomocysteine;
SAM, S-adenosylmethionine; Vit. B12, vitamin B12.

One of the most studied mechanisms regulated by one-carbon metabolism is DNA
methylation. DNA methylation is an epigenetic modification involved in several cellular
pathways, including genomic imprinting, X-chromosome inactivation, and regulation of
gene expression. DNA methylation is catalyzed by DNA methyltransferases (DNMTs),
specifically DNMT1, which is responsible for the maintenance of DNA methylation, and
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DNMT3A and DNMT3B, which are involved in de novo DNA methylation [13]. These
enzymes use SAM as the methyl donor [14]. DNMTs typically methylate cytosine residues
followed by guanine residues (CpG sites), but they can also methylate non-CpG sites [14].
Maintaining a proper balance in one-carbon metabolism is essential for physiological path-
ways regulated by DNA methylation. Indeed, the SAM:SAH ratio, which depends largely
on the levels of one-carbon metabolites, reflects cellular methylation capacity, and its alter-
ation could impair DNA methylation reactions [14]. Waterland and Jirtle were among the
first to demonstrate that the supplementation of the diet with methyl donor groups, such
as folic acid and vitamin B12, could alter mice phenotype through epigenetic mechanisms.
Specifically, they observed a shift in color from yellow to brown, which was attributed to
increased DNA methylation at critical CpG sites [15]. This groundbreaking study showed
that mice with the same genotype can express different phenotypes through modifications
in CpG methylation resulting from a diet rich in methyl donors. Further research in cell
cultures and animal models demonstrated that deprivation of folate and vitamin B12 led to
the upregulation of genes associated with AD, including PSEN1 and BACE1, through the
demethylation of their promoters [16–19]. This epigenetic alteration increased amyloid-beta
production and contributed to disease neuropathology. Notably, these changes in DNA
methylation and associated neuropathology were reversed when animals were fed with
SAM supplements [16,18,19]. Similar associations were also reported in a human study,
which identified a relationship among low folate, low vitamin B12, high hcy circulating
levels, and low PSEN1, BACE1, DNMT1, DNMT3A, and DNMT3B gene methylation levels
in blood DNA samples from individuals with AD [20]. Additionally, data from human
intervention studies with folic acid or vitamin B12 showed that global DNA methylation
levels increased following supplementation with both folic acid and vitamin B12 [21]. These
findings from in vitro, in vivo, and human studies highlight a strong connection between
nuclear DNA methylation and one-carbon metabolites. This relationship is particularly
relevant to human conditions characterized by metabolic alterations and age-related dis-
eases, where changes in metabolism significantly impact the epigenome, subsequently
inducing changes in genomic functionality as an adaptive mechanism to restore metabolic
homeostasis [22].

In addition to nuclear DNA, mitochondrial DNA (mtDNA) may also be regulated by
epigenetic mechanisms, particularly through DNA methylation. Although the detection of
methylated cytosine residues in mtDNA was reported over forty years ago, interest in mito-
chondrial epigenetics was renewed in around 2010 when studies began reporting mtDNA
methylation in various tissues of animal and human origin [23,24]. These studies suggested
a functional role for mtDNA methylation in the modulation of mtDNA replication and ex-
pression of mtDNA-encoded genes. Notably, the displacement loop (D-loop) sequence, the
non-coding region of mtDNA, appears particularly sensitive to DNA methylation modifica-
tions. It can be bound by DNMTs and regulates the activity of mitochondrial transcription
factor A (TFAM), a regulator of mtDNA transcription and replication [25,26]. Furthermore,
DNMT1, DNMT3A, and DNMT3B have been identified inside mitochondria, indicating
that the same enzymes involved in nuclear DNA methylation also participate in mtDNA
methylation [24,27–29]. These DNMTs establish the mtDNA methylation pattern, which in
turn regulates mitochondrial function and dynamics by modulating mtDNA transcription,
already during embryogenesis [30–32]. Beyond regulating mtDNA expression and repli-
cation, de novo mtDNA methylation during early development protects mtDNA against
oxidative damage, thereby contributing to the maintenance of mitochondrial homeostasis
during the peri-implantation stage, an essential process for normal embryogenesis [33].
Interestingly, evidence suggests that prenatal exposure to various environmental factors
can induce changes in mtDNA methylation and mitochondrial DNA copy number in
newborns’ tissues, potentially impacting their health [30,34,35]. Additionally, associations
have been noted between mtDNA methylation changes induced by particulate matter and
welding fumes in exposed workers and an increased risk of cardiovascular disease [36–38].
Beyond embryonic development, mtDNA methylation is implicated in the processes of
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senescence and aging, likely reflecting the accumulation of mitochondrial damage. Indeed,
mitochondrial activity declines with aging, and mtDNA methylation has been suggested to
be sensitive to such decline [39]. By analyzing brain samples of 4- and 24-month-old mice,
Dzitoyeva and coworkers observed that during aging, mtDNA 5-hydroxymethylcytosine
levels decreased in the frontal cortex along with increased expression of mtDNA-encoded
genes [39]. The authors suggested that mtDNA hydroxymethylation changes could be
the consequence of the aging-induced impaired activity of epigenetic enzymes, including
DNMT1. In line with this, it has been reported that mtDNA methylation could drive
senescence, which contributes to the aging process. For example, methylation levels of
the D-loop region and mitochondrial gene MT-CO1 were found to be decreased in senes-
cent cells compared to proliferative cells [40,41]. Moreover, the senescence process was
associated with increased MT-CO2 gene methylation levels, along with decreased protein
expression [42]. Alterations in the methylation levels of D-loop, MT-CO1, and MT-CO2
could greatly impact mitochondrial activity, thus contributing to the mitochondrial im-
pairment that characterizes aging [25,26]. Thus, these studies strongly support the role of
mtDNA methylation in age-related diseases [43]. Altered mtDNA methylation patterns
have been observed in cellular models of various cancers, including colorectal cancer,
glioblastoma, and osteosarcoma [44–46]. Of note, several studies have reported changes
in mtDNA methylation levels, particularly in the D-loop region, in peripheral blood and
central nervous system samples from individuals with neurodegenerative conditions such
as MCI, AD, PD, and amyotrophic lateral sclerosis (ALS) [29,47–49]. Interestingly, D-loop
methylation levels have been found to correlate with age and be sensitive to the progression
of the neurodegenerative process [47,49]. Given the potential role of mtDNA methylation in
human health, particularly in age-related disorders, a deeper understanding of the cellular
mechanisms underlying its regulation is warranted. Since one-carbon metabolism is a
well-known modulator of nuclear DNA methylation, it is plausible that it also influences
mtDNA methylation. Some in vivo and in vitro studies suggest that betaine, a methyl
donor of one-carbon metabolism, and hcy may modulate mtDNA methylation [50–53].
However, to the best of our knowledge, no studies until now have searched for associations
between the circulating levels of one-carbon metabolites and mtDNA methylation levels in
human subjects.

The current study aims to investigate whether circulating biomarkers of one-carbon
metabolism, including folate, hcy, and vitamin B12, are linked to D-loop methylation levels
in a cohort of neurologically healthy elderly individuals.

2. Results
2.1. Description of Sample Population

In this study, we analyzed blood samples from 94 elderly voluntary participants, for
whom data on circulating levels of folate, hcy, and vitamin B12 levels were available. Serum
folate levels ranged from 2.5 to 29.5 ng/mL, plasma hcy levels ranged from 4.1 to 34.2 µmol/L,
and serum vitamin B12 levels ranged from 398 to 1200 pg/mL. D-loop methylation anal-
yses were assessed in all subjects using the methylation-sensitive high-resolution melting
(MS-HRM) technique, with methylation levels ranging from 0% to 11.1%.

2.2. Influence of Sex and Age at Sampling on mtDNA Methylation and Circulating Biomarkers of
One-Carbon Metabolism

We first checked whether age and sex were associated with D-loop methylation status,
folate, hcy, and vitamin B12 circulating levels.

As shown in Figure 2, males and females exhibited similar D-loop methylation lev-
els, with no significant difference in the mean D-loop methylation levels between the
two groups.
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Moreover, the age at sampling of the subjects showed a statistically significant (r = −0.27;
p = 0.008) inverse correlation with the D-loop methylation pattern (Figure 3).
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Regarding one-carbon metabolism biomarkers, folate (Figure 4A) and vitamin B12
(Figure 4C) circulating levels did not significantly differ between males and females
(p = 0.10 and p = 0.09, respectively). On the other hand, hcy levels (Figure 4B) were
significantly lower in females compared to males (p = 0.004).

As shown in Figure 5, there was no correlation between age at sampling and folate
levels (r = −0.09, p = 0.34; Figure 5A) or vitamin B12 (r = −0.11; p = 0.27; Figure 5C). On the
other hand, a positive correlation was observed between age at sampling and hcy levels
(r = 0.21; p = 0.04; Figure 5B).
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2.3. Associations between Circulating Biomarkers of One-Carbon Metabolism and
D-Loop Methylation

We then searched for correlations between peripheral blood D-loop methylation levels
and one-carbon cycle metabolites (Figure 6). A significant positive correlation was found
between D-loop methylation and serum vitamin B12 levels (r = 0.21; p = 0.03; Figure 6C).
Otherwise, no correlation was observed between D-loop methylation and serum folate
levels (r = 0.02; p = 0.80; Figure 6A), nor between D-loop methylation and plasma hcy levels
(r = 0.02; p = 0.82; Figure 6B).
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To further explore the correlation between D-loop methylation levels and circulating
one-carbon metabolites, we subdivided the individuals based on the reference values
provided by the center that conducted the biochemical analyses. The reference ranges for
folate, hcy, and vitamin B12 were 4.6–18.7 ng/mL, 4.3–11.1 µmol/L, and 191–663 pg/mL,
respectively. For folate, 25 individuals had levels below the reference range and 2 had
levels above it. For hcy, 1 individual was below the reference range and 63 had levels above
it. For vitamin B12, 10 individuals had levels below the reference range and 15 had levels
above it.

D-loop methylation levels for individuals grouped according to these reference values
are presented in Figure 7. Due to the limited number of individuals with serum folate levels
above the range (n = 2) and those with hcy levels below the range (n = 1), comparisons were
made between low and normal folate levels and between normal and high hcy levels. In
contrast, there was a sufficient number of individuals with low, normal, and high vitamin
B12 to allow comparisons among all three groups.
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No significant differences in D-loop methylation levels were observed between groups
for folate (p = 0.79; Figure 7A) and homocysteine (p = 0.16; Figure 7B). On the other
hand, for vitamin B12, individuals with levels above the reference range showed higher
D-loop methylation levels compared to those with levels within and below the refer-
ence range (Figure 7C). The difference was statistically significant, after Bonferroni cor-
rection, when comparing individuals with vitamin B12 above the reference range to
those with levels within the reference range (p = 0.04). Conversely, no significant dif-
ference was observed between individuals with low and normal vitamin B12 values
(p = 0.97).
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To further investigate the relationship between one-carbon metabolism biomarkers
and D-loop region methylation, we compared samples with 0% methylation (n = 43) to
those with D-loop methylation levels above 0% (n = 51). Although circulating vitamin
B12 levels were lower in individuals with an unmethylated D-loop region compared to
those with a methylated D-loop (Figure 8C), the difference was not statistically significant
(p = 0.09). Similarly, circulating levels of folate (Figure 8A) and hcy (Figure 8B) did not
differ significantly between individuals with unmethylated and methylated D-loop regions
(p = 0.52 and p = 0.33, respectively).
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samples with an unmethylated D-loop and those with a methylated D-loop. p-value obtained with
ANCOVA including age and sex as covariates.

3. Discussion

In the current study, we investigated the associations between circulating biomarkers
of one-carbon metabolism, specifically folate, hcy, and vitamin B12, and the methylation
pattern of the mitochondrial D-loop sequence in a group of elderly voluntary subjects.
Our findings revealed a positive correlation between vitamin B12 and D-loop methylation,
while no significant association was found between D-loop methylation and folate or hcy
levels. Additionally, individuals with high vitamin B12 levels exhibited higher D-loop
methylation compared to those with serum B12 levels within the normal range. Moreover,
when comparing the distribution of folate, hcy, and vitamin B12 between individuals with
unmethylated and methylated D-loop regions, we found that circulating vitamin B12 levels
were higher in those with a methylated D-loop region, although the difference was not
statistically significant. Age at sampling showed a positive correlation with both D-loop
methylation and hcy levels. Moreover, males showed increased hcy levels compared
to females.

Vitamin B12 plays a crucial role in cellular methylation reactions due to its involve-
ment in hcy metabolism. Specifically, it serves as a cofactor for the methionine synthase
enzyme, which catalyzes the transfer of a methyl group from 5-mTHF to hcy, forming
methionine. Methionine is subsequently converted into SAM, the key molecule required
for DNA methylation (Figure 1). Therefore, vitamin B12 is one of the essential molecules
for DNA methylation processes. Researchers have explored whether DNA methylation
is sensitive to vitamin B12 levels. Consistent with this, studies have associated nuclear
DNA methylation with vitamin B12 serum levels, although with mixed results. For ex-
ample, a negative correlation between global DNA methylation and vitamin B12 levels
was found in an elderly population of healthy subjects and AD patients [54]. Similarly,
in patients with colorectal cancer, serum vitamin B12 was inversely correlated with the
overall DNA content of methylated 5-mC in both tumor tissue and peripheral blood [55].
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However, a study involving ischemic stroke and healthy subjects showed a positive corre-
lation between vitamin B12 and MTHFR gene methylation [56]. In contrast, no significant
correlation was found between vitamin B12 serum levels and MTHFR gene methylation
in a cohort of AD patients and healthy controls, while inverse and positive correlations
were observed between MTHFR gene methylation and circulating hcy and folate levels,
respectively [57]. Using artificial neural networks, we observed that AD patients are char-
acterized by associations among low folate, low vitamin B12, and high hcy levels and
decreased methylation of genes involved in AD, including PSEN1 and BACE1, as well as
genes encoding DNMTs, including DNMT1, DNMT3A, and DNMT3B [20]. Furthermore, a
positive correlation between vitamin B12 and DNA methylation was observed at two CpG
sites of the IGFBP3 gene in cord blood [58] and also the CYB27B1 gene in the peripheral
blood of healthy elderly subjects [59]. However, some studies have found no significant
correlations between circulating vitamin B12 levels and DNA methylation status. For
instance, no association was observed between the overall content of methylated CpG
sites in peripheral blood and circulating vitamin B12 levels in healthy volunteers [60–62]
and in patients with neurodegenerative diseases [63]. Moreover, no association between
vitamin B12 levels and TERT gene methylation was observed in subjects with essential
hypertension [64]. Overall, there are indications that circulating vitamin B12 levels are
associated with the methylation status of some nuclear loci, either positively or negatively.

The current study is the first to demonstrate a correlation between mtDNA methy-
lation and circulating vitamin B12 levels. We observed a positive correlation between
D-loop methylation and circulating vitamin B12 levels, with individuals exhibiting high
vitamin B12 serum levels showing increased D-loop methylation compared to those with
normal levels. Moreover, individuals with an unmethylated D-loop showed lower vitamin
B12 levels compared to individuals with a methylated D-loop, although the difference
was not statistically significant. The mitochondrial D-loop region is the regulatory se-
quence of mtDNA that modulates gene expression and replication [65]. Notably, decreased
methylation of the D-loop has been associated with increased mtDNA copy number in
cell cultures [66], human tumor tissues [44], and human peripheral blood [67]. Moreover,
variations in D-loop methylation levels have been linked to the expression of mtDNA-
encoded genes in cell cultures and human tissues [68,69], suggesting that methylation of
this region significantly modulates mtDNA function. In line with this, an in vitro study
showed that D-loop methylation regulated the activity of TFAM [25]. Additionally, several
studies have reported the presence of DNMT1, DNMT3A, and DNMT3B inside mitochon-
dria [27–29,70,71]. Furthermore, like nuclear DNA methylation, mtDNA methylation relies
on SAM availability, which is imported into mitochondria by the mitochondrial SAM
carrier encoded by the SLC25A26 gene [72]. Thus, similar to nuclear DNA methylation,
mtDNA methylation is closely linked to the proper function of one-carbon metabolism.
Recently, it has also been proposed that mtDNA methylation may serve as a protective
mechanism against mtDNA oxidation [33]. Impaired mtDNA methylation has been ob-
served in various conditions characterized by increased oxidative stress and/or impaired
one-carbon metabolism, such as blood DNA samples from ALS individuals with SOD1
gene mutations [67], the postmortem brains of AD and PD patients [47], animal models
of AD and ALS [29,47,73], and blood DNA samples from patients with MCI and AD [49],
aging [39,42], cancer [44,45], and metabolic disorders [74,75], among others.

Although this is the first study to reveal a potential association between circulating
levels of one-carbon metabolism biomarkers and mtDNA methylation, previous research
has suggested a link between one-carbon metabolism and mitochondrial epigenetics. For
instance, the muscle of piglets born from mothers fed a diet supplemented with betaine
throughout gestation showed reduced D-loop methylation levels and increased expression
of mtDNA-encoded genes, including COX1, COX2, and ND5 [50]. Similarly, D-loop hyper-
methylation induced by the corticosterone treatment of fertilized eggs was counteracted by
the injection of eggs with betaine [51]. Another study found that gilt polycystic ovaries were
associated with a high homocysteine concentration in follicular fluid and the up-regulation
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of betaine homocysteine methyltransferase and glycine N-methyltransferase enzymes,
both involved in one-carbon metabolism. Additionally, DNMT1 was upregulated in mito-
chondria, accompanied by increased methylation of MT-RNR1, MT-RNR2, and MT-ND4
genes and the D-loop region [52]. They also observed that oocyte mitochondrial dysfunc-
tion induced by treatment with homocysteine and characterized by a reduced mtDNA
copy number and gene expression and increased MT-RNR2 methylation was reversed by
co-treatment with the demethylating agent 5-Azacytidine, through the reduction in MT-
RNR2 gene methylation [53]. We observed that variants in genes involved in one-carbon
metabolism and DNA methylation reactions were associated with D-loop methylation
levels in a sample population including control subjects and AD patients [76]. Specifically,
heterozygous MTRR 66AG carriers had higher D-loop methylation levels compared to
wild-type MTRR 66AA individuals, and carriers of the rare AA genotype of DNMT3A-448A
> G polymorphism had higher D-loop methylation levels than GG and GA genotypes
carriers. Of note, the MTRR gene encodes for the 5-methyltetrahydrofolate-homocysteine
methyltransferase reductase, which forms a complex with MTR for hcy remethylation to
methionine in a reaction requiring vitamin B12 as a cofactor, further supporting the link
between vitamin B12 and mtDNA methylation. In the current study, we did not observe any
association between D-loop methylation and folate or hcy, suggesting that these one-carbon
biomarkers do not influence the methylation of the mtDNA region analyzed. Further
studies examining additional mtDNA regions are needed to clarify whether circulating
folate and hcy can affect mtDNA methylation.

Additionally, the current study found an inverse relationship between D-loop methy-
lation and age at sampling. This finding agrees with our previous reports where age was
negatively correlated with the D-loop methylation of control subjects, individuals with
PD, and in a cohort including control subjects and patients with dementia at different
stages [48,49,77]. Similarly, an inverse correlation between the peripheral blood methyla-
tion of two cytosine residues in the MT-RNR1 gene and age was observed in a cohort of
individuals aged 18 to 91 years [78]. However, another study found that methylation of
different CpGs in the MT-RNR1 gene is positively correlated with age [79], suggesting that
methylation of distinct mtDNA CpG sites may have different associations with age. For
example, a study conducted on post-mortem brain tissue proposed that mtDNA methy-
lation could be used to estimate chronological age [80]. The authors evaluated mtDNA
methylation at both CpG and non-CpG sites in the nucleus accumbens and prefrontal
cortex of drug users and non-users, creating an epigenetic clock based on mtDNA methy-
lation data, and found accelerated mtDNA methylation age in drug users compared to
non-users [80]. These findings indicate that mtDNA methylation may contribute to the
aging process in humans.

Overall, the results of the current study support previous evidence of a potential link
between one-carbon metabolism and mtDNA methylation [50–53,76]. Given the significant
implications of mitochondrial DNA methylation for human health and disease [43], a
deeper understanding of the factors involved in its establishment, maintenance, and modu-
lation could offer valuable insights with potential clinical applications. If future studies
confirm that D-loop methylation is modulated by vitamin B12, interventions targeting cir-
culating vitamin B12 levels could be considered for individuals with diseases characterized
by altered mtDNA methylation. Evidence suggests that changes in dietary intake of folate
and vitamin B12 could ameliorate the aging process by modifying age-associated DNA
methylation changes and subsequently altering age-associated physiologic and pathologic
processes [14]. It is plausible that similar effects could occur with mitochondrial DNA
methylation. Of note, there is a significant interplay between one-carbon metabolism,
mitochondria, and the epigenetic regulation of both nuclear and mitochondrial DNA.
One-carbon metabolism occurs across the cytoplasm, nucleus, and mitochondria, with
enzymes and substrates synthesized in the three cellular compartments. Mitochondria
provide essential metabolites for one-carbon metabolism, such as ATP, α-ketoglutarate,
β-nicotinamide adenine dinucleotide, and acetyl coenzyme A, which are crucial for DNA
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and histone tails’ epigenetic modification [81]. Additionally, mtDNA genetic variants and
copy number influence nuclear DNA methylation patterns at specific loci [82,83]. Thus,
mitochondria play a pivotal role in modulating nuclear epigenetic mechanisms. Conversely,
nuclear epigenetic modifications regulate the expression of genes encoding proteins that
regulate mtDNA gene expression and mtDNA replication [84,85]. This emerging evidence
highlights the complex epigenetic crosstalk between the nucleus and mitochondria, which
is regulated by one-carbon metabolism. This metabolism, in turn, is influenced by enzymes
and cofactors critical for the proper gene expression of both nuclear and mitochondrial
DNA. Thus, understanding the mtDNA methylation effect on one-carbon metabolism could
aid in the design of new treatment approaches for diseases characterized by impairment
in one-carbon metabolism. For example, since AD is characterized by altered levels of
folate, hcy, and vitamin B12 as a consequence of mitochondrial dysfunction that reduces
the availability of important one-carbon metabolism co-factors, dietary interventions aimed
at enhancing mitochondrial activity have been proposed [86]. The findings of the current
study, which detected the link between one-carbon metabolism and mtDNA methylation
in the peripheral blood of elderly subjects, provide a foundation for future research aimed
at elucidating the pathological mechanisms underlying diseases associated with impaired
one-carbon metabolism.

We acknowledge the limitations of the current study, which was conducted on a
relatively small cohort of neurologically healthy individuals. While our findings suggest a
potential link between mtDNA methylation and one-carbon metabolism, these results need
to be validated in larger cohorts. This should be considered as a preliminary study that
could inspire novel investigations aimed at examining the associations between one-carbon
metabolism and mitochondrial epigenetics. Furthermore, as the present data pertain
to elderly subjects, additional studies involving younger individuals are necessary to
determine if the observed associations change with age. It is also important to note that the
participants in this investigation were initially enrolled as a control group in a study aimed
at identifying epigenetic biomarkers for Alzheimer’s disease [57]. While these individuals
were neurologically healthy and deemed healthy overall, we cannot entirely rule out the
presence of other age-related chronic conditions that could impact one-carbon metabolism.
Moreover, we employed a technique, the MS-HRM, that does not allow us to obtain
information on the methylation levels of specific CpG sites, providing only the average
methylation levels of the 10 CpG sites included in the D-loop amplicon analyzed. We
observed a relatively high frequency of individuals with an unmethylated D-loop, although
we cannot exclude that some of the 10 CpG sites could show some methylation degree
above 0%. However, we have previously observed that D-loop methylation levels measured
using the MS-HRM are highly comparable to those obtained using pyrosequencing, the
gold standard for gene-specific methylation analysis that provides information on the
methylation levels of specific CpG sites. Future studies focusing on methylation levels at
individual CpG sites may provide deeper insights into the relationship between circulating
vitamin B12 and D-loop methylation levels. Nonetheless, the significant contribution of
this study is that it is the first to explore the relationship between circulating one-carbon
metabolism biomarkers and mtDNA methylation in humans. Further investigations in
populations with impaired one-carbon metabolism, such as patients with AD, PD, or
other age-related diseases, are needed to clarify whether and how impairments in one-
carbon metabolism might lead to alterations in mtDNA methylation. Additionally, further
investigations should also aim to investigate whether mtDNA methylation and gene
expression levels can be modulated by molecules, such as SAM, that could potentially
counteract the impairment of one-carbon metabolism.

4. Materials and Methods
4.1. Main Information on Enrolled Subjects in the Study

The current investigation involved 94 healthy volunteers from our previous study
in which D-loop methylation was assessed in peripheral blood DNA samples and for
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whom data on circulating biomarkers of one-carbon metabolism were available [70]. The
cohort included 49 females and 45 males, all of whom were Caucasians of Italian origin
residing in Tuscany, with a mean age at sampling of 78.6 ± 7.5 (mean ± standard deviation).
Participants were recruited at the Department of Neuroscience, University of Pisa (Pisa,
Italy), as part of a study conducted at the Pisa University Hospital aimed at identifying
epigenetic biomarkers for Alzheimer’s disease [57]. All individuals underwent clinical and
neurological examinations at recruitment. Subjects prescribed medication or supplemented
with vitamins that could influence DNA methylation were excluded from the study. All in-
cluded individuals were found to be healthy and free from neurological complications [87].
No other anthropometric data, including blood pressure, BMI, or the presence or absence
of other chronic conditions, were available. Written informed consent was obtained from
all participants before their enrolment. The study was approved by the ethics committee of
the Pisa University Hospital (protocol number: 3618/2012).

4.2. One-Carbon Metabolism Biomarker Analyses

Analyses of circulating levels of folate, homocysteine, and vitamin B12 were conducted
at Pisa University Hospital, as previously described [88]. Briefly, following blood collection
via peripheral venipuncture, serum and plasma were immediately separated and stored at
−80 ◦C until assayed. Serum levels of folate and vitamin B12 were determined using an
electrochemiluminescence immunoassay, while plasma homocysteine levels were measured
via liquid chromatography–tandem mass spectrometry. Table 1 presents the observed
concentration ranges of folate, hcy, and vitamin B12 in our samples, along with the reference
ranges provided by the clinical analysis laboratory at Pisa Hospital that performed the
analyses, and the distribution of individuals with values below, within, or above the
reference ranges.

Table 1. One-carbon metabolism biomarkers: circulating levels and sample distribution.

Folate Homocysteine Vitamin B12

Sample concentration a 6.5 ± 4.0 ng/mL
(2.5–29.5)

15.4 ± 6.0 µmol/L
(4.1–34.2)

469.5 ± 275.0 pg/mL
(398–1200)

Reference concentration b 4.6–18.7 ng/mL 4.3–11.1 µmol/L 191–663 pg/mL

Samples below the reference range c 25 (26.6%) 1 (1.1%) 10 (10.6%)

Samples within the reference range c 67 (71.3%) 30 (31.9%) 69 (73.4%)

Samples above the reference range c 2 (2.1%) 63 (67.0) 15 (16%)
a Data presented as the mean ± standard deviation (range); b reference ranges provided by the laboratory; c data
presented as frequency (%).

4.3. Methylation-Sensitive–High-Resolution Melting (MS-HRM) Analyses for the Quantification
of mtDNA Methylation

Methylation analyses of the mitochondrial D-loop region were performed using the
MS-HRM technique, as fully detailed elsewhere [70]. Briefly, DNA samples were extracted
from whole peripheral blood collected in EDTA tubes using a QIAmp DNA blood Mini
Kit (Qiagen, Milan, Italy, Catalog N 51106) and quantified using a NanoDrop ND 2000c
spectrophotometer (NanoDrop Thermo scientific, Wilmington, DE, USA). Two hundred
nanograms of each sample of the DNA were bisulfite-treated with an EpiTect Bisulfite
Kit (Qiagen, Milan, Italy). MS-HRM analyses included a PCR amplification followed by
an HRM step for melting analysis. The protocol of the PCR reactions was as follows: an
initial step at 95 ◦C for twelve minutes, 50 cycles of 95 ◦C for thirty seconds, 56 ◦C for
forty-five seconds, and 72 ◦C for forty-five seconds. Table 2 reports the main characteristics
of the amplicon analyzed. The protocol of melting analysis was as follows: a denatura-
tion step at 95 ◦C for 10 s followed by a renaturation step at 50 ◦C for 60 s and a rapid
increase in temperature at 65 ◦C for 0.2 ◦C every 15 s to 95 ◦C. Samples were tested in
duplicate in each MS-HRM reaction across at least two independent experiments. For
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each MS-HRM assay, standard curves were generated using DNA samples with known
methylation status ranging from 0 to 100% methylation levels, prepared by mixing fully
methylated and fully unmethylated DNA (Qiagen, Milan, Italy). Specific DNA methy-
lation levels were determined using a MatLab (The MathWorks, Inc., Natick, MA, USA)
interpolating function.

Table 2. Primers’ main characteristics.

Sequence (5′→3′) Annealing
Temperature

Amplicon
Size Nucleotide Position Number of

CpG Sites

Primer forward GGAGTTTTTTATGTATTTGGTATTTT
56 ◦C 222 bp 35–256

(GenBank: J01415.2) 10
Primer reverse ACAAACATTCAATTATTATTATTATATCCT

4.4. Statistical Analysis

Circulating folate, homocysteine, vitamin B12 levels, and mtDNA methylation data
were tested for normality with the Shapiro–Wilk test. As all variables exhibited skewed
distributions, logarithmic transformation of the data was applied before the statistical
analyses. Correlations between one-carbon metabolism biomarker circulating levels, age
at sampling, and D-loop methylation were evaluated using the Pearson correlation co-
efficient. Differences between females and males were assessed using Student’s t-test.
To examine one-carbon metabolism biomarker circulating levels and D-loop methylation
among groups, analysis of covariance (ANCOVA) with age and/or sex as the covariates
was used, followed by post hoc Bonferroni correction for multiple comparisons. Statistical
analyses were conducted using STATGRAPHICS 5.1 (Statgraphics, The Plains, VA, USA)
and MedCalc (MedCalc Software, Ostend, Belgium). The statistical power of the study
was calculated using G*Power, (version 3.1.9.7; Heinrich-Heine-Universität Düsseldorf,
Düsseldorf, Germany). With the available sample size, we had an 80% statistical power to
identify a correlation with a Pearson coefficient of 0.25 and a p-value of 0.05.

5. Conclusions

The current study showed for the first time that blood mitochondrial DNA methylation
levels are associated with vitamin B12, a peripheral biomarker of one-carbon metabolism.
Given the involvement of both mtDNA methylation and one-carbon metabolism in human
health status, a better understanding of their interplay could shed new light on the etiologi-
cal pathway underlying diseases characterized by impairment in one-carbon metabolism or
altered mitochondrial epigenetic mechanisms. In this way, interventions aimed at modulat-
ing one-carbon metabolism with effects on mtDNA methylation or that induce changes in
mtDNA epigenetics that enhance mitochondrial activity with improvement in one-carbon
metabolism could have beneficial effects on affected individuals.
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