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Abstract: Assessing respiratory frequency (f R) is practical in monitoring training progress in compet-
itive athletes, especially during exercise. This study aimed to validate a new wearable chest strap
(wCS) to estimate f R against ergospirometry as a criterion device in soccer players. A total of 26 elite
professional soccer players (mean [standard deviation]: 23.6 [4.8] years; 180.6 [5.7] cm; 77.2 [5.4] kg)
from three Italian Serie A League teams participated in this cross-sectional study. The sample in-
cluded attackers, midfielders, and defenders. f R was assessed during a maximal cardiopulmonary
exercise test (CPET) on a treadmill using (i) a breath-by-breath gas exchange analyzer (Vyntus®

CPX, Vyaire Medical) and (ii) a novel wCS with sensors designed to assess breath frequency fol-
lowing chest expansions. Pearson’s correlation coefficient (r), adjusted coefficient of determination
(aR2), Bland–Altman plot analysis, and Lin’s concordance correlation coefficient (ρc) were used for
comparative analysis (correlation and concordance) among the methods. The repeated measures
correlation coefficient (rrm) was used to assess the strength of the linear association between the
methods. The intraclass correlation coefficient (ICC) and the Finn coefficient (rF) were used for
inter-rater reliability. All statistical analyses were performed within the R statistical computing
environment, with 95% confidence intervals (95% CIs) reported and statistical significance set at
p < 0.05. A total of 16529 comparisons were performed after collecting the CPET data. The robust
time series analysis with Hodges–Lehmann estimation showed no significant differences between
both methods (p > 0.05). Correlation among devices was statistically significant and very large
(r [95% CI]: 0.970 [0.970, 0.971], p < 0.01; aR2 [95% CI]: 0.942 [0.942, 0.943], p < 0.01) with strong
evidence supporting consistency of the new wCS (BF10 > 100). In addition, a high concordance was
found (ρc [95% CI]: 0.970 [0.969, 0.971], bias correction factor: 0.999). VyntusTM CPX, as a standard
criterion, showed moderate agreement with wCS after Bland–Altman analysis (bias [95% lower to
the upper limit of agreement]; % agree: 0.170 [−4.582 to 4.923] breaths·min−1; 69.9%). A strong
association between measurements (rrm [95% CI]: 0.960 [0.959, 0.961]), a high absolute agreement
between methods (ICC [95% CI]: 0.970 [0.970, 0.971]), and high inter-rater reliability (rF: 0.947) were
found. With an RMSE = 2.42 breaths·min−1, the new wCS seems to be an valid and reliable in-field
method to evaluate f R compared to a breath-by-breath gas exchange analyzer. Notwithstanding,
caution is advised if methods are used interchangeably while further external validation occurs.
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1. Introduction

Over the past three decades, athletic training has undergone substantial transfor-
mation, largely driven by advancements in technology. Within the realm of athletic per-
formance evaluation, the identification of a dependable biomarker induced by exercise
stress [1] or a variable linked to fatigue [2] holds paramount importance. In this sense,
monitoring training load is crucial for understanding and optimizing the physiological and
psychological responses to physical exercise [3].

This monitoring helps fine-tune training programs, ensuring an appropriate balance
between stress and recovery to promote positive adaptations while minimizing the risk of
chronic allostatic overload [4]. Allostatic load indicates how different physiological systems
interact, such as the immunological, endocrine, and cardiovascular systems, to comprehend
how long-term stress affects health and disease development [5]. This approach allows
for a more effective structuring of the training program in all its components (frequency,
intensity, loads), while also evaluating external factors such as nutrition, supplements, and
the quality and quantity of sleep. In this context, the role of the sports scientist is becoming
increasingly important, as a professional who can integrate feedback from devices and
experts to optimize performance.

The assessment of the cardiorespiratory response involves the development and vali-
dation of instruments and devices for both laboratory and field use. While heart rate serves
as a recognized marker of vagal activity [6], heart rate variability (HRV) offers considerable
versatility in providing insights into exercise-induced physiological stress, thereby enabling
the monitoring of training load [7]. Evaluating the cardiac response, particularly HRV, using
wearable devices, including real-time monitoring, has shown its reliability as a dependable
field instrument [8,9]. However, it is important to note that these instruments do not
directly facilitate on-field evaluation. Similarly, evaluating the ventilatory response adds
complexity, particularly because it currently relies on laboratory tests and gas exchange
data analyzers, despite its fundamental importance, although some tools for use in the field
are starting to become available. The gold standard for performance assessment remains
the cardiopulmonary exercise test (CPET), allowing examination of cardiac, ventilatory, and
metabolic responses within a controlled lab environment. However, this test is confined to
lab settings and not applicable for daily training at a low cost [10] unless indirect tests are
used such as the Cooper run test or Shuttle run test [11]. Additionally, the role of respiratory
rate might be significant, given its potential for dynamic evaluation. Evidence suggests its
correlation with perceived effort and respiratory volumes [12–14].

In soccer, previous research has established a link between f R and exercise capacity re-
sponse [15,16]. It is worth noting that a large correlation between f R and perceived effort has
been reported [12]. In this sense, several methods, such as using a smart facemask [17], recording
breathing sounds with a microphone [18], and new algorithms [19], have been developed for
respiratory monitoring during exercise. Notwithstanding, there is no doubt that practicing
sports while wearing a mask that covers the entire face significantly affects performance, and
some other devices are susceptible to bias if signals can be affected by motion.

Therefore, the development of novel respiratory wearable devices represents a promis-
ing area of research considering their low invasiveness, good integration in Internet of
Things and wearable systems, low energy consumption, and low cost, as stated by Massa-
roni et al. (2019) [20]. Hence, this study aimed to validate a new wearable chest strap (wCS)
to assess respiratory frequency in real-time during an exhaustion test for elite Italian soccer
players. This would represent the first step in the development of a device that allows
sports scientists to monitor the respiratory frequency, and therefore the training load, in
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an easy-to-use manner with significantly lower costs while maintaining validity and high
reliability when compared to the gold-standard breath-to-breath gas analyzers.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was conducted on a single-point measurement in elite soccer
players following recommendations on the use of exercise testing in clinical practice [21].
The findings are reported following the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) statement [22].

2.2. Setting

The study was conducted between September and October of 2022. The research was
performed during the season 2022–2023 of the Serie A. All the measurements were taken in
a single session. Evaluations were conducted between 9:00 and 17:00 (CET), always operate
in the same place and always use the same device.

2.3. Participants

Twenty-six elite professional soccer players from three different soccer teams belonging
to the Italian Serie A (23.6 [4.8] years; 180.6 [5.7] cm; 77.2 [5.4] kg; BMI 23.7 [1.0] kg·m−2)
participated in the study. The sample comprised forwards, midfielders, and defenders
who underwent evaluation upon completion of the pre-season schedule of routine medical
assessments. As anticipated, none of them reported any smoking habits or significant
pathological conditions. At the time of testing, all participants were injury-free for at least
three months and had not reported serious musculoskeletal injuries in the last two years.
Furthermore, they were briefed on the experimental procedures and provided their consent
before taking part. While the participants were unaware of the ultimate objective of this
study, they willingly signed an informed consent form allowing their data to be used for
research. Ethical approval was granted by the University of Calabria’s scientific and ethics
review board (UCALPRG 0076328, 19102022).

2.4. Variables

The selected variables in this study included demographics (body mass [BM, kg],
stature [cm] and age [years]) and respiratory frequency (f R, breaths·min−1).

2.5. Data Sources/Measurement

Prior to the assessment, the athletes performed a three-minute group warm-up con-
sisting of running at 8–10 km per hour, which corresponded to the first three minutes of
the test record.

2.5.1. Exercise Test

An incremental symptom-limited exercise test was conducted as reported previ-
ously [23]. Following a short warm-up, the participants initiated the test at a speed of
8 km/h, with no slope variation during the test. The protocol involved a “ramp” phase
characterized by a gradual speed increment of 1 km/h every 60 s. The test continued until
the participant reached failure, which they self-reported. Participants were equipped with
a heart rate sensor (Polar H10, Polar, Kempele, Finland).

2.5.2. Novel Wearable Device Description

The system comprises two components: the chest strap (Figure 1) and the accompany-
ing reading/communication module (Figure 2). The electronic module must be attached
to the strap to ensure proper functioning. The strap features two distinct sides: an inner
side equipped with electrodes for heart rate measurement, requiring direct contact with the
body, and an outer side with four pressure contacts for attaching the transmission module.
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(i) Moisten the heart rate electrodes by dampening the sensors located on the inner side
of the chest strap.

(ii) Secure the strap around the chest, ensuring the four front contacts are centered. Adjust
for comfort, making sure it is neither too tight nor likely to slip.

(iii) Attach the transmitter module to the strap using the clip.
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The transmission component consisted of a plastic case (Nylon PA11), which was
non-conductive and non-shielding from an electrical standpoint. This case contained an
electronic board onto which the Bluetooth Low Energy (BLE) radio transceiver module
was placed. Between the upper and lower sections of the case, there was an NBR rubber
sealing gasket that prevented the penetration of potential pollutants into the device. The
device was mechanically and electrically connected by using four snap contacts that were
welded onto tin-plated steel spacers (in compliance with the RoHS and REACH directives).
This connection was established with a completely passive fabric band equipped with two
electrodes for heart rate monitoring and a resistive strain gauge sensor used for breath
detection. When activated, the electronic card cyclically read the analog signals generated
by the sensors within the fascia’s structure. After appropriate filtering was applied to
eliminate unused signal components, communication of the relevant data occurred with a
remote collection station. This communication took place via radio waves utilizing the BLE
system operating at 2.4 GHz.

The transmission system employs the Bluetooth Long Range mode, enabling it to cover
greater distances compared to the standard BLE protocol. Verified distances in open-air
settings are around 150 m or more, while adhering to radiated power levels in compliance
with prevailing regulations. The electronic card situated within the module attached to the
elastic band is composed of the following distinct sections:

• Transmission module with an integrated BLE radio system;
• Heart rate reading module;
• Respiratory signal amplification section;
• Inertial system for energy-efficient operation control;
• Auxiliary acoustic signaling system.

Heart rate detection relies on a microchip specially designed for this purpose. It does
not emit radio frequency signals, being predominantly analog and tailored for applications
with very low power consumption. There are no quartz or timed systems that could act as
additional sources of radiated signals in the surroundings. Following band-pass filtering,
signals captured by the analog front end are processed using the renowned Pan–Tompkins
algorithm [24]. This algorithm identifies R peaks related to the PQRST envelope, thereby
determining heart rate.

The respiratory rate reading involves an analog operational amplifier. Its primary
function is to filter and amplify signals detected by the strain gauge sensor. The output
of this amplifier is directly read by the microcontroller integrated with the radio module.
After appropriate low-pass filtering to eliminate disturbances caused by belt movement
that could distort respiratory readings, a threshold algorithm is utilized for calculating
the respiratory rate. Additionally, the filters employ solely passive components such as
resistors and capacitors. There are no high-frequency digital signals or systems emitting
electromagnetic waves into the environment. To optimize battery life, the board incor-
porates an energy management strategy that entails completely deactivating the radio
frequency section during periods of board inactivity. This function is carried out by an
analog inertial system utilizing a MEMS accelerometer. In Table 1, we report more technical
information of the device.

Table 1. Device specifications.

Communication Type Bluetooth (BLE) Long Range *

Allowable distance 130 m (real-time); greater distance under datalogger
management (automatic switch)

Features and function mode

Real-time transmission of heart rate (HR) and breath rate
(BR), with datalogger function (maximum 1 h) and
automatic management/data download upon returning to
real-time distance.
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Table 1. Cont.

Communication Type Bluetooth (BLE) Long Range *

Data measurement Direct measurement of heart rate and respiratory frequency
(breath rate) with estimation of VO2 and VE

Battery type Button-style CR 2025

Battery lifetime Typically 100 h (variable with usage distance)

Operating temperature −10 ◦C to +50 ◦C (14 ◦F to 122 ◦F)

Device material ABS, Nylon PA12, tinned coated brass

Device weight 30 g (with battery installed)

Belt materials Polyamide and elastane with anti-slip silicone prints
* Supports a maximum of 30 devices simultaneously.

2.5.3. Data Acquisition

Participants wore a face breathing mask connected with a fast-responding gas analyzer
(Vyntus®, Vyaire Medical, Chicago, IL, USA). In addition, they wore the new wearable
chest strap (wCS), equipped with sensors to read HR and f R, during an incremental
cardiopulmonary exercise test (CPET) on a treadmill (Runrace 900, Technogym, Gambettola,
Italy). The breathing frequency was recorded for the entire test duration, checking inhaled
and exhaled gasses breath by breath without mediating any values by the flow meter
and fast-responding gas analyzer. Before performing the test, each participant underwent
spirometry to obtain a flow–volume loop. Based on the forced expiratory volume in 1 s
(FEV1), the maximum voluntary ventilation was determined for the CPET.

2.6. Sample Size

Professional soccer players of three Italian Serie A League teams were considered
potentially eligible participants of this study. After the call and intention to participate, a
convenience non-probabilistic sample of 26 elite players from Empoli FC, Cagliari Calcio,
and SSC Napoli were obtained.

2.7. Statistical Analysis

Descriptive statistics were expressed as means (standard deviations), as recommended
for biomedical research articles [25,26]. Based on previously published recommendations
to analyze time series data collected from direct-reading instruments [27], a robust ver-
sion of a two-sample t-test was utilized to adjust for autocorrelation properly [28]. The
R package ‘robts: Robust Time Series Analysis’ was used to this end. We evaluated the
relationship between measured (Vyntus®) and estimated (new wearable chest strap) val-
ues of respiratory frequency by using all data measurements during the CPET through
a Bayesian correlation analysis [29,30]. This was carried out as all possible values of the
correlation were equally likely. Following current recommendations in sport science [31],
we report not only Pearson’s correlation coefficient but also the likelihood ratio (also known
as Bayes Factor [BF]) and the corresponding 95% credible interval (95% CrI), which is
the most widely accepted measure to quantify how much evidence a data set provides
for a hypothesis. In our case, the BF was expressed as BF10 to grade the intensity of the
evidence that the data provided for H1 versus H0 (where H0 is the null hypothesis and H1
is the alternative hypothesis that assumes an effect is present). Additionally, the adjusted
coefficient of determination (aR2) and Lin’s concordance correlation coefficient (ρc) were
used for comparative analysis between the new wCS and breath-to-breath ergospirometry
values (Vyntus® as a criterion). The mean absolute error (MAE), percentage of absolute
error (%error), and root mean squared error (RMSE) were also calculated. The repeated
measures correlation coefficient (rrm) was used to assess the strength of the linear associa-
tion between the methods. In contrast, the intraclass correlation coefficient (ICC) with its
corresponding 95% confidence interval (95% CI) and the Finn coefficient (rF) were used for
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inter-rater reliability. In addition, Bland–Altman analysis was used for the concordance
analysis between the chest strap and ergospirometry assessment. This analysis determines
whether the two measurement methods agree sufficiently to be declared interchangeable
(D = X − Y). The mean of these differences represents the systematic error (bias), while the
variance in these differences (1.96 SD) measures the dispersion of the random error. All sta-
tistical analyses were performed within the v4.2.3 R statistical computing environment [32]
with a statistical significance of p < 0.05.

3. Results

All data measurements were obtained from the 26 elite soccer players (23.6 [4.8] years;
180.6 [5.7] cm; 77.2 [5.4] kg) from three Italian Serie A League teams. In total, 16,529 compar-
isons were performed after collecting data during the maximal CPET. The robust time series
analysis with Hodges–Lehmann estimation indicated no significant difference between
the estimated and measured time series of f R (p > 0.05). The distribution of f R (illustrated
on the right in Figure 3) indicates a close alignment between the reference and estimated
values across the entire duration of the test.
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Figure 3. Measured and estimated respiratory frequency (f R) values. The f R is reported in breaths·min−1.
The scatter plot shows individual measurements over time, with a smooth regression line highlighting
the trend for both devices.

Pearson correlation (r, 95% CI; p value) was calculated to explore the relationship
between variables (Figure 4A). Correlation among devices was statistically significant
and very large (r [95% CI]: 0.970 [0.970, 0.971], p < 0.01; aR2 [95% CI]: 0.942 [0.942, 0.943],
p < 0.01) with strong evidence supporting the alternative hypothesis (BF10 > 100). The
analysis yielded the following errors: MAE = 1.85 breaths·min−1, %Error = 5.24%, and
RMSE = 2.42 breaths·min−1. In addition, a strong association between measurements was
found (rrm [95% CI]: 0.960 [0.959, 0.961]) when analyzing the repeated measures correlation
concordance of each soccer player (Figure 4B).
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Figure 4. (A) Pairwise scatter plot matrix, distribution, and Pearson correlation coefficient. The
correlation plot includes histograms, density distributions, and a smooth regression line of the
estimated and measured respiratory frequency (f R) values. *** Statistical significance at p ≤ 0.001.
(B) Repeated measures correlation concordance plot for each participant. Separate parallel lines are
fitted to the data from each participant, and the corresponding line is shown in a different color. The
blue dashed line is the fit of the simple correlation.

A high concordance was also found (ρc [95% CI]: 0.970 [0.969, 0.971], bias correction
factor: 0.999). Furthermore, a high absolute agreement between methods (ICC [95% CI]:
0.970 [0.970, 0.971]) and a high inter-rater reliability (rF: 0.947) were also found. Finally,
VyntusTM CPX, as a standard criterion, showed moderate agreement with the new wCS
after Bland–Altman analysis (bias [95% lower to the upper limit of agreement]; % agreement:
0.170 [−4.582 to 4.923]; 69.9%) (Figure 5).
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4. Discussion

In this study, the aim was to validate a novel wCS for measuring f R by comparing
the data obtained with a breath-by-breath gas exchange analyzer. Robust time series
analysis with Hodges–Lehmann estimation revealed no significant differences between
both methods (p > 0.05). Moreover, statistical analyses showed a notably strong correlation
(aR2 = 0.942, p < 0.01) and high concordance (ρc = 0.970, bias correction factor = 0.999)
between the new wCS and VyntusTM CPX, as the criterion method. A bias correction factor
is typically used to align estimations more accurately with reference values, aligning the
findings more precisely. A factor of one indicates no correction is needed, while factors less
than one suggest an underestimation (negative bias), and factors more than one indicate an
overestimation (positive bias). The bias correction factor of 0.999 for this new wCS suggests
a small adjustment to mitigate a potential bias in the data.

It should be noted that high absolute agreement between methods and high inter-rater
reliability was found. Also, the Bland–Altman analysis resulted in a low bias of 0.170 [95%
CI from 0.133 to 0.207] breaths·min−1. This indicates that a significant proportion of the
data points in the analysis fell within an acceptable range of difference between the two
measurement methods. Given the device is easy and comfortable to wear, it might become
a valuable tool in the real-time evaluation of workload by monitoring f R during a soccer
training session or match. In fact, in conditions resembling real scenarios, the new wCS
showed a smaller overall %Error (5.24%) in the breath-by-breath analysis compared to a
recently developed system for the direct measurement of f R during exercise (6.65%) [19].
Thus, the new wCS method seems to be valid and reliable for the evaluation of f R over a
cardiopulmonary exercise test. Considering its low cost, further research might be needed
to explore its use in non-professional categories or clinical populations (when physical
activity serves as a co-adjuvant for the treatment of certain pathologies).

This study should be analyzed considering the following limitations. First, a greater
number of participants might be needed for generalizability; however, it is important
to note that participants of this study were elite professional soccer players from Italian
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Serie A, which implies that the speeds reached during the exhaustion test were high (even
over 20 km/h) and the durations were, on average, longer than those of the average
population. In line of this, it is advisable to exercise caution when employing the methods
interchangeably, especially as additional external validation is still underway. Second, the
assessment of f R through the novel wCS was carried out without repeated measures, using
only one measurement session of the CPET. This naturally reduced the degree to which
an evaluation for intra-session reliability of the device could be conducted since the lack
of repeated trials may have failed to capture situational factors or individual differences
in performance. As well as being of great value, the results of our statistical analyses
provided insight into the agreement between the wCS and the reference method. Future
studies are recommended to consider multiple trials of other tests within a session as one
of the ways to further develop the assessment of reliability and increase the consistency
of the measurements across conditions. Thus, the performance of the new wCS must be
verified in other field tests. The device seems convenient in terms of wearability without
causing disruptions to performance or routine sporting engagements, but this needs to be
validated. Our research group already planned a second battery of tests with a protocol
that simulates the movements in the field, and this will be a decisive point for the reliability
of the instrument; in particular, jumps, changes in direction, or any contact could cause the
band to move or alter the signal. It should be underlined, however, that the test was carried
out with a completely portable instrument (such as a backpack). Finally, future research is
needed in female soccer players to identify a different positioning of the band.

5. Conclusions

The novel wCS proves to be a valid and reliable in-field method for assessing f R when
compared to a breath-by-breath gas exchange analyzer (RMSE = 2.42 breaths·min−1). Al-
though the device is easy and comfortable to wear, caution is advised when considering the
interchangeability with the criterion method, particularly given the moderate percentage
of agreement and the absence of further external validation.
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