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Abstract: Background/Objectives: The dynamic interaction between genomic DNA, epigenetic
modifications, and phenotypic traits was examined in identical twins. Environmental perturbations
can induce epigenetic changes in DNA methylation, influencing gene expression and phenotypes.
Although DNA methylation mediates gene-environment correlations, the quantitative effects of
external factors on DNA methylation remain underexplored. This study aimed to quantify these
effects using a novel approach. Methods: A cohort study was conducted on healthy monozygotic
twins to evaluate the influence of environmental stimuli on DNA methylation. We developed
the Environmental Factor Index (EFI) to identify methylation sites showing statistically significant
changes in response to environmental stimuli. We analyzed the identified sites for associations with
disorders, DNA methylation markers, and CpG islands. Results: The EFI identified methylation sites
that exhibited significant associations with genes linked to various disorders, particularly cancer.
These sites were overrepresented on CpG islands compared to other genomic features, highlighting
their regulatory importance. Conclusions: The EFI is a valuable tool for understanding the molecular
mechanisms underlying disease pathogenesis. It provides insights into the development of preventive
and therapeutic strategies and offers a new perspective on the role of environmental factors in
epigenetic regulation.

Keywords: epigenetics; DNA methylation; environmental factors; twin study

1. Introduction

DNA methylation is an important epigenetic component. Although all of the cells
in multicellular organisms have identical genomes, differentiated cells, such as those in
the liver and muscle, appear different, with varied roles; however, the phenotypes at the
cellular level may differ within the same genome (DNA sequence). This concept is known
as epigenetics and is defined as a “stably heritable phenotype resulting from changes in a
chromosome without alterations in the DNA sequence” [1].

DNA methylation is the process in which methyl groups are added primarily to cy-
tosine residues of genomic DNA [2–6]. The methylation state of the genome is inherited
from cell division [7,8] and plays an important role in normal development and cell dif-
ferentiation in vertebrates [9,10]. Interestingly, DNA methylation alters gene expression,
and methylation occurring in the promoter regions inhibits DNA binding to transcription
factors [11], thus decreasing their expression. Conversely, the methylation of gene bodies
promotes transcription [12,13]. These phenomena maintain the tissue- or cell-type-specific
function of differentiated cells. Therefore, it can be inferred that DNA methylation stably
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alters gene expression profiles to remember its location/position in the cell differentiation
tree [14].

DNA methylation was recently identified as the core of the etiology of human disor-
ders. The dysregulation of genes resulting from DNA methylation causes various neurode-
velopmental syndromes, such as fragile X and Rett, immunodeficiency, centromeric region
instability, and facial anomalies (ICF) [15]. Abnormal DNA methylation is also associated
with breast [16,17], cervical [16,18], and other cancers [19–24], as well as diabetes [25–27],
kidney disease [28,29], autoimmune disorders [30–32], and allergies [33,34]. Moreover, the
rate of cell aging can be quantified based on DNA methylation levels [35–39].

Because the correlation between a single DNA methylation site and the resulting
phenotype is low, many DNA methylation sites are associated with various phenotypes.
For example, the number of sites needed to measure cell age was 353 for the Horvath
clock [35,39], 71 for the Hannum epigenetic age [36], and 513 for the Levine clock [38]. These
numerous methylation sites resulted from an abundance of positions with methylation
potential. The human genome contains >20 million CpG dinucleotide sequences that are
methylation candidates. Therefore, machine learning has proven to be a valuable tool to
determine these associations.

Genetic and environmental factors can have an impact on DNA methylation, which in
turn, affects the phenotype. Genetic factors are determined solely by inheritance, whereas
environmental factors include climate, nutrition, lifestyle, stress, drugs, and living condi-
tions. The combined influence of genetic and environmental factors can be observed in
various phenotypic outcomes. For example, monogenic diseases arise from mutations in a
single gene, whereas dietary habits are considered one of the causes of colorectal cancer [40].
This effect on the initiation and progression of various diseases has also been demonstrated
through insurance claims [41] and studies on twins [42].

DNA methylation is an important mechanism that connects genetic and environmental
factors to a particular phenotype. For example, exposure to chemicals, such as polychlo-
rinated biphenyls, lead, and bisphenol A, has been associated with an increased risk of
autism spectrum disorders, potentially through alterations in DNA methylation [43]. In
addition, children can inherit parental stress [44] and nutritional status [45] through DNA
methylation. Epigenomic changes induced by environmental factors also influence the
development of more diseases compared with genetic elements [46]. Thus, determining
the effects of genetic and environmental factors on DNA methylation will improve our
understanding of the etiology and pathogenesis of these diseases [47].

Should the contributions of environmental and genetic factors to DNA methylation be
successfully separated, this could significantly aid in unraveling the causes of diseases and
developing novel therapeutic approaches. Fujii found that DNA methylation is a mediator
of associations between environment and diseases [48]. However, the interplay between
genetic and environmental factors in DNA methylation denotes a complex mechanism,
making separating their respective contributions challenging from biological and technical
perspectives [49,50] except when using monozygotic twins.

Monozygotic twins share the same genetic material and are used to differentiate the
effects of genetic and environmental factors on DNA methylation levels [51,52]. Based on
this unique feature, twin studies enhance our understanding of the processes regulating
epigenetic variation and unravel the relative contributions of environmental and genetic
factors to complex traits [53,54]. Building upon these findings, we proposed an index
to measure the influence of environmental factors on each methylation site. This index
compares the differences in methylation levels between younger twins and elderly twins.
Overall, our analysis provides insight into the complex interplay between DNA methylation
and environmental factors that have implications for disease development and prevention.

To address the gap in the understanding of the influence of environmental stimuli
on DNA methylation, we introduced the Environmental Factor Index (EFI) in this study.
We designed the EFI to identify the methylation sites that show statistically significant
changes in response to environmental stimuli. By comparing the methylation patterns
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between younger and elderly twin pairs, we aim to quantify the influence of environmental
factors on specific methylation sites. This approach provides insights into the potential
regulatory mechanisms and the association of methylation changes with various disorders,
particularly those linked to CpG islands. The EFI represents a novel tool for advancing
our understanding of the molecular mechanisms underlying disease pathogenesis and
developing preventive and therapeutic strategies.

Current methods, such as a correlation analysis between methylation levels and age
and epigenome-wide association studies (EWAS) to assess environmental impacts for
analyzing the impact of environmental factors on DNA methylation often fail to effec-
tively differentiate the influence of genetic factors from environmental stimuli. Traditional
approaches may lack the statistical power or specificity to identify subtle yet significant
epigenetic changes linked to environmental factors. We explicitly designed the EFI to
address these challenges by utilizing monozygotic twins, thereby more precisely isolating
the impact of environmental factors.

Unlike previous metrics, the EFI provides a novel approach that focuses on isolating
the specific environmental contributions to methylation changes, which is particularly
crucial in understanding disease mechanisms. By comparing younger and older twin
pairs, the EFI offers a unique lens through which we can observe the cumulative impact
of environmental exposure over time, something that previous studies have struggled to
accurately quantify.

2. Results
2.1. Difference Between EFI and Correlation Coefficient

The EFI, a method that intricately divides twin pairs into two groups based on their
age, presents a novel approach that addresses the complexity of environmental influences
on DNA methylation. Conversely, the most direct method to explore the connection
between DNA methylation and age is to evaluate the linear correlation between methylation
levels and chronological age. The EFI was calculated for each probe, and its values are
derived using all twin pairs. Therefore, more than a direct comparison between the EFI
and chronological age is needed. To address this, we calculated each probe’s correlation
coefficient between age and methylation levels and compared these coefficients with the
EFI values.

Figure 1a presents the distribution of correlation coefficients between DNA methyla-
tion levels and chronological age for each DNA methylation site. The distribution of these
correlation coefficients is unimodal, indicating a single peak. This characteristic is similar
to the unimodal distribution observed in Figure 2d for the EFI values.

Figure 1b plots the EFI values against the correlation coefficients for each methylation
site. Each point on the scatter plot represents a methylation site, with the EFI value
on the y-axis and the corresponding correlation coefficient on the x-axis. The lack of a
clear relationship between EFI values and correlation coefficients indicates that the EFI
captures aspects of the methylation data that are only partially dependent on linear age–
methylation relationships.

The differences in DNA methylation levels between twin pairs are primarily explained
by the influence of environmental factors. If the influence of environmental factors is
neutral, it can generally be assumed that the longer the exposure to the environmental
factors (i.e., the older the individual), the greater the differences in DNA methylation levels.
This hypothesis is supported by Figure 2a, where 76.5% of the DNA methylation sites show
larger differences in the elderly group compared to the younger group.
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tively. Each dot represents a methylation site. (b) p-values of Levene’s test and q-values representing 

the probabilities adjusted for multiple testing correction. (c) Scatter chart of EFI and FDR from 

Levene’s test between young and elderly twins. Each dot represents a methylation site. Both axes 

are logarithmic. (d) Histogram of EFI. Both axes are logarithmic. 

If the EFI were strongly correlated with age, we would expect a trend where higher 

correlation coefficients correspond to larger EFI values. However, such a clear trend is not 

observed in Figure 1b, suggesting that the EFI captures non-linear aspects of age-related 

methylation changes or other environmental influences beyond simple chronological age. 

Figure 1. Difference between the EFI and coefficient correlation of DNA methylation values and age:
(a) distribution of correlation coefficients between methylation values and chronological age for each
DNA methylation site; (b) scatter plot of EFI and the correlation coefficient. Each point represents a
methylation site, plotting its EFI value on the y-axis against its corresponding correlation coefficient
on the x-axis.
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Figure 2. Statistics on EFI. (a) Scatter chart of SDs for young twins (<53 years-old) and elderly
twins (≥53 years-old). The x- and y-axes correspond to the denominator and numerator of the
EFI, respectively. Each dot represents a methylation site. (b) p-values of Levene’s test and q-values
representing the probabilities adjusted for multiple testing correction. (c) Scatter chart of EFI and
FDR from Levene’s test between young and elderly twins. Each dot represents a methylation site.
Both axes are logarithmic. (d) Histogram of EFI. Both axes are logarithmic.

If the EFI were strongly correlated with age, we would expect a trend where higher
correlation coefficients correspond to larger EFI values. However, such a clear trend is not
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observed in Figure 1b, suggesting that the EFI captures non-linear aspects of age-related
methylation changes or other environmental influences beyond simple chronological age.

These results underscore the idea that the EFI and correlation coefficients are funda-
mentally different metrics. While correlation coefficients measure the strength of the linear
relationship between age and methylation at each site, the EFI, with its unique approach
of using twin pairs to eliminate the influence of genetic factors, presents a significant
distinction from values derived solely from the relationship with age, such as correlation
coefficients. This unique aspect of the EFI provides new insights that may be of interest to
the scientific community.

2.2. Methylation Sites Are Linked to Disorders

The current study was conducted on identical twins to determine the effect of envi-
ronmental factors on DNA methylation at each site. The results indicated that the degree
of methylation increased at 22,568 sites in an age-dependent manner, whereas a decrease
was observed at 94 sites. We examined the correlation among significant methylation sites,
disease, and CpG.

As detailed in the Introduction, DNA methylation has been reported to be associated
with various diseases. Therefore, we examined the link between the significant methylation
sites and such disorders. The top 10 sites were identified (Table 1) along with the probe
ID on the Infinium HumanMethylation450 BeadChip Kit, the gene symbol of the site, the
EFI, and the related disorders. We linked the association between these sites and diseases
based on the relationship between the gene symbols of the sites and elite genes from
MalaCards [55], which is a database of human diseases (accessed 10 June 2021).

Table 1. Top ten methylation sites in the EFI.

Probe ID Gene Symbol EFI q-Value Disorder

cg11539424 CLGN 5.22 0.057%

cg25105066 AUTS2 5.14 0.0055% Intellectual Developmental Disorder, Autosomal
Dominant 26

cg14464244 MAGI2 4.76 0.047% Nephrotic Syndrome, Type 15
Genetic Steroid-Resistant Nephrotic Syndrome

cg06445586 4.71 0.31%

cg02878907 ZNF709 4.65 0.034%

cg04883656 OGFRL1 4.34 0.023%

cg21155461 ZNF544 4.04 0.68%

cg21364278 4.01 0.37%

cg17289202 ZNF532 3.95 0.18%

cg15368722 3.86 0.084%

Two methylation sites have been linked to disorders. One of these, known as cg25105066,
belongs to the autism susceptibility candidate 2 (AUTS2) gene, which is an “Activator of
Transcription and Developmental Regulator AUTS2” and an elite gene for “intellectual devel-
opmental disorder autosomal dominant 26”. A previous study found that DNA methylation
of AUTS2 is linked to this disorder [56]. Another study discovered that DNA methylation of
AUTS2 in the placenta is associated with neurodevelopment in children [57]. Thus, AUTS2
may be used as a biomarker for autism spectrum disorder risk. The other methylation site,
cg14464244, belongs to the MAGI2 gene (i.e., “Membrane Associated Guanylate Kinase, WW
and PDZ Domain Containing 2”). DNA methylation of MAGI2 has been linked to various
cancers [58–60], whereas no correlation was established with a nephrotic syndrome.

Table 2 presents the link between disorders and genes strongly influenced by environ-
mental factors. This Table lists the top ten genes with a high number of significant sites.
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The columns contain the gene symbols, the number of sites, and the associated disorders.
We used the elite genes, as defined by MalaCards, to establish the association between
genes and disorders (accessed on 10 June 2021).

Table 2. Top ten genes in the EFI.

Gene Symbol #Significant Site Disorder

PTPRN2 39

TNXB 34 Ehlers–Danlos Syndrome, Classic-Like Vesicoureteral Reflux 8

PRDM16 31 Left Ventricular Noncompaction 8

BRUNOL4 28

COL11A2 25 Otospondylomegaepiphyseal Dysplasia, Autosomal Dominant/Recessive

NKX6-2 24 Spastic Ataxia 8, Autosomal Recessive, with Hypomyelinating Leukodystrophy

PCDHGA4 21

THRB 20 Thyroid Hormone Resistance, Generalized, Autosomal Dominant
Thyroid Hormone Resistance, Selective Pituitary

MAGI2 20 Nephrotic Syndrome, Type 15
Genetic Steroid-Resistant Nephrotic Syndrome

TP73 20 Small Cell Cancer of the Lung

Table 3 summarizes the findings from Tables 1 and 2. We identified two sites and
seven genes linked to disorders using the elite genes of MalaCards. This Table shows that
of the top ten methylation sites selected by EFI, seven were annotated as genes, and among
those, two were classified as elite genes. Similarly, seven of the top 10 genes were classified
as elite. Based on this, the elite gene ratio for the top ten sites was calculated as 2/7 = 29%,
and for the top ten genes, the elite gene ratio was 7/10 = 70%.

Table 3. Statistical tests for predominantly high levels of disease-related genes.

Top 10 Sites Top 10 Genes Random

#Sites 10 - 100

#Genes 7 10 77

#Elite genes 2 7 19

Elite gene ratio 29% 70% 25%

p-value 1.000 0.0067 -

Odds ratio 0.86 7.12 -

As detailed in Section 4.5, we performed Fisher’s exact test, and for the top 10 genes,
the null hypothesis was rejected, indicating that the association between the elite genes and
disorders was statistically significant.

This analysis suggests that a single site with variable methylation levels resulting
from environmental factors is unlikely to be directly related to a disorder. However, when
methylation changes are clustered within a single gene, the likelihood of an association
with the disorder increases compared with chance, highlighting the potential relevance of
our research. Nevertheless, it is essential to acknowledge that methylation changes may
also result from the disorder rather than the cause.

2.3. Environmental Factors Alter DNA Methylation Levels in Methylation Markers

Genetic markers have been used to detect disorders and can be classified into
three categories: (1) biochemical markers are in the blood or other body fluids, indi-
cating the presence of disorders; (2) molecular markers which indicate specific changes
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or alterations in DNA sequences associated with disease; and (3) methylation markers
indicating specific changes in DNA methylation patterns associated with disorders. These
markers may be used as diagnostic or prognostic tools as well as potential targets for
therapeutic interventions [61,62]. As the methylation levels of these markers alter in re-
sponse to the environment, they be significant sites for the EFI to accurately capture the
environmental factors.

Table 4 lists the number of methylation markers identified for colorectal [19–21,63],
breast [16,17], cervical [16,18], and lung [22–24] cancers, along with the number of genes
associated with significant sites. The columns list the total number of biomarkers, the
number of genes with significant sites, and the p-value obtained from the binomial test. A
list of marker genes for each cancer and the number of significant sites is available in the
Supporting Information file: Marker.pdf.

Table 4. Statistical tests for predominantly high levels of disease-related genes.

#Markers #Significant Sites Ratio p-Value

Colorectal 51 39 76% 3.80 × 10−11

Breast 11 11 100% 2.71 × 10−6

Cervical 7 7 100% 2.87 × 10−4

Lung 16 15 94% 2.91 × 10−7

Total 85 72 85% 2.11 × 10−24

A large proportion (85%) of the markers consisted of significant genes, which was
higher than the probability of this occurring by chance (31.2%). The results indicated that
the EFI can assess the impact of environmental factors on various cancers. The strength of
the environmental factors may be evaluated by comparing the variations in the methylation
levels between twins.

2.4. DNA Methylation on CpG Islands

CpG islands are genome regions containing a high frequency of CpG sites. Approxi-
mately 70% of the proximal promoters in humans located near the transcription start site
contain CpG islands [64]. Typically, the methylation of CpG islands is associated with
transcriptional repression, long-term gene silencing, X-chromosome inactivation, genomic
imprinting, and pre-mRNA alternative splicing [65,66]. Recent studies have indicated a
regulatory role for DNA methylation [67] and that the methylation of CpG sites in CpG
islands alters gene expression [68].

Table 5 lists the information on five different features of CpG methylation, includ-
ing the total number of methylation sites analyzed using the BeadChip, the number of
significant sites, and the ratio of significant sites to the total number of sites. The CpG
features were defined as follows: CpG islands include regions >500 bp, >55% GC, and
an expected/observed CpG ratio of >0.65. Of note, 40% of the gene promoters contain
islands [69], whereas shores are regions located 0–2 kbp from CpG islands and consist
of >75% of tissue-specific differentially methylated regions. The methylation in shores is
more strongly correlated to gene expression compared with that of the CpG islands [70,71].
Shelves are the 2–4 kbp regions from the islands. North and south indicate upstream and
downstream to the CpG island, respectively.

The distribution in Table 5 shows significant methylation sites across different genomic
features. This Table shows the number of sites (#sites) and significant sites (#significant
sites) for each genomic feature, including North Shelf, North Shore, CpG Islands, South
Shore, South Shelf, and Others. The column “% of significant sites in Feature” represents
the proportion of significant sites within each feature, calculated by dividing the number of
significant sites by the total number of sites in that feature. The column “% of significant
sites in total” indicates the proportion of significant sites in the entire dataset, calculated
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by dividing the number of significant sites in each feature by the total number of probes
(481,190). These values allow for a comparison of the distribution of significant sites across
various genomic regions.

Table 5. Significant sites for each CpG feature.

% of Significant Sites
Feature #Sites #Significant Sites in Feature in Total

North Shelf 24,716 801 3.2% 0.17%

North Shore 62,647 2422 3.9% 0.50%

CpG Island 149,935 10,898 7.3% 2.3%

South Shore 49,055 1850 3.8% 0.38%

South Shelf 22,182 712 3.2% 0.15%

Other 172,655 6069 3.5% 1.3%

Total 481,190 22,752 4.7% 4.7%

The proportion of significant sites in the CpG islands was greater than that of the
other features, suggesting that CpG islands are highly responsive to environmental factors.
Because of their enrichment in regulatory regions, association with tissue-specific gene
expression, and susceptibility to DNA methylation changes, CpG islands are essential
targets for environmental epigenetic studies and potential biomarkers for disease suscepti-
bility [72]. The findings in Table 5 indicate that the EFI captures the effect of environmental
factors on DNA methylation.

3. Discussion

In our study, we proposed using the EFI to quantify the impact of environmental
factors on DNA methylation from 245 pairs of Japanese monozygotic twins. The EFI
calculates the difference in methylation levels between older and younger twin pairs,
assuming that the more prolonged lifetime exposure to environmental factors in older
twins would result in more pronounced methylation changes. This differential exposure
underpins our hypothesis that the more significant the discrepancy in methylation between
the age groups, the stronger the environmental influence.

Using Storey’s FDR statistical method, we identified 22,752 out of 481,190 methyla-
tion sites on the Infinium HumanMethylation450 BeadChip as environmentally sensitive.
The analysis of these sensitive sites, focusing on their association with diseases, cancer
methylation markers, and CpG island features, further substantiated the efficacy of the EFI.

Our analysis revealed a significant correlation between environmentally sensitive
methylation sites and disease development, underscoring the EFI’s potential to advance
our understanding of disease prevention and treatment mechanisms. Furthermore, when
evaluating known methylation markers for four types of cancer, we found that 85% of these
markers were among the significant sites identified by the EFI, suggesting its robustness in
assessing the influence of environmental factors on methylation. The evaluation of CpG
island features revealed their heightened sensitivity to environmental factors, highlighting
the importance of these regions in environmental epigenetics research and their potential
as biomarkers for disease susceptibility.

The challenge of distinguishing between genetic and environmental influences is
particularly formidable in epigenetics, where it intersects with the broader objectives of
understanding human diseases and developing therapeutic interventions. Historically,
twin studies have been instrumental in dissecting the genetic and environmental contribu-
tions to phenotypic variance [54,73]. These studies have not only been applied to estimate
the impact of these factors on DNA methylation at gene-specific levels, as evidenced by
research from Wong [74], but also across the entire genome, as demonstrated in studies
by Kuratomi [75], Kaminsky [76], and Rakyan [77]. This body of work has significantly
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deepened our understanding of the regulatory processes behind epigenetic variation, un-
raveling the intertwined contributions of epigenetic mechanisms, environmental factors,
and genetic variance to complex traits, alongside stochastic elements [53]. The insights
gleaned from these studies are invaluable for grasping the intricacies of disease develop-
ment and evolution [78] and for informing future epigenetic-based strategies to combat
complex diseases.

Within this context of rich academic heritage, our study introduces EFI, a novel metric
computed using twin subjects. The EFI embodies a significant leap forward, transcending
traditional epigenetic inquiries to enhance our grasp of disease mechanisms and potential
therapeutic avenues. This methodology allows us to more accurately isolate and quantify
the impact of environmental factors on DNA methylation, providing crucial insights that
are potentially transformative for identifying the underlying causes of human diseases
and crafting new treatment strategies. Our approach thus not only enhances the precision
of our epigenetic analysis but offers a powerful tool that transcends traditional research
boundaries, promising substantial advancements in medical research and the development
of therapeutic interventions.

The present study had some limitations. All the twin subjects were Japanese. Because
of the lack of racial and regional diversity with respect to environmental factors, potential
data bias may impact the numerator and denominator of the EFI. Predicting the effect of
diversity on EFI values remains a challenge. Therefore, collecting data on twins of various
races from different regions is essential to determine the effect of environmental factors on
the EFI when using diverse populations.

In this study, we divided the twin pairs into two groups based on the median age of
53 years. This decision was made considering several factors, including the distribution
of ages among our subjects and the broader context of age distribution, both globally and
in Japan.

Firstly, it is crucial to note that average age and median age differ by country. Accord-
ing to the United Nations’ World Population Prospects 2022, the global average age in 2023
is approximately 30.4 years, and the median age is about 31.0 years. For Japan, the average
age is 48.4 years, and the median age is 48.6 years. Given that our study’s subjects are
from Japan, it was not just pertinent, but a sound and well-grounded decision to align our
division with these national statistics. By selecting a median age close to Japan’s average,
we ensured a representative and balanced division of our sample.

The choice of the median age is crucial for statistical robustness. It ensures that the
number of subjects in each group is approximately equal, which is essential for minimizing
bias and enhancing the validity of comparative analyses. We conducted sensitivity analyses
using different cutoff points to further validate our choice. We explored divisions at the
25th percentile (35 years) and the 75th percentile (66 years) and found that the correlation
coefficients between the EFI values and these age cutoffs were 0.81 and 0.71, respectively.
These high correlation values indicate that our findings are relatively sensitive to the exact
cutoff point, underscoring the robustness of our methodology.

We acknowledge that differences could influence the Environmental Factor Index
(EFI) in terms of cell type composition, a known confounding factor in DNA methylation
analyses. Although correction for cell type distribution using leukocyte composition data,
such as through the Houseman algorithm [79], is theoretically possible, the dataset used
in this study had limitations. Specifically, Osaka Twin Research Group collected the data
several years ago, and complete leukocyte composition information was only available
for some samples. Consequently, we could not apply cell type correction across the entire
dataset. Future studies would benefit from addressing this limitation by incorporating
cell type composition data to more accurately assess the specific impact of environmental
factors on DNA methylation. Despite this limitation, the EFI offers valuable insights
into methylation variability driven by environmental influences while acknowledging the
potential confounding effect of cell type distribution.
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To explore potential overlaps between the Environmental Factor Index (EFI) and
conventional age acceleration measures, such as Horvath’s epigenetic clock algorithms,
we analyzed the EFI values associated with the DNA methylation sites used in both the
Horvath2013 (353 sites) [35] and Horvath2018 (391 sites) clocks [39]. As shown in Table 6,
the average EFI for the Horvath2018 sites was 1.29 with a variance of 0.33, while for
the Horvath2013 sites, the average EFI was 1.26 with a variance of 0.34. These averages
and variances were higher than those observed in the overall dataset, which included
all 481,190 sites (average EFI = 1.18; variance = 0.28). Additionally, the proportion of
statistically significant sites within the Horvath clocks was considerably higher than in the
overall dataset: 338 out of 391 sites in Horvath2018 and 334 out of 353 sites in Horvath2013
were statistically significant, compared to 22,752 out of 481,190 in the entire dataset.

Table 6. EFI of the Horvath 2018 clock sites and the Horvath 2013 clock sites.

Horvath 2018 Horvath 2013 All Sites

# sites 391 353 481,190

# significant sites 338 334 22,752

Mean of EFI 1.29 1.26 1.18

Std. of EFI 0.33 0.34 0.28

These results indicate that many of the DNA methylation sites used in the Horvath
epigenetic clocks are also significant in the EFI analysis. This overlap is expected, given
that the Horvath epigenetic clocks use a linear formula to estimate age, relying on DNA
methylation sites whose values are likely to change solely in response to the environmental
factor of aging. The fact that the significant sites in the EFI analysis include the sites of
the Horvath epigenetic clocks suggests that the EFI is consistent with previous analytical
findings. This alignment with established epigenetic age-related sites supports the validity
of the EFI in capturing environmentally driven changes in DNA methylation.

One limitation of this study is the need for a more direct analysis linking the CpG
sites identified by the Environmental Factor Index (EFI) to diseases or environmental
exposure/phenotypes. The dataset used in this study consisted solely of DNA methylation
data and did not include detailed participant attributes, such as health conditions or
environmental exposure histories. As a result, assessing the direct associations between the
EFI and specific diseases or environmental factors was not feasible.

Despite this limitation, the primary objective of this study was to evaluate the vari-
ability in DNA methylation caused by environmental factors, and the EFI successfully
identified methylation sites exhibiting significant changes. However, to fully understand
the implications of these findings, future research should integrate DNA methylation data
with detailed participant attributes. Collecting comprehensive data, including partici-
pant health conditions and environmental exposure histories, and combining these with
disease-related databases will enable a more thorough exploration of the relationships
between the EFI and diseases or environmental factors. Such efforts will further elucidate
the role of environmental influences on epigenetic regulation and their contribution to
disease pathogenesis.

4. Materials and Methods
4.1. Subjects and Ethics Statement

Since 16 January 2011, 302 healthy Japanese identical twin pairs have been recruited
to measure DNA methylation. Of these, 245 were monozygotic twin pairs, and the others
were dizygotic. We used the monozygotic twin pairs to ensure the genetic uniformity
needed for our study. The cohort consisted of 178 pairs of females and 67 pairs of males.
The subjects were selected from a registry established by the Center for Twin Research at
Osaka University [80,81]. Written informed consent was obtained from all subjects before
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inclusion in the study. The Ethics Committee of Osaka University approved the study
protocol (No. 269). The ages of the subjects are shown in Figure 3a,b. Blood samples were
collected from the subjects at 9:00 a.m. after fasting for 12 h. The subjects also underwent
a clinical examination and completed a health questionnaire. The examinations were
conducted on the same day for each pair of twins. The QIAamp DNA Mini Kit was used to
isolate genomic DNA from the peripheral blood mononuclear cells. The zygosity of the
twins was confirmed by perfectly matching 15 short tandem repeat loci using a PowerPlex®

16 System (Promega, Madison, WI, USA).
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Figure 3. Statistics related to the subjects and data collected for the DNA methylation probes. (a) Age
distribution of the twin pairs. The x-axis represents the age, and the y-axis represents the number of
pairs. (b) Similar histograms showing the age distribution of the twin pairs differentiated by sex. The
axes are the same as in (a). (c) Histogram illustrating how many valid observations were collected for
each DNA methylation probe. The x-axis shows the number of valid observations, and the y-axis
represents the number of probes. (d) Representative ages of the subjects (the left table) and the
number of valid subjects for each probe (the right table). The values in the right table represent basic
statistics of DNA methylation probes when sorted in ascending order by the number of valid subjects.

4.2. Methylation Sites

DNA methylation levels were analyzed at specific locations in the genome, known
as methylation sites. The Infinium HumanMethylation450 BeadChip Kit (Illumina, San
Diego, CA, USA) was used to examine 482,421 methylation sites in each sample at single-
nucleotide resolution using 0.5 µg of high-quality genomic DNA. The chip consisted of
two bead types per locus at each site. The raw data obtained were analyzed using Genome
Studio software (Illumina). The fluorescence intensity ratios between the two bead types
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were calculated as follows: 0 indicated that the site was not methylated and 1 indicated
complete methylation. A peak-based correction method [82] was used to normalize the
raw data and filter out invalid reads such as null and unreliable probes. Specifically,
methylation sites with fewer than 245 valid probes out of 490 subjects were excluded from
further analysis, ensuring that only reliable data were retained. After this filtering process,
481,190 methylation sites remained, and their statistics are presented in Figure 3c,d.

4.3. Notation

The following notations were used to measure the impact of environmental factors on
each methylation site s.

mi,s: methylation levels of a methylation site s in a subject i. The site s was omitted if it
was self-explanatory.

T: a set of twin pairs included in the study. The set is represented as T = {(i, j)}, where i
and j are the subjects of the twin pair. If (i, j) is in T, then (j, i) is not in T.

Ts: a set of valid twin pairs on methylation site s. Ts is a subset of T, and only included
twin pairs in which the methylation levels of site s in the subjects i and j were valid.

Ds(Ts): a set of differences in methylation levels of a methylation site s between the
twins in the twin pair Ts. This is represented as Ds(Ts) = {(mi,s − mj,s)|(i, j) in Ts}.

SD (D): the standard deviation of a set of differences D.

4.4. Environmental Factor Index (EFI)

To determine the strength of the influence of environmental factors on methylation
sites, we compared the distribution of methylation intensities between elderly and young
twins. We divided the twin pairs (T) into two groups based on the median age of the
subject, 53 years. The elderly set (Teldery) included >=53-year-olds and consisted of 124 twin
pairs. The younger set (Tyoung) included <53-year-old twins and consisted of 121 pairs.
Theoretically, the elderly are exposed to environmental factors for longer compared with
the young pairs. Thus, the difference between the two groups indicates the degree of
influence of environmental factors. We defined the EFI equation to measure this influence
on the methylation site.

EFIs =
Std(Ds (Teldery)

Std(Ds (Tyoung))

where Teldery is a set of elderly twin pairs and Tyoung is a set of younger twin pairs.
The numerator of this Equation represents the distribution of methylation intensity

differences in the elderly group, whereas the denominator represents the distribution in the
younger group. The period affected by environmental factors is shorter in the denominator
and longer in the numerator. Therefore, the EFI is a tool that allows us to deduce the
impact of environmental factors on DNA methylation’s variability over time. A higher EFI
indicates an amplification of differences due to environmental exposure, while a lower EFI
hints at a reduction in these differences.

When EFIs = 1, the impact of environmental factors on DNA methylation levels is
neutral to age. This means that the variability in DNA methylation differences between
twins is the same in the older and younger age groups. When EFIs > 1 is greater than 1,
this indicates that the variability in DNA methylation differences between twins is more
significant in the older age group compared to the younger age group. This suggests
that continuous exposure to environmental factors over time amplifies the differences in
DNA methylation levels between twin pairs. EFIs < 1 indicates that the variability in DNA
methylation differences between twins is smaller in the older age group compared to the
younger age group. This suggests that continuous exposure to environmental factors over
time decreases the differences in DNA methylation levels between twin pairs.

4.5. Statistical Analysis of EFI

We aimed to investigate how environmental factors influence DNA methylation in
monozygotic twins. To achieve this, we developed the Environmental Factor Index (EFI),
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which quantifies the variability in DNA methylation levels between younger and older
twins, thus isolating the impact of environmental exposure over time. By comparing the
differences in methylation intensities between these two groups, the EFI enables us to assess
how environmental factors contribute to methylation changes at specific genomic sites.

Figure 2 presents statistics on EFI. Figure 2a shows a scatter chart of the standard
deviations (SD) for young and elderly twins. Each dot on the chart represents a DNA
methylation site. The line indicates that the values of the two axes are equivalent. Interest-
ingly, 76.5% of the sites are above the line, indicating that the differences in the degree of
methylation between the twins increased, specifically reflecting that the standard deviation
of methylation in the elderly group is more significant than that in the younger group. The
sites below the line indicate a decreasing difference between twins in a time-dependent
manner, specifically reflecting that the standard deviation in the younger group is more
significant than that in the elderly group.

We conducted a test of the EFI, where the denominator is the SD of young twin pairs
and the numerator is the SD of elderly twin pairs. Therefore, to test the EFI, we utilized
Levene’s test, which assesses the equality of variances between the two groups, to examine
whether there is a significant difference between the standard deviations of these two popu-
lations. Specifically, we formulated a null hypothesis that the variances in the denominator
and numerator are equal. We performed these calculations using Python 3, specifically
employing the SciPy library for Levene’s test. Given that 481,190 DNA methylation sites
are subject to testing, it is necessary to address the issue of multiple comparisons. Therefore,
we applied Storey’s FDR approach [83]. To determine the significance of the methylation
sites, we used a significance level of 1%.

Figure 2b shows the results of Levene’s test for each methylation site using the multiple
testing correction. The line represents the probability of the test after the correction of
Storey’s FDR (q-value). The dotted horizontal line indicates the significance level of 1%.
The number of sites in which the null hypothesis was rejected was 22,752 and the ratio to
the total number of observed methylation sites (481,190 sites) was 4.7%. For convenience,
we refer to the methylation sites in which the null hypotheses were rejected by Storey’s
FDR as significant sites.

To validate the EFI statistically, we performed Levene’s test to compare the variability
in DNA methylation levels between younger and older twins. This analysis determines
whether the observed differences in methylation variability are statistically significant, thus
confirming the influence of environmental factors on DNA methylation over time.

Figure 2c shows a scatter chart of the EFI and Storey’s FDR results, analyzed using a
Levene’s test, for young and elderly twins. Each dot represents a methylation site, with
logarithmic scales used for the x- and y-axes. A depression is evident in the chart at EFI = 1.
Because the denominator and numerator of the EFI are identical at this value, the p-value
for Levene’s test is necessarily close to 1. In this scatter chart, methylation sites with a
small FDR are more prevalent on the right side of this Figure, where EFI > 1. Of the 22,752
methylation sites identified as significant, 22,568 had an EFI > 1, whereas only 94 sites had
an EFI < 1. For our interpretation, we designated the significant sites with EFI values > 1 as
“elderly-significant sites” and those with <1 as “young-significant sites”.

The histogram in Figure 2d shows the EFI distribution with logarithmic x- and y-axes.
Of the 481,190 methylation sites, 112,868 (23%) had an EFI < 1, and 368,322 (77%) sites had
an EFI>1. The median EFI value was 1.137, indicating that the difference in the degree of
DNA methylation between twins may increase over time.

4.6. Statistical Analysis of Disease Association

We identified the methylation sites and associated genes selected by the EFI and
investigated their relationship with disorders using the MalaCards database. Following
this, we performed a coincidence test to confirm that the associations discovered by the EFI
were not due to random chance. The null hypothesis stated that the elite genes appeared
by chance.
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MalaCards is a comprehensive database that compiles information on human diseases,
including genetic associations, pathways, and relevant research. Some of the genes listed
in MalaCards are classified as “elite genes”. These elite genes, which we found to be
of the utmost importance, are genes that have strong evidence linking them to specific
diseases based on high-confidence sources such as curated databases, clinical studies, or
genome-wide association studies (GWAS). The “elite” designation indicates that these
genes are strongly associated with certain disorders, making them important candidates
for further investigation in disease-related studies.

The MalaCards database does not publish the number or ratio of elite genes, which is
necessary information for the coincidence test. Therefore, we independently gathered the
relevant data by randomly sampling 100 sites from an array of 481,190 sites on BeadChip.
To assess the statistical significance of this association, we applied a two-tailed Fisher’s
exact test with a significance level of 1%.

5. Conclusions

Our study has pioneered use of the EFI, marking a significant stride in the epigenetic
domain by quantifying the environmental impacts on DNA methylation with unparalleled
precision. This novel metric utilizes an extensive dataset derived from 245 monozygotic
twin pairs. It examines 481,190 methylation sites, establishing a robust framework that
enhances our understanding of the intricate relationship between the environment and
the epigenome.

The identification of 22,752 DNA methylation sites significantly influenced by environ-
mental factors using the Environmental Factor Index (EFI) highlights the tool’s sensitivity
and capacity to elucidate the complex dynamics of epigenetic modifications. This accom-
plishment is particularly significant given the long-standing challenge of detecting these
subtle influences within the complex epigenome. Moreover, the analysis conducted with
the EFI reveals that although individual environmentally sensitive methylation sites might
only slightly impact phenotypic traits, their aggregated effect within genes significantly
correlates with phenotypic expression. This insight enriches our understanding of the
cumulative influence of the environment on gene regulation and expression.

Moreover, by applying the EFI to the Malacards database, our study illuminated the
potential connections between environmentally influenced methylation sites and various
disorders, notably cancer, suggesting the EFI’s utility in identifying epigenetic markers of
disease. This application validates the EFI’s relevance and opens new research avenues for
exploring the epigenetic underpinnings of various diseases and conditions.

The introduction of the EFI represents a transformative development in epigenetic
research, offering a new lens through which we can explore the complex interplay between
the genome, the epigenome, and environmental factors. As we move forward, the EFI
stands to significantly enhance our understanding of epigenetic regulation, shed light
on the mechanisms underlying disease, and inform the development of novel diagnostic
and therapeutic approaches. Our findings affirm the potential of the EFI as a corner-
stone in future epigenetic investigations, heralding a new era of precision in quantifying
environmental influences on the epigenome.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/epigenomes8040044/s1, Marker.pdf, EFI.xlsx, EFGene.csv. Marker.pdf: The
file includes DNA methylation marker genes for four cancers and the number of EFI significant sites.
EFI.xlsx: The file includes the EFI and Storey’s FDR for each of the 481,190 methylation sites. Each
methylation site has a probe ID of the HumanMethylation450 BeadChip (GPL 18809 @ Gene Expression
Omnibus) and a gene symbol. The csv file has four columns, as follows: 1. Probe ID; 2. Gene symbol;
3. EFI; 4. FDR. EFIGene.csv: The file includes environmentally sensitive gene symbols. The file has
three columns, as follows: 1. Gene symbol; 2. Number of elderly significant probes; 3. Number of young
significant probes.

https://www.mdpi.com/article/10.3390/epigenomes8040044/s1
https://www.mdpi.com/article/10.3390/epigenomes8040044/s1


Epigenomes 2024, 8, 44 15 of 18

Author Contributions: Data curation, Y.T., Osaka Twin Research Group and M.W.; funding acqui-
sition, Osaka Twin Research Group and M.W.; methodology, Y.T.; project administration, Osaka
Twin Research Group and M.W.; resources, Osaka Twin Research Group and M.W.; software, Y.T.;
writing—original draft, Y.T.; writing—review and editing, Y.T. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was supported by University Grants from the Japanese Ministry of Education,
Culture, Sports, Science, and Technology and the Kansai University Fund for Domestic and Overseas
Research Fund, 2020 and 2021.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Osaka University (No. 269, 24 August 2010).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Written informed consent has been obtained from the patients to publish this paper.

Data Availability Statement: The methylation levels of each site for each subject that support the
results of this study are not publicly available. The small number of twin participants, coupled with
the unique identifying nature of twin status, facilitates easier identification of individuals. Therefore,
due to the Center for Twin Research’s policies to protect the individual’s privacy, the data have
not been made publicly accessible. However, upon reasonable request, data may be obtained with
the permission of the Center for Twin Research, Osaka University Graduate School of Medicine
(research@twin.med.osaka-u.ac.jp).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783.

[CrossRef]
2. Dunn, D.; Smith, J. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem. J. 1958, 68, 627. [CrossRef]
3. Vanyushin, B.; Tkacheva, S.; Belozersky, A. Rare bases in animal DNA. Nature 1970, 225, 948–949. [CrossRef]
4. Ehrlich, M.; Gama-Sosa, M.A.; Carreira, L.H.; Ljungdahl, L.G.; Kuo, K.C.; Gehrke, C.W. DNA methylation in thermophilic

bacteria: N 4-methylcytosine, 5-methylcytosine, and N 5 methyladenine. Nucleic Acids Res. 1985, 13, 1399–1412. [CrossRef]
5. Ratel, D.; Ravanat, J.L.; Berger, F.; Wion, D. N6-methyladenine: The other methylated base of DNA. Bioessays 2006, 28, 309–315.

[CrossRef]
6. Wu, T.P.; Wang, T.; Seetin, M.G.; Lai, Y.; Zhu, S.; Lin, K.; Liu, Y.; Byrum, S.D.; Mackintosh, S.G.; Zhong, M. DNA methylation on N

6-adenine in mammalian embryonic stem cells. Nature 2016, 532, 329–333. [CrossRef]
7. Goll, M.G.; Bestor, T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 2005, 74, 481–514. [CrossRef]
8. Bostick, M.; Kim, J.K.; Estève, P.-O.; Clark, A.; Pradhan, S.; Jacobsen, S.E. UHRF1 plays a role in maintaining DNA methylation in

mammalian cells. Science 2007, 317, 1760–1764. [CrossRef]
9. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492.

[CrossRef]
10. Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 2013, 14, 204–220. [CrossRef]
11. Yin, Y.; Morgunova, E.; Jolma, A.; Kaasinen, E.; Sahu, B.; Khund-Sayeed, S.; Das, P.K.; Kivioja, T.; Dave, K.; Zhong, F. Impact of

cytosine methylation on DNA binding specificities of human transcription factors. Science 2017, 356, eaaj2239. [CrossRef]
12. Bender, C.M.; Gonzalgo, M.L.; Gonzales, F.A.; Nguyen, C.T.; Robertson, K.D.; Jones, P.A. Roles of cell division and gene

transcription in the methylation of CpG islands. Mol. Cell. Biol. 1999, 19, 6690–6698. [CrossRef]
13. Maunakea, A.K.; Chepelev, I.; Cui, K.; Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2

to promote exon recognition. Cell Res. 2013, 23, 1256–1269. [CrossRef]
14. Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.

Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466, 253–257. [CrossRef]
15. Robertson, K.D.; Wolffe, A.P. DNA methylation in health and disease. Nat. Rev. Genet. 2000, 1, 11–19. [CrossRef]
16. MüLLER, H.M.; Fiegl, H.; Widschwendter, A.; Widschwendter, M. Prognostic DNA methylation marker in serum of cancer

patients. Ann. N. Y. Acad. Sci. 2004, 1022, 44–49. [CrossRef]
17. Sigin, V.O.; Kalinkin, A.I.; Kuznetsova, E.B.; Simonova, O.A.; Chesnokova, G.G.; Litviakov, N.V.; Slonimskaya, E.M.; Tsyganov,

M.M.; Ibragimova, M.K.; Volodin, I.V. DNA methylation markers panel can improve prediction of response to neoadjuvant
chemotherapy in luminal B breast cancer. Sci. Rep. 2020, 10, 9239. [CrossRef]

18. Xu, W.; Xu, M.; Wang, L.; Zhou, W.; Xiang, R.; Shi, Y.; Zhang, Y.; Piao, Y. Integrative analysis of DNA methylation and gene
expression identified cervical cancer-specific diagnostic biomarkers. Signal Transduct. Target. Ther. 2019, 4, 55. [CrossRef]

https://doi.org/10.1101/gad.1787609
https://doi.org/10.1042/bj0680627
https://doi.org/10.1038/225948a0
https://doi.org/10.1093/nar/13.4.1399
https://doi.org/10.1002/bies.20342
https://doi.org/10.1038/nature17640
https://doi.org/10.1146/annurev.biochem.74.010904.153721
https://doi.org/10.1126/science.1147939
https://doi.org/10.1038/nrg3230
https://doi.org/10.1038/nrg3354
https://doi.org/10.1126/science.aaj2239
https://doi.org/10.1128/MCB.19.10.6690
https://doi.org/10.1038/cr.2013.110
https://doi.org/10.1038/nature09165
https://doi.org/10.1038/35049533
https://doi.org/10.1196/annals.1318.008
https://doi.org/10.1038/s41598-020-66197-1
https://doi.org/10.1038/s41392-019-0081-6


Epigenomes 2024, 8, 44 16 of 18

19. Lofton-Day, C.; Model, F.; DeVos, T.; Tetzner, R.; Distler, J.; Schuster, M.; Song, X.; Lesche, R.; Liebenberg, V.; Ebert, M. DNA
methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 2008, 54, 414–423. [CrossRef]

20. Tänzer, M.; Balluff, B.; Distler, J.; Hale, K.; Leodolter, A.; Röcken, C.; Molnar, B.; Schmid, R.; Lofton-Day, C.; Schuster, T.
Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE 2010,
5, e9061. [CrossRef]

21. Kim, M.S.; Lee, J.; Sidransky, D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010, 29, 181–206. [CrossRef]
22. Diaz-Lagares, A.; Mendez-Gonzalez, J.; Hervas, D.; Saigi, M.; Pajares, M.J.; Garcia, D.; Crujerias, A.B.; Pio, R.; Montuenga, L.M.;

Zulueta, J. A novel epigenetic signature for early diagnosis in lung cancer. Clin. Cancer Res. 2016, 22, 3361–3371. [CrossRef]
23. Yan, P.; Yang, X.; Wang, J.; Wang, S.; Ren, H. A novel CpG island methylation panel predicts survival in lung adenocarcinomas.

Oncol. Lett. 2019, 18, 1011–1022. [CrossRef]
24. Li, M.; Zhang, C.; Zhou, L.; Li, S.; Cao, Y.J.; Wang, L.; Xiang, R.; Shi, Y.; Piao, Y. Identification and validation of novel DNA

methylation markers for early diagnosis of lung adenocarcinoma. Mol. Oncol. 2020, 14, 2744–2758. [CrossRef]
25. Rakyan, V.K.; Beyan, H.; Down, T.A.; Hawa, M.I.; Maslau, S.; Aden, D.; Daunay, A.; Busato, F.; Mein, C.A.; Manfras, B.

Identification of type 1 diabetes–associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011,
7, e1002300. [CrossRef]

26. Davegårdh, C.; García-Calzón, S.; Bacos, K.; Ling, C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol.
Metab. 2018, 14, 12–25. [CrossRef]

27. Ahmed, S.A.H.; Ansari, S.A.; Mensah-Brown, E.P.; Emerald, B.S. The role of DNA methylation in the pathogenesis of type 2
diabetes mellitus. Clin. Epigenetics 2020, 12, 104. [CrossRef]

28. Bechtel, W.; McGoohan, S.; Zeisberg, E.M.; Müller, G.A.; Kalbacher, H.; Salant, D.J.; Müller, C.A.; Kalluri, R.; Zeisberg, M.
Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 2010, 16, 544–550. [CrossRef]

29. Chu, A.Y.; Tin, A.; Schlosser, P.; Ko, Y.-A.; Qiu, C.; Yao, C.; Joehanes, R.; Grams, M.E.; Liang, L.; Gluck, C.A. Epigenome-wide
association studies identify DNA methylation associated with kidney function. Nat. Commun. 2017, 8, 1286. [CrossRef]

30. Coit, P.; Jeffries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-
wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive
CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. [CrossRef]

31. Imgenberg-Kreuz, J.; Almlöf, J.C.; Leonard, D.; Alexsson, A.; Nordmark, G.; Eloranta, M.-L.; Rantapää-Dahlqvist, S.;
Bengtsson, A.A.; Jönsen, A.; Padyukov, L. DNA methylation mapping identifies gene regulatory effects in patients with systemic
lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 736–743. [CrossRef] [PubMed]

32. Imgenberg-Kreuz, J.; Almlöf, J.C.; Leonard, D.; Sjöwall, C.; Syvänen, A.-C.; Rönnblom, L.; Sandling, J.K.; Nordmark, G. Shared
and Unique Patterns of DNA Methylation in Systemic Lupus Erythematosus and Primary Sjögren’s Syndrome. Front. Immunol.
2019, 10, 1686. [CrossRef] [PubMed]

33. Edris, A.; den Dekker, H.T.; Melén, E.; Lahousse, L. Epigenome-wide association studies in asthma: A systematic review. Clin.
Exp. Allergy 2019, 49, 953–968. [CrossRef] [PubMed]

34. Alag, A. Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical
reactivity. PLoS ONE 2019, 14, e0218253. [CrossRef]

35. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, 3156. [CrossRef]
36. Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y. Genome-wide

methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [CrossRef]
37. Weidner, C.I.; Lin, Q.; Koch, C.M.; Eisele, L.; Beier, F.; Ziegler, P.; Bauerschlag, D.O.; Jöckel, K.-H.; Erbel, R.; Mühleisen, T.W. Aging

of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014, 15, R24. [CrossRef]
38. Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.

An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573. [CrossRef]
39. Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018,

19, 371–384. [CrossRef]
40. Kim, M.K.; Sasaki, S.; Otani, T.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Dietary patterns and

subsequent colorectal cancer risk by subsite: A prospective cohort study. Int. J. Cancer 2005, 115, 790–798. [CrossRef]
41. Wang, K.; Gaitsch, H.; Poon, H.; Cox, N.J.; Rzhetsky, A. Classification of common human diseases derived from shared genetic

and environmental determinants. Nat. Genet. 2017, 49, 1319. [CrossRef] [PubMed]
42. Lichtenstein, P.; Holm, N.V.; Verkasalo, P.K.; Iliadou, A.; Kaprio, J.; Koskenvuo, M.; Pukkala, E.; Skytthe, A.; Hemminki, K.

Environmental and heritable factors in the causation of cancer—Analyses of cohorts of twins from Sweden, Denmark, and
Finland. N. Engl. J. Med. 2000, 343, 78–85. [CrossRef] [PubMed]

43. Keil, K.P.; Lein, P.J. DNA methylation: A mechanism linking environmental chemical exposures to risk of autism spectrum
disorders? Environ. Epigenetics 2016, 2, dvv012. [CrossRef] [PubMed]

44. Seong, K.-H.; Maekawa, T.; Ishii, S. Inheritance of Stress-Induced Epigenetic Changes Mediated by the ATF-2 Family of
Transcription Factors. In Stress-Induced Mutagenesis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 103–118.

45. Radford, E.J.; Ito, M.; Shi, H.; Corish, J.A.; Yamazawa, K.; Isganaitis, E.; Seisenberger, S.; Hore, T.A.; Reik, W.; Erkek, S.
In utero undernourishment perturbs the adult sperm methylome and is linked to metabolic disease transmission. Science 2014,
345, 1255903. [CrossRef]

https://doi.org/10.1373/clinchem.2007.095992
https://doi.org/10.1371/journal.pone.0009061
https://doi.org/10.1007/s10555-010-9207-6
https://doi.org/10.1158/1078-0432.CCR-15-2346
https://doi.org/10.3892/ol.2019.10431
https://doi.org/10.1002/1878-0261.12767
https://doi.org/10.1371/journal.pgen.1002300
https://doi.org/10.1016/j.molmet.2018.01.022
https://doi.org/10.1186/s13148-020-00896-4
https://doi.org/10.1038/nm.2135
https://doi.org/10.1038/s41467-017-01297-7
https://doi.org/10.1016/j.jaut.2013.04.003
https://doi.org/10.1136/annrheumdis-2017-212379
https://www.ncbi.nlm.nih.gov/pubmed/29437559
https://doi.org/10.3389/fimmu.2019.01686
https://www.ncbi.nlm.nih.gov/pubmed/31428085
https://doi.org/10.1111/cea.13403
https://www.ncbi.nlm.nih.gov/pubmed/31009112
https://doi.org/10.1371/journal.pone.0218253
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1186/gb-2014-15-2-r24
https://doi.org/10.18632/aging.101414
https://doi.org/10.1038/s41576-018-0004-3
https://doi.org/10.1002/ijc.20943
https://doi.org/10.1038/ng.3931
https://www.ncbi.nlm.nih.gov/pubmed/28783162
https://doi.org/10.1056/NEJM200007133430201
https://www.ncbi.nlm.nih.gov/pubmed/10891514
https://doi.org/10.1093/eep/dvv012
https://www.ncbi.nlm.nih.gov/pubmed/27158529
https://doi.org/10.1126/science.1255903


Epigenomes 2024, 8, 44 17 of 18

46. Bell, J.T.; Spector, T.D. A twin approach to unraveling epigenetics. Trends Genet. 2011, 27, 116–125. [CrossRef]
47. Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004,

429, 457–463. [CrossRef]
48. Fujii, R.; Sato, S.; Tsuboi, Y.; Cardenas, A.; Suzuki, K. DNA methylation as a mediator of associations between the environment

and chronic diseases: A scoping review on application of mediation analysis. Epigenetics 2022, 17, 759–785. [CrossRef]
49. Burgio, E.; Piscitelli, P.; Colao, A. Environmental carcinogenesis and transgenerational transmission of carcinogenic risk: From

genetics to epigenetics. Int. J. Environ. Res. Public Health 2018, 15, 1791. [CrossRef]
50. Fallet, M.; Blanc, M.; Di Criscio, M.; Antczak, P.; Engwall, M.; Bosagna, C.G.; Rüegg, J.; Keiter, S.H. Present and future challenges

for the investigation of transgenerational epigenetic inheritance. Environ. Int. 2023, 172, 107776. [CrossRef]
51. Boomsma, D.; Busjahn, A.; Peltonen, L. Classical twin studies and beyond. Nat. Rev. Genet. 2002, 3, 872–882. [CrossRef]
52. Silventoinen, K.; Rokholm, B.; Kaprio, J.; Sørensen, T.I. The genetic and environmental influences on childhood obesity:

A systematic review of twin and adoption studies. Int. J. Obes. 2010, 34, 29–40. [CrossRef]
53. Bell, J.T.; Saffery, R. The value of twins in epigenetic epidemiology. Int. J. Epidemiol. 2012, 41, 140–150. [CrossRef] [PubMed]
54. Gordon, L.; Joo, J.E.; Powell, J.E.; Ollikainen, M.; Novakovic, B.; Li, X.; Andronikos, R.; Cruickshank, M.N.; Conneely, K.N.;

Smith, A.K. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine
environmental and genetic factors, subject to tissue-specific influence. Genome Res. 2012, 22, 1395–1406. [CrossRef] [PubMed]

55. Rappaport, N.; Twik, M.; Plaschkes, I.; Nudel, R.; Iny Stein, T.; Levitt, J.; Gershoni, M.; Morrey, C.P.; Safran, M.; Lancet, D.
MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search.
Nucleic Acids Res. 2017, 45, D877–D887. [CrossRef] [PubMed]

56. Behnia, F.; Parets, S.E.; Kechichian, T.; Yin, H.; Dutta, E.H.; Saade, G.R.; Smith, A.K.; Menon, R. Fetal DNA methylation of autism
spectrum disorders candidate genes: Association with spontaneous preterm birth. Am. J. Obstet. Gynecol. 2015, 212, 533.e1–533.e9.
[CrossRef]

57. Mouat, J.S.; Li, X.; Neier, K.; Zhu, Y.; Mordaunt, C.E.; La Merrill, M.A.; Lehmler, H.J.; Jones, M.P.; Lein, P.J.; Schmidt, R.J.; et al.
Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. Environ.
Res. 2023, 220, 115227. [CrossRef]

58. Xu, X.; Yuan, X.; Ni, J.; Guo, J.; Gao, Y.; Yin, W.; Li, F.; Wei, L.; Zhang, J. MAGI2-AS3 inhibits breast cancer by downregulating
DNA methylation of MAGI2. J. Cell. Physiol. 2021, 236, 1116–1130. [CrossRef]

59. Qu, Y.; Gao, N.; Wu, T. Expression and clinical significance of SYNE1 and MAGI2 gene promoter methylation in gastric cancer.
Medicine 2021, 100, e23788. [CrossRef]

60. Chang, C.C.; Wang, H.C.; Liao, Y.P.; Chen, Y.C.; Weng, Y.C.; Yu, M.H.; Lai, H.C. The feasibility of detecting endometrial and
ovarian cancer using DNA methylation biomarkers in cervical scrapings. J. Gynecol. Oncol. 2018, 29, e17. [CrossRef]

61. Jones, P.A.; Issa, J.-P.J.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016, 17, 630. [CrossRef]
62. Dawson, M.A. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science 2017, 355, 1147–1152.

[CrossRef] [PubMed]
63. Raut, J.R.; Guan, Z.; Schrotz-King, P.; Brenner, H. Fecal DNA methylation markers for detecting stages of colorectal cancer and its

precursors: A systematic review. Clin. Epigenetics 2020, 12, 122. [CrossRef] [PubMed]
64. Saxonov, S.; Berg, P.; Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct

classes of promoters. Proc. Natl. Acad. Sci. USA 2006, 103, 1412–1417. [CrossRef] [PubMed]
65. Goldberg, A.D.; Allis, C.D.; Bernstein, E. Epigenetics: A landscape takes shape. Cell 2007, 128, 635–638. [CrossRef] [PubMed]
66. Maor, G.L.; Yearim, A.; Ast, G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015, 31, 274–280.

[CrossRef]
67. Luo, C.; Hajkova, P.; Ecker, J.R. Dynamic DNA methylation: In the right place at the right time. Science 2018, 361, 1336–1340.

[CrossRef]
68. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [CrossRef]
69. Fatemi, M.; Pao, M.M.; Jeong, S.; Gal-Yam, E.N.; Egger, G.; Weisenberger, D.J.; Jones, P.A. Footprinting of mammalian promoters:

Use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 2005, 33, e176.
[CrossRef]

70. Irizarry, R.A.; Ladd-Acosta, C.; Wen, B.; Wu, Z.; Montano, C.; Onyango, P.; Cui, H.; Gabo, K.; Rongione, M.; Webster, M. Genome-
wide methylation analysis of human colon cancer reveals similar hypo-and hypermethylation at conserved tissue-specific CpG
island shores. Nat. Genet. 2009, 41, 178. [CrossRef]

71. Doi, A.; Park, I.-H.; Wen, B.; Murakami, P.; Aryee, M.J.; Irizarry, R.; Herb, B.; Ladd-Acosta, C.; Rho, J.; Loewer, S. Differential
methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem
cells and fibroblasts. Nat. Genet. 2009, 41, 1350–1353. [CrossRef]

72. Cortessis, V.K.; Thomas, D.C.; Levine, A.J.; Breton, C.V.; Mack, T.M.; Siegmund, K.D.; Haile, R.W.; Laird, P.W. Environmental
epigenetics: Prospects for studying epigenetic mediation of exposure–response relationships. Hum. Genet. 2012, 131, 1565–1589.
[CrossRef] [PubMed]

73. Van Dongen, J.; Gordon, S.D.; McRae, A.F.; Odintsova, V.V.; Mbarek, H.; Breeze, C.E.; Sugden, K.; Lundgren, S.; Castillo-Fernandez, J.E.;
Hannon, E. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun. 2021,
12, 5618. [CrossRef]

https://doi.org/10.1016/j.tig.2010.12.005
https://doi.org/10.1038/nature02625
https://doi.org/10.1080/15592294.2021.1959736
https://doi.org/10.3390/ijerph15081791
https://doi.org/10.1016/j.envint.2023.107776
https://doi.org/10.1038/nrg932
https://doi.org/10.1038/ijo.2009.177
https://doi.org/10.1093/ije/dyr179
https://www.ncbi.nlm.nih.gov/pubmed/22253312
https://doi.org/10.1101/gr.136598.111
https://www.ncbi.nlm.nih.gov/pubmed/22800725
https://doi.org/10.1093/nar/gkw1012
https://www.ncbi.nlm.nih.gov/pubmed/27899610
https://doi.org/10.1016/j.ajog.2015.02.011
https://doi.org/10.1016/j.envres.2023.115227
https://doi.org/10.1002/jcp.29922
https://doi.org/10.1097/MD.0000000000023788
https://doi.org/10.3802/jgo.2018.29.e17
https://doi.org/10.1038/nrg.2016.93
https://doi.org/10.1126/science.aam7304
https://www.ncbi.nlm.nih.gov/pubmed/28302822
https://doi.org/10.1186/s13148-020-00904-7
https://www.ncbi.nlm.nih.gov/pubmed/32778176
https://doi.org/10.1073/pnas.0510310103
https://www.ncbi.nlm.nih.gov/pubmed/16432200
https://doi.org/10.1016/j.cell.2007.02.006
https://www.ncbi.nlm.nih.gov/pubmed/17320500
https://doi.org/10.1016/j.tig.2015.03.002
https://doi.org/10.1126/science.aat6806
https://doi.org/10.1101/gad.947102
https://doi.org/10.1093/nar/gni180
https://doi.org/10.1038/ng.298
https://doi.org/10.1038/ng.471
https://doi.org/10.1007/s00439-012-1189-8
https://www.ncbi.nlm.nih.gov/pubmed/22740325
https://doi.org/10.1038/s41467-021-25583-7


Epigenomes 2024, 8, 44 18 of 18

74. Wong, C.C.Y.; Caspi, A.; Williams, B.; Craig, I.W.; Houts, R.; Ambler, A.; Moffitt, T.E.; Mill, J. A longitudinal study of epigenetic
variation in twins. Epigenetics 2010, 5, 516–526. [CrossRef] [PubMed]

75. Kuratomi, G.; Iwamoto, K.; Bundo, M.; Kusumi, I.; Kato, N.; Iwata, N.; Ozaki, N.; Kato, T. Aberrant DNA methylation associated
with bipolar disorder identified from discordant monozygotic twins. Mol. Psychiatry 2008, 13, 429–441. [CrossRef] [PubMed]

76. Kaminsky, Z.A.; Tang, T.; Wang, S.-C.; Ptak, C.; Oh, G.H.; Wong, A.H.; Feldcamp, L.A.; Virtanen, C.; Halfvarson, J.; Tysk, C. DNA
methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 2009, 41, 240–245. [CrossRef] [PubMed]

77. Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev.
Genet. 2011, 12, 529–541. [CrossRef] [PubMed]

78. Feinberg, A.P.; Irizarry, R.A. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving
force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 2009, 107, 1757–1764. [CrossRef] [PubMed]

79. Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA
methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [CrossRef]

80. Honda, C.; Watanabe, M.; Tomizawa, R.; Sakai, N.; Group, O.T.R. Update on Osaka University Twin Registry: An Overview of
Multidisciplinary Research Resources and Biobank at Osaka University Center for Twin Research. Twin Res. Hum. Genet. 2019,
22, 597–601. [CrossRef]

81. Watanabe, M.; Honda, C.; Iwatani, Y.; Yorifuji, S.; Iso, H.; Kamide, K.; Hatazawa, J.; Kihara, S.; Sakai, N.; Watanabe, H. Within-pair
differences of DNA methylation levels between monozygotic twins are different between male and female pairs. BMC Med.
Genom. 2016, 9, 55. [CrossRef]

82. Dedeurwaerder, S.; Defrance, M.; Calonne, E.; Denis, H.; Sotiriou, C.; Fuks, F. Evaluation of the Infinium Methylation 450K
technology. Epigenomics 2011, 3, 771–784. [CrossRef] [PubMed]

83. Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4161/epi.5.6.12226
https://www.ncbi.nlm.nih.gov/pubmed/20505345
https://doi.org/10.1038/sj.mp.4002001
https://www.ncbi.nlm.nih.gov/pubmed/17471289
https://doi.org/10.1038/ng.286
https://www.ncbi.nlm.nih.gov/pubmed/19151718
https://doi.org/10.1038/nrg3000
https://www.ncbi.nlm.nih.gov/pubmed/21747404
https://doi.org/10.1073/pnas.0906183107
https://www.ncbi.nlm.nih.gov/pubmed/20080672
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1017/thg.2019.70
https://doi.org/10.1186/s12920-016-0217-2
https://doi.org/10.2217/epi.11.105
https://www.ncbi.nlm.nih.gov/pubmed/22126295
https://doi.org/10.1073/pnas.1530509100
https://www.ncbi.nlm.nih.gov/pubmed/12883005

	Introduction 
	Results 
	Difference Between EFI and Correlation Coefficient 
	Methylation Sites Are Linked to Disorders 
	Environmental Factors Alter DNA Methylation Levels in Methylation Markers 
	DNA Methylation on CpG Islands 

	Discussion 
	Materials and Methods 
	Subjects and Ethics Statement 
	Methylation Sites 
	Notation 
	Environmental Factor Index (EFI) 
	Statistical Analysis of EFI 
	Statistical Analysis of Disease Association 

	Conclusions 
	References

