Impact Force and Velocities for Kicking Strikes in Combat Sports: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Literature Quality Assessment
3. Results
3.1. Literature Quality
3.2. Study Participants and Characteristics
3.3. Measurement of Kicking Velocity and Impact kinetics
3.4. Kicking Velocity and Impact Force
4. Discussion
4.1. The Measurement of Kicking Velocity and Impact Force
4.2. Kinematics and Impact Kinetics of Kicking Strikes
4.3. Determinants of Kicking Velocity and Impact Force
4.4. Injury Potential from Kicking Strikes
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barley, O.R.; Chapman, D.W.; Guppy, S.N.; Abbiss, C.R. Considerations when assessing endurance in combat sport athletes. Front. Psychol. 2019, 10, 205. [Google Scholar] [CrossRef]
- Liu, T.-T.; Lin, Y.-C.; Tang, W.-T.; Hamill, J.; Chang, J.-S. Lower-limb kinematic characteristics of Taekwondo kicks at different attack angles. Int. J. Perform. Anal. Sport. 2021, 21, 519–531. [Google Scholar] [CrossRef]
- Wasik, J. Chosen aspects of physics in martial arts. Arch. Budo. 2009, 5, 11–14. [Google Scholar]
- Beattie, K.; Ruddock, A.D. The role of strength on punch impact force in boxing. J. Strength Cond. Res. 2022, 36, 2957–2969. [Google Scholar] [CrossRef]
- Slimani, M.; Chaabene, H.; Miarka, B.; Franchini, E.; Chamari, K.; Cheour, F. Kickboxing review: Anthropometric, psychophysiological and activity profiles and injury epidemiology. Biol. Sport. 2017, 34, 185–196. [Google Scholar] [CrossRef]
- Bridge, C.A.; Ferreira da Silva Santos, J.; Chaabene, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Spanias, C.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Anthropometric and physiological profile of mixed martial art athletes: A brief review. Sports 2019, 7, 146. [Google Scholar] [CrossRef]
- Lenetsky, S.; Uthoff, A.; Coyne, J.; Cronin, J. A Review of Striking Force in Full-Contact Combat Sport Athletes: Methods of Assessment. Strength Cond. J. 2022, 44, 71–83. [Google Scholar] [CrossRef]
- Kazemi, M.; Perri, G.; Soave, D. A profile of 2008 Olympic Taekwondo competitors. J. Can. Chiropr. Assoc. 2010, 54, 243. [Google Scholar] [PubMed]
- Ibáñez, R.; Lapresa, D.; Arana, J.; Camerino, O.; Anguera, M.T. Observational Analysis of the Technical-Tactical Performance of Elite Karate Contestants. Cult. Cienc. Deporte 2018, 13, 61–70. [Google Scholar] [CrossRef]
- Vagner, M.; Malecek, J.; Tomšovský, L.; Kubový, P.; Levitova, A.; Stastny, P. Isokinetic strength of rotators, flexors and hip extensors is strongly related to front kick dynamics in military professionals. J. Hum. Kinet. 2019, 68, 145–155. [Google Scholar] [CrossRef]
- Moreira, P.V.S.; Goethel, M.F.; Gonçalves, M. Neuromuscular performance of Bandal Chagui: Comparison of subelite and elite taekwondo athletes. J. Electromyogr. Kinesiol. 2016, 30, 55–65. [Google Scholar] [CrossRef]
- Wąsik, J. Kinematics and kinetics of taekwon-do side kick. J. Hum. Kinet. 2011, 30, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Cular, D.; Krstulovic, S.; Tomljanovic, M. The differences between medalists and non-medalists at the 2008 Olympic games taekwondo tournament. Hum. Mov. 2011, 12, 165–170. [Google Scholar] [CrossRef]
- Petersen, C.; Lindsay, A. Movement and physiological demands of amateur mixed martial art fighting. J. Sport Exerc. Sci. 2020, 4, 40–43. [Google Scholar]
- Ambroży, T.; Rydzik, Ł.; Kędra, A.; Ambroży, D.; Niewczas, M.; Sobiło, E.; Czarny, W. The effectiveness of kickboxing techniques and its relation to fights won by knockout. Arch. Budo. 2020, 16, 11–17. [Google Scholar]
- Lota, K.S.; Malliaropoulos, N.; Blach, W.; Kamitani, T.; Ikumi, A.; Korakakis, V.; Maffulli, N. Rotational head acceleration and traumatic brain injury in combat sports: A systematic review. Br. Med. Bull. 2022, 141, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Kwok, H.H.M. Discrepancies in fighting strategies between Taekwondo medalists and non-medalists. J. Hum. Sport Exerc. 2012, 7, 806–814. [Google Scholar] [CrossRef]
- Bercades, L.T.; Oldham, A.R.; Lorimer, A.; Lenetsky, S.; Millar, S.K.; Sheerin, K. Experiential knowledge of expert coaches on the critical performance factors of the taekwondo roundhouse kick. Int. J. Sports Sci. Coach. 2023, 18, 668–686. [Google Scholar] [CrossRef]
- Ha, S.; Kim, M.J.; Jeong, H.S.; Lee, I.; Lee, S.Y. Mechanisms of sports concussion in taekwondo: A systematic video analysis of seven cases. Int. J. Environ. Res. Public Health 2022, 19, 10312. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.V.S.; Falco, C.; Menegaldo, L.L.; Goethel, M.F.; De Paula, L.V.; Gonçalves, M. Are isokinetic leg torques and kick velocity reliable predictors of competitive level in taekwondo athletes? PLoS ONE 2021, 16, e0235582. [Google Scholar] [CrossRef]
- Thibordee, S.; Prasartwuth, O. Factors influencing the impact force of the taekwondo roundhouse kick. Chiang Mai Univ. J. Nat. Sci. 2014, 13. [Google Scholar] [CrossRef]
- Guo, M. Relative analysis of Taekwondo back kick skills’ biomechanics based on 3D photograph parsing. J. Chem. Pharm. Res. 2013, 5, 64–69. [Google Scholar]
- Gavagan, C.J.; Sayers, M.G. A biomechanical analysis of the roundhouse kicking technique of expert practitioners: A comparison between the martial arts disciplines of Muay Thai, Karate, and Taekwondo. PLoS ONE 2017, 12, e0182645. [Google Scholar] [CrossRef]
- Lin, Y.C.; Tang, W.T.; Peng, Y.C.; Liu, T.T.; Chang, W.G.; Huang, T.Y.; Hamill, J. Differences in kick-leg kinematics in various side-kick heights. Eur. J. Sport Sci. 2023, 23, 2170–2177. [Google Scholar] [CrossRef]
- Diniz, R.; Del Vecchio, F.B.; Schaun, G.Z.; Oliveira, H.B.; Portella, E.G.; da Silva, E.S.; Formalioni, A.; Campelo, P.C.; Peyré-Tartaruga, L.A.; Pinto, S.S. Kinematic comparison of the roundhouse kick between taekwondo, karate, and muaythai. J. Strength Cond. Res. 2021, 35, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Dworak, L.B.; Kołaczkowski, Z.; Mączvńsk, J. Comparison between the dynamics of selected Shotokan karate and kickboxing techniques. Stud. Phys. Cult. Tour. 1998, 5, 111–115. [Google Scholar]
- Aandahl, H.S.; Von Heimburg, E.; Van den Tillaar, R. Effect of postactivation potentiation induced by elastic resistance on kinematics and performance in a roundhouse kick of trained martial arts practitioners. J. Strength Cond. Res. 2018, 32, 990–996. [Google Scholar] [CrossRef]
- Jakubiak, N.; Saunders, D.H. The feasibility and efficacy of elastic resistance training for improving the velocity of the Olympic Taekwondo turning kick. J. Strength Cond. Res. 2008, 22, 1194–1197. [Google Scholar] [CrossRef]
- Olsen, P.D.; Hopkins, W.G. The effect of attempted ballistic training on the force and speed of movements. J. Strength Cond. Res. 2003, 17, 291–298. [Google Scholar]
- Moreira, P.V.S.; Paula, L.; Veloso, A.P. Segmental kick velocity is correlated with kick specific and nonspecific strength performance in a proximodistal sequence. Arch. Budo. 2015, 11, 271–276. [Google Scholar]
- Goulart, K.N.D.O.; Corgosinho, R.F.; Rodrigues, S.A.; Drummond, M.D.; Flor, C.A.; Goncalves, R.; Szmuchrowski, L.A.; Couto, B.P. Correlation between roundhouse kick and countermovement jump performance. Arch. Budo. 2016, 12, 125–131. [Google Scholar]
- Gartland, S.; Malik, M.; Lovell, M. Injury and injury rates in Muay Thai kick boxing. Br. J. Sports Med. 2001, 35, 308–313. [Google Scholar] [CrossRef]
- Del Vecchio, F.B.; Farias, C.B.; de Leon, R.C.; Rocha, A.C.C.A.; Galliano, L.M.; Coswig, V.S. Injuries in martial arts and combat sports: Prevalence, characteristics and mechanisms. Sci. Sports 2018, 33, 158–163. [Google Scholar] [CrossRef]
- Hammami, N.; Hattabi, S.; Salhi, A.; Rezgui, T.; Oueslati, M.; Bouassida, A. Combat sport injuries profile: A review. Sci. Sports. 2018, 33, 73–79. [Google Scholar] [CrossRef]
- Follmer, B.; Zehr, E.P. It’sa no brainer: Combat sports should be ground zero for research on concussion. Br. J. Sports Med. 2021, 55, 1434–1435. [Google Scholar] [CrossRef]
- Lenetsky, S.; Harris, N.; Brughelli, M. Assessment and contributors of punching forces in combat sports athletes: Implications for strength and conditioning. Strength Cond. J. 2013, 35, 1–7. [Google Scholar] [CrossRef]
- Dinu, D.; Louis, J. Biomechanical Analysis of the Cross, Hook, and Uppercut in Junior vs. Elite Boxers: Implications for Training and Talent Identification. Front. Sports Act. Living 2020, 2, 598861. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A. WebPlotDigitizer (Version 4.7). 2023. Available online: https://automeris.io/WebPlotDigitizer (accessed on 14 February 2024).
- Downes, M.J.; Brennan, M.L.; Williams, H.C.; Dean, R.S. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open. 2016, 6, e011458. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.; Climstein, M.; Del Vecchio, L. Functional benefits of hard martial arts for older adults: A scoping review. Int. J. Exerc. Sci. 2022, 15, 1430. [Google Scholar] [PubMed]
- Moreira, P.V.S.; Franchini, E.; Fernandes, U.; Ervilha, M.F.G.; Cardozo, A.C.; Gonçalves, M. Relationships of the expertise level of taekwondo athletes with electromyographic, kinematic and ground reaction force performance indicators during the dollyo chagui kick. Arch. Budo. 2018, 14, 59–69. [Google Scholar]
- Estevan, I.; Falco, C.; Silvernail, J.F.; Jandacka, D. Comparison of lower limb segments kinematics in a Taekwondo kick. An approach to the proximal to distal motion. J. Hum. Kinet. 2015, 47, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Estevan, I.; Falco, C. Mechanical analysis of the roundhouse kick according to height and distance in taekwondo. Biol. Sport. 2013, 30, 275–279. [Google Scholar] [CrossRef]
- Goethel, M.F.; Ervilha, U.F.; Moreira, P.V.S.; de Paula Silva, V.; Bendillati, A.R.; Cardozo, A.C.; Gonçalves, M. Coordinative intra-segment indicators of karate performance. Arch. Budo. 2019, 15, 203–211. [Google Scholar]
- Jung, T.; Park, H. Contributions of Body Segments to the Toe Velocity during Taekwondo Roundhouse Kick. Appl. Sci. 2022, 12, 7928. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, Y.H.; Im, S.J. Inter-joint coordination in producing kicking velocity of Taekwondo kicks. J. Sports Sci. Med. 2011, 10, 31–38. [Google Scholar]
- Estevan, I.; Falco, C.; Álvarez, O.; Molina-García, J. Effect of Olympic weight category on performance in the roundhouse kick to the head in taekwondo. J. Hum. Kinet. 2012, 31, 37–43. [Google Scholar] [CrossRef]
- Falco, C.; Alvarez, O.; Castillo, I.; Estevan, I.; Martos, J.; Mugarra, F.; Iradi, A. Influence of the distance in a roundhouse kick’s execution time and impact force in Taekwondo. J. Biomech. 2009, 42, 242–248. [Google Scholar] [CrossRef]
- Estevan, I.; Jandacka, D.; Falco, C. Effect of stance position on kick performance in taekwondo. J. Sports Sci. 2013, 31, 1815–1822. [Google Scholar] [CrossRef]
- Estevan, I.; Alvarez, O.; Falco, C.; Molina-García, J.; Castillo, I. Impact force and time analysis influenced by execution distance in a roundhouse kick to the head in taekwondo. J. Strength Cond. Res. 2011, 25, 2851–2856. [Google Scholar] [CrossRef]
- Falco, C.; Molina-García, J.; Álvarez, O.; Estevan, I. Effects of target distance on select biomechanical parameters in taekwondo roundhouse kick. Sports Biomech. 2013, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Jandačka, D.; Estevan, I.; Janura, M.; Falco, C. The impact of the initial stance position on lower limb joint kinetics in the taekwondo roundhouse kick. Acta Gymnica. 2013, 43, 15–22. [Google Scholar] [CrossRef]
- Margaritopoulos, S.; Theodorou, A.; Methenitis, S.; Zaras, N.; Donti, O.; Tsolakis, C. The effect of plyometric exercises on repeated strength and power performance in elite karate athletes. J. Phys. Educ. Sport. 2015, 15, 310–318. [Google Scholar] [CrossRef]
- Vagner, M.; Cleather, D.; Kubovy, P.; Hojka, V.; Stastny, P. Kinematic Determinants of Front Kick Dynamics Across Different Loading Conditions. Mil. Med. 2022, 187, E147–E153. [Google Scholar] [CrossRef] [PubMed]
- Estevan, I.; Álvarez, O.; Falcó, C.; Castillo, I. Self-efficacy and performance of the roundhouse kick in taekwondo. Rev. Artes Marciales Asiát. 2014, 9, 97–105. [Google Scholar] [CrossRef]
- Wilk, S.R.; McNair, R.E.; Feld, M.S. The physics of karate. Am. J. Phys. 1983, 51, 783–790. [Google Scholar] [CrossRef]
- Branco, M.A.C.; VencesBrito, A.M.V.; Rodrigues-Ferreira, M.A.; Branco, G.A.C.; Polak, E.; Cynarski, W.J.; Jacek, W. Effect of aging on the lower limb kinematics in karate practitioners: Comparing athletes and their senseis. J. Healthc. Eng. 2019, 2019, 2672185. [Google Scholar] [CrossRef]
- Chang, W.-G.; Lin, K.-Y.; Chu, M.-Y.; Chow, T.-H. Differences in Pivot Leg Kinematics and Electromyography Activation in Various Round House Kicking Heights. J. Sports Sci. Med. 2021, 20, 457. [Google Scholar] [CrossRef]
- Daniel, T.M.; Răzvan-Liviu, P. Correlation between plantar pressure and striking speed in karate-do. Procedia Soc. Behav. Sci. 2014, 117, 357–360. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Tang, W.-T.; Liu, T.-T.; Hamill, J.; Hu, C. Kinematic and kinetic demands on better roundhouse kick performances. Sports Biomech. 2022, 1–15. [Google Scholar] [CrossRef]
- Jung, T.; Park, H. The effects of back-step footwork on taekwondo roundhouse the counterattack. Eur. J. Hum. Mov. 2020, 44, 129–145. [Google Scholar] [CrossRef]
- Jung, T.; Park, H. The effects of defensive footwork on the kinematics of taekwondo roundhouse kicks. Eur. J. Hum. Mov. 2018, 40, 78–95. [Google Scholar]
- Kim, Y.K.; Kim, Y.H. Effects of rhythmic hop on response times and kicking velocities of taekwondo kicks. Korean J. Sport Biomech. 2014, 24, 367–373. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Fife, G.P. Biomechanical performance factors for development of minimum disability requirements in para-taekwondo-Part 1. Cent. Eur. J. Sport Sci. Med. 2015, 11, 63–69. [Google Scholar]
- O’Sullivan, D.; Chung, C.; Lee, K.; Kim, E.; Kang, S.; Kim, T.; Shin, I. Measurement and comparison of Taekwondo and Yongmudo turning kick impact force for two target heights. J. Sports Sci. Med. 2009, 8, 13. [Google Scholar]
- O’Sullivan, D.; Chung, C.S.; Shin, I.S.; Kim, E.H.; Kang, S.C.; Kim, T.W. Measurement and Comparison of Taekwondo Body Height and Face height Roundhouse Kick. Int. J. Hum. Mov. Sci. 2008, 2, 115–121. [Google Scholar]
- Straiotto, B.G.; Cook, D.P.; James, D.C.; Seeley, P.J. Interjoint Coordination in Kicking a Moving Target: A Comparison Between Elite and Nonelite Taekwondo Players. J. Appl. Biomech. 2021, 37, 513–521. [Google Scholar] [CrossRef]
- Wasik, J.; Shan, G. Kinematics of the turning kick: Measurements obtained in testing well-trained taekwon-do athletes. Arch. Budo. 2015, 11, 61–67. [Google Scholar]
- Wąsik, J.; Shan, G. Target effect on the kinematics of Taekwondo Roundhouse Kick–is the presence of a physical target a stimulus, influencing muscle-power generation? Acta Bioeng. Biomech. 2015, 17, 115–120. [Google Scholar]
- Serina, E.; Lieu, D. Thoracic injury potential of basic competition taekwondo kicks. J. Biomech. 1991, 24, 951–960. [Google Scholar] [CrossRef]
- Pieter, F.; Pieter, W. Speed and force in selected taekwondo techniques. Biol. Sport. 1995, 12, 257–266. [Google Scholar]
- Wąsik, J.; Mosler, D.; Góra, T.; Ortenburger, D.; Chalimoniuk, M.; Langfort, J. Kinematic Differences between Traditional and Sport Version of Roundhouse Kick Executed by Male Taekwon-do Masters. J. Men’s Health 2022, 18, 138. [Google Scholar]
- Wąsik, J.; Mosler, D.; Ortenburger, D.; Góra, T.; Podstawski, R. Differences in Velocities of Crucial Body Segments while Executing Roundhouse Kicks for Both Sides. J. Hum. Kinet. 2023, 86, 97. [Google Scholar] [CrossRef] [PubMed]
- Fife, G.P.; O’Sullivan, D.; Pieter, W.; Kaminski, T.W. Effects of taekwondo kicks on head accelerations and injury potential: A pilot study. Int. SportMed J. 2013, 14, 53–66. [Google Scholar]
- Fife, G.P.; O’Sullivan, D.M.; Pieter, W.; Cook, D.P.; Kaminski, T.W. Effects of Olympic-style taekwondo kicks on an instrumented head-form and resultant injury measures. Br. J. Sports Med. 2013, 47, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Wąsik, J. The structure of the roundhouse kick on the example of a European Champion of taekwon-do. Arch. Budo. 2010, 6, 211–216. [Google Scholar]
- Wasik, J.; Mosler, D.; Ortenburger, D.; Gora, T. Stereophotogrammetry measurement of kinematic target effect as speed accuracy benchmark indicator for kicking performance in martial arts. Acta Bioeng. Biomech. 2021, 23, 117–125. [Google Scholar] [CrossRef]
- Wasik, J.; Mosler, D.; Ortenburger, D.; Gora, T.; Cholewa, J. Kinematic Effects of the Target on the Velocity of Taekwon-Do Roundhouse Kicks. J. Hum. Kinet. 2021, 80, 61–69. [Google Scholar] [CrossRef]
- Rexhepi, F.; Vehapi, S.; Pireva, F.; Gashi, B. Cinematic analysis of the kicking leg velocity and its position during performance of the Mawashi Geri technic on target. IIOAB J. 2018, 9, 1–5. [Google Scholar]
- Lee, J.-H.; Lee, Y.-S.; Han, K.-H. A study on impact analysis of side kick in Taekwondo. Int. J. Mod. Phys. B. 2008, 22, 1760–1765. [Google Scholar] [CrossRef]
- Wasik, J. Kinematic analysis of the side kick in Taekwon-do. Acta Bioeng. Biomech. 2011, 13, 71–75. [Google Scholar] [PubMed]
- Aragonés, D.; Eekhoff, A.; Horst, F.; Schöllhorn, W.I. Fatigue-related changes in technique emerge at different timescales during repetitive training. J. Sports Sci. 2018, 36, 1296–1304. [Google Scholar] [CrossRef]
- Di Bacco, V.E.; Taherzadeh, M.; Birot, O.; Gage, W.H. The effects of single versus multiple training sessions on the motor learning of two Krav Maga strike techniques, in women. PeerJ 2020, 8, e8525. [Google Scholar] [CrossRef]
- Grymanowski, J.; Glińska-Wlaz, J.; Ruzbarsky, P.; Druzbicki, M.; Przednówek, K. Analysis of time-space parameters of the front kick using the example of an athlete training in Muay Thai. Ido Mov. Cult. J. Martial Arts Anthropol. 2019, 19, 107–110. [Google Scholar]
- Ibrahim, T.M.S.T.; Tan, K.; Malek, N.F.A.; Jahizi, A.A.M.; Mohamad, N.I.; Ab Malik, Z.; Nadzalan, A.M. Effect of Wearable Resistance Loading during Warm-Up Protocol on Front Kick Biomechanics in Taekwondo. Phys. Educ. Theory Methodol. 2022, 22, 223–228. [Google Scholar] [CrossRef]
- Jovanović, D.; Lačić, O.; Bilalić, J.; Huremović, T.; Goletić, E.; Huremović, D. Kinematic parameters of Mae Geri-Kekomi impact in relation to general aerobic endurance of karatists. Sport Sci. Pract. Asp. 2020, 17, 47–52. [Google Scholar]
- Kuragano, T.; Yokokura, S. Experimental Analysis of Japanese Martial Art Nihon-Kempo. ICHPER-SD J. Res. 2012, 7, 40–45. [Google Scholar]
- Nadzalan, A.M.; Janep, M.; Jahizi, A.A.M.; Mohamad, N.I.; Rahim, N.A.; Shalan, N.A.A.M.; Zainudin, F.F. The effects of wearable resistance loading on kinematic of front kick among elite taekwondo athletes. Hum. Sport Med. 2022, 22, 92–99. [Google Scholar]
- Ortenburger, D.; Wąsik, J.; Góra, T. Selected dimensions of the self—Esteem and a kinematic effect of the intentional target at taekwon-do athletes. Arch. Budo Sci. Martial Art Extrem. Sport. 2016, 12, 117–121. [Google Scholar]
- Sorensen, H.; Zacho, M.; Simonsen, E.B.; Dyhre-Poulsen, P.; Klausen, K. Dynamics of the martial arts high front kick. J. Sports Sci. 1996, 14, 483–495. [Google Scholar] [CrossRef]
- VencesBrito, A.M.; Branco, M.A.C.; Fernandes, R.M.C.; Ferreira, M.A.R.; Fernandes, O.J.S.M.; Figueiredo, A.A.A.; Branco, G. Characterization of kinesiological patterns of the frontal kick, mae-geri, in karate experts and non-karate practitioners. Rev. Artes Marciales Asiát. 2014, 9, 20–31. [Google Scholar] [CrossRef]
- Wąsik, J.; Góra, T. Impact of target selection on front kick kinematics in taekwondo–pilot study. Phys. Act. Rev. 2016, 4, 57–61. [Google Scholar] [CrossRef]
- Wasik, J.; Ortenburger, D.; Gora, T. Studies of kicking of three targets–does sex differentiate the velocity of the taekwondo front kick? Balt. J. Health Phys. Act. 2019, 11, 8. [Google Scholar] [CrossRef]
- Wąsik, J.; Ortenburger, D.; Góra, T.; Shan, G.; Mosler, D.; Wodarski, P.; Michnik, R.A. The influence of gender, dominant lower limb and type of target on the velocity of taekwon-do front kick. Acta Bioeng. Biomech. 2018, 20, 133–138. [Google Scholar] [PubMed]
- Wasik, J.; Gora, T. The kinematics of taekwon-do back kick. Balt. J. Health Phys. Act. 2016, 8, 6. [Google Scholar] [CrossRef]
- Cheng, K.B.; Wang, Y.-H.; Kuo, S.-Y.; Wang, K.-M.; Huang, Y.-C. Perform kicking with or without jumping: Joint coordination and kinetic differences between Taekwondo back kicks and jumping back kicks. J. Sports Sci. 2015, 33, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Nadzalan, A.M.; Janep, M.; Jahizi, A.A.A.; Abd Malek, N.F.; Ibrahim, T.M.S.T.; Mohamad, N.I. The Influence of Wearable Resistance Loading on Taekwondo Axe Kick Kinematics Among Elite Taekwondo Athletes. Int. J. Hum. Mov. Sports Sci. 2021, 9, 893–898. [Google Scholar] [CrossRef]
- Osman, N.; Yen Lee, E.L.; Abd Malek, N.F.; Nur Azmi, A.M.; Abdullah, N.F.; Nadzalan, A.M. The effects of instructional and motivational self-talk on axe kick performance in taekwondo. Ido Mov. Cult. J. Martial Arts Anthropol. 2022, 22, 42–47. [Google Scholar]
- Preuschl, E.; Hassmann, M.; Baca, A. A kinematic analysis of the jumping front-leg axe-kick in taekwondo. J. Sports Sci. Med. 2016, 15, 92. [Google Scholar]
- Woo, J.H.; Ko, J.; Choi, E.; Her, J.; O’Sullivan, D.M. Development and evaluation of a novel taekwondo chest protector to improve mobility when performing axe kicks. Biol. Sport. 2013, 30, 51–55. [Google Scholar] [CrossRef]
- Yu, D.; Yu, Y.; Wilde, B.; Shan, G. Biomechanical characteristics of the Axe Kick in Tae Kwon-Do. Arch. Budo. 2012, 8, 213–218. [Google Scholar] [CrossRef]
- Buśko, K.; Nikolaidis, P.T. Biomechanical characteristics of taekwondo athletes: Kicks and punches vs. laboratory tests. Biomed. Hum. Kinet. 2018, 10, 81–88. [Google Scholar] [CrossRef]
- Buśko, K.; Staniak, Z.; Szark-Eckardt, M.; Nikolaidis, P.; Mazur-Różycka, J.; Łach, P.; Michalski, R.; Gajewski, J.; Górski, M. Measuring the force of punches and kicks among combat sport athletes using a modified punching bag with an embedded accelerometer. Acta Bioeng. Biomech. 2016, 18, 47–54. [Google Scholar] [PubMed]
- Górski, M.; Orysiak, J. Differences between anthropometric indicators and the impact force of taekwondo kicks performed with the dominant and non-dominant limb. Biomed. Hum. Kinet. 2019, 11, 193–197. [Google Scholar] [CrossRef]
- Thibordee, S.; Prasartwuth, O. Effectiveness of roundhouse kick in elite Taekwondo athletes. J. Electromyogr. Kinesiol. 2014, 24, 353–358. [Google Scholar] [CrossRef]
- Wąsik, J.; Mosler, D.; Góra, T.; Scurek, R. Conception of effective mass and effect of force-measurement of taekwon-do master. Phys. Act. Rev. 2023, 11, 11–16. [Google Scholar] [CrossRef]
- Ng, C.K.; Jumadi, N.A. IoT-Based Instrumentation Development for Reaction Time, Kick Impact Force, and Flexibility Index Measurement. Int. J. Electr. Electron. Eng. Telecommun. 2022, 11, 82–87. [Google Scholar] [CrossRef]
- Pozo, J.; Bastien, G.; Dierick, F. Execution time, kinetics, and kinematics of the mae-geri kick: Comparison of national and international standard karate athletes. J. Sports Sci. 2011, 29, 1553–1561. [Google Scholar] [CrossRef]
- Ramakrishnan, K.R.; Wang, H.; Shankar, K.; Fien, A. A new method for the measurement and analysis of biomechanical energy delivered by kicking. Sports Eng. 2018, 21, 53–62. [Google Scholar] [CrossRef]
- Vágner, M.; Tomšovský, L.; Tufano, J.J.; Kubový, P.; Jelen, K. The effect of military boots on front kick dynamics. AUC Kinanthropologica. 2018, 54, 129–136. [Google Scholar] [CrossRef]
- Pędzich, W.; Mastalerz, A.; Urbanik, C. The comparison of the dynamics of selected leg strokes in taekwondo WTF. Acta Bioeng. Biomech. 2006, 8, 83–90. [Google Scholar]
- Górski, M.; Lekszycki, T.; Buśko, K.; Mazur-Różycka, J. Modelling and analysis of lower limb joint loads during the Naeryo chagi technique in taekwondo. Biomed. Hum. Kinet. 2014, 6, 121–127. [Google Scholar] [CrossRef]
- Pierce, J.D.; Reinbold, K.A.; Lyngard, B.C.; Goldman, R.J.; Pastore, C.M. Direct measurement of punch force during six professional boxing matches. J. Quant. Anal. Sports. 2006, 2, 1–17. [Google Scholar] [CrossRef]
- Walilko, T.J.; Viano, D.C.; Bir, C.A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 2005, 39, 710–719. [Google Scholar] [CrossRef]
- Del Vecchio, L.; Borges, N.; MacGregor, C.; Meerkin, J.D.; Climstein, M. Musculoskeletal profile of amateur combat athletes: Body composition, muscular strength and striking power. Mov. Sport Sci. 2021, 113, 1–9. [Google Scholar] [CrossRef]
- Aurbach, M.; Wagner, K.; Süß, F.; Dendorfer, S. (Eds.) Implementation and validation of human kinematics measured using IMUs for musculoskeletal simulations by the evaluation of joint reaction forces. In CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina, 16–18 March 2017; Springer: Singapore, 2017. [Google Scholar]
- Gulledge, K.J.; Dapena, J. A comparison of the reverse and power punches in oriental martial arts. J. Sports Sci. 2008, 26, 189–4196. [Google Scholar] [CrossRef] [PubMed]
- de Souza, V.A.; Marques, A.M. Relationship between age and expertise with the maximum impact force of a reverse punch by shotokan karate athletes. Arch Budo. 2017, 13, 243–254. [Google Scholar]
- Koo, T.; Li, M. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Beranek, V.; Stastny, P.; Novacek, V.; Votapek, P.; Formanek, J. Upper Limb Strikes Reactive Forces in Mix Martial Art Athletes during Ground and Pound Tactics. Int. J. Environ. Res. Public Health 2020, 17, 7782. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Maciel, R.C.; Petrigliano, F.A.; Rodriguez, J.P.; Brooks, A.G. Injuries sustained by the mixed martial arts athlete. Sports Health 2017, 9, 64–69. [Google Scholar] [CrossRef]
- Adamec, J.; Mai, V.; Graw, M.; Schneider, K.; Hempel, J.-M.; Schöpfer, J. Biomechanics and injury risk of a headbutt. Int. J. Legal Med. 2013, 127, 103–110. [Google Scholar] [CrossRef]
- Ziaee, V.; Rahmani, S.-H.; Rostami, M. Injury rates in Iranian taekwondo athletes; a prospective study. Asian J. Sports Med. 2010, 1, 23. [Google Scholar] [CrossRef] [PubMed]
- Pintar, F.A.; Yoganandan, N.; Yogananda, N.; Eppinger, R.H. Response and tolerance of the human forearm to impact loading. SAE Trans. 1998, 107, 2712–2719. [Google Scholar]
- Kemper, A.R.; Kennedy, E.; McNally, C.; Manoogian, S.J.; Stitzel, J.; Duma, S.M. Reducing chest injuries in automobile collisions: Rib fracture timing and implications for thoracic injury criteria. Ann. Biomed. Eng. 2011, 39, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Karpman, S.; Reid, P.; Phillips, L.; Qin, Z.; Gross, D.P. Combative sports injuries: An Edmonton retrospective. Clin. J. Sport Med. 2016, 26, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Kress, T.A.; Porta, D.J.; Snider, J.N.; Fuller, P.M.; Psihogios, J.P.; Heck, W.L.; Frick, S.J.; Wasserman, J.F. Fracture Patterns of Human Cadaver Long Bones. In Proceedings of the International Research Council on the Biomechanics of Injury Conference, Brunnen, Switzerland, 13–15 September 1995. [Google Scholar]
- Augustovičová, D.; Lystad, R.P.; Arriaza, R. Time-loss injuries in karate: A prospective cohort study of 4 consecutive world karate championships. Orthop. J. Sports Med. 2019, 7, 2325967119865866. [Google Scholar] [CrossRef] [PubMed]
- Lystad, R.P.; Pollard, H.; Graham, P.L. Epidemiology of injuries in competition taekwondo: A meta-analysis of observational studies. J. Sci. Med. Sport. 2009, 12, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Tjønndal, A.; Haudenhuyse, R.; de Geus, B.; Buyse, L. Concussions, cuts and cracked bones: A systematic literature review on protective headgear and head injury prevention in Olympic boxing. Eur. J. Sport Sci. 2022, 22, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, A.J.; Benzel, E.C.; Miele, V.J.; Morr, D.R.; Prakash, V. Boxing and mixed martial arts: Preliminary traumatic neuromechanical injury risk analyses from laboratory impact dosage data. J. Neurosurg. 2012, 116, 1070–1080. [Google Scholar] [CrossRef]
- Ramazanoglu, N. Transmission of impact through the electronic body protector in taekwondo. Int. J. Appl. Sci. Technol. 2013, 3, 1–7. [Google Scholar]
- Jeong, H.S.; Lee, S.Y.; Noh, H.J.; O’Sullivan, D.M.; Lee, Y.R. Investigating the influence of Taekwondo body protectors size on shock absorption. Technol. Health Care. 2021, 29, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; O’sullivan, D.M.; Lee, S.-C.; Lee, S.Y. Safety evaluation of protective equipment for the forearm, shin, hand and foot in taekwondo. J. Sports Sci. Med. 2019, 18, 376. [Google Scholar] [PubMed]
- Beránek, V.; Votápek, P.; Stastny, P. Force and velocity of impact during upper limb strikes in combat sports: A systematic review and meta-analysis. Sports Biomech. 2020, 22, 921–939. [Google Scholar] [CrossRef] [PubMed]
Roundhouse kick | Initiates with forward movement towards an opponent with pelvic rotation, followed by hip abduction, hip flexion, and knee flexion, finishing with knee extension of the striking leg to strike the opponent with the instep of the foot [24,77]. |
Front kick | Initiates with hip and knee flexion to a near parallel position, followed by rapid extension of the hip and knee horizontally toward the target, striking with the foot [11,89,91,109]. |
Side kick | Initiates with striking leg lifting off the ground and pelvic tilt away from the target, accompanied by simultaneous hip flexion, abduction, and knee flexion, followed by hip and knee extension to strike the target with the heel [13,25,81,82]. |
Back kick | Initiates with body rotation away from the target, combined with simultaneous hip flexion, abduction, and knee flexion, finishing with hip and knee extension to strike the target with the heel [64,96]. |
Axe kick | Initiates with lifting the striking leg into flexion with simultaneous knee extension as the leg ascends, followed by a rapid hip extension to strike the target with the heel [98,99,102]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corcoran, D.; Climstein, M.; Whitting, J.; Del Vecchio, L. Impact Force and Velocities for Kicking Strikes in Combat Sports: A Literature Review. Sports 2024, 12, 74. https://doi.org/10.3390/sports12030074
Corcoran D, Climstein M, Whitting J, Del Vecchio L. Impact Force and Velocities for Kicking Strikes in Combat Sports: A Literature Review. Sports. 2024; 12(3):74. https://doi.org/10.3390/sports12030074
Chicago/Turabian StyleCorcoran, Daniel, Mike Climstein, John Whitting, and Luke Del Vecchio. 2024. "Impact Force and Velocities for Kicking Strikes in Combat Sports: A Literature Review" Sports 12, no. 3: 74. https://doi.org/10.3390/sports12030074
APA StyleCorcoran, D., Climstein, M., Whitting, J., & Del Vecchio, L. (2024). Impact Force and Velocities for Kicking Strikes in Combat Sports: A Literature Review. Sports, 12(3), 74. https://doi.org/10.3390/sports12030074