Assessing the Impact of Fencing on Postural Parameters: Observational Study Findings on Elite Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Assessment of Anthropometric Data
2.3.2. Postural Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias, J.A.; Borges, L.; Mattos, D.J.d.S.; Wentz, M.D.; Domenech, S.C.; Kauffmann, P.; Borges Junior, N.G. Validity of a new stabilometric force platform for postural balance evaluation. Rev. Bras. Cineantropometria Desempenho Hum. 2011, 13, 367–372. [Google Scholar] [CrossRef]
- Meras Serrano, H.; Mottet, D.; Caillaud, K. Validity and Reliability of Kinvent Plates for Assessing Single Leg Static and Dynamic Balance in the Field. Sensors 2023, 23, 2354. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rubio, P.R.; Bagur-Calafat, C.; López-de-Celis, C.; Bueno-Gracía, E.; Cabanas-Valdés, R.; Herrera-Pedroviejo, E.; Girabent-Farrés, M. Validity and Reliability of the Satel 40 Hz Stabilometric Force Platform for Measuring Quiet Stance and Dynamic Standing Balance in Healthy Subjects. Int. J. Environ. Res. Public Health 2020, 17, 7733. [Google Scholar] [CrossRef] [PubMed]
- Tamburella, F.; Scivoletto, G.; Iosa, M.; Molinari, M. Reliability, validity, and effectiveness of center of pressure parameters in assessing stabilometric platform in subjects with incomplete spinal cord injury: A serial cross-sectional study. J. NeuroEng. Rehabil. 2014, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Kováčiková, Z. Sport-specific training induced adaptations in postural control and their relationship with athletic performance. Front. Hum. Neurosci. 2023, 16, 1007804. [Google Scholar] [CrossRef] [PubMed]
- Guilhem, G.; Giroux, C.; Couturier, A.; Didier, C.; Rabita, G. Mechanical and Muscular Coordination Patterns during a High-Level Fencing Assault. Med. Sci. Sports Exerc. 2014, 46, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Bishop, C.; Chavda, S.; Edwards, M.; Brazier, J.; Kilduff, L.P. Physical Characteristics Underpinning Lunging and Change of Direction Speed in Fencing. J. Strength Cond. Res. 2016, 30, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; James, N.; Dimitriou, L.; Greenhalgh, A.; Moody, J.; Fulcher, D.; Mias, E.; Kilduff, L. Determinants of Olympic Fencing Performance and Implications for Strength and Conditioning Training. J. Strength Cond. Res. 2014, 28, 3001–3011. [Google Scholar] [CrossRef]
- Mulloy, F.; Mullineaux, D.R.; Graham-Smith, P.; Irwin, G. An applied paradigm for simple analysis of the lower limb kinematic chain in explosive movements: An example using the fencing foil attacking lunge. Int. Biomech. 2018, 5, 9–16. [Google Scholar] [CrossRef]
- Drakoulaki, V.; Kontochristopoulos, N.; Methenitis, S.; Simeonidis, T.; Cherouveim, E.; Koulouvaris, P.; Savvidou, O.; Tsolakis, C. Bilateral asymmetries in male and female young elite fencers in relation to fencing performance. Isokinet. Exerc. Sci. 2021, 29, 113–121. [Google Scholar] [CrossRef]
- Guan, Y.; Guo, L.; Wu, N.; Zhang, L.; Warburton, D.E.R. Biomechanical insights into the determinants of speed in the fencing lunge. Eur. J. Sport Sci. 2018, 18, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Peña, J.; Sá, M.; Virgile, A.; García-de-Alcaraz, A.; Bishop, C. Why Sports Should Embrace Bilateral Asymmetry: A Narrative Review. Symmetry 2022, 14, 1993. [Google Scholar] [CrossRef]
- Ohlendorf, D.; Kerth, K.; Osiander, W.; Holzgreve, F.; Fraeulin, L.; Ackermann, H.; Groneberg, D.A. Standard reference values of weight and maximum pressure distribution in healthy adults aged 18–65 years in Germany. J. Physiol. Anthropol. 2020, 39, 39. [Google Scholar] [CrossRef] [PubMed]
- Gallamini, M.; Piastra, G.; Lucarini, S.; Porzio, D.; Ronchi, M.; Pirino, A.; Scoppa, F.; Masiero, S.; Tognolo, L. Revisiting the Instrumented Romberg Test: Can Today’s Technology Offer a Risk-of-Fall Screening Device for Senior Citizens? An Experience-Based Approach. Life 2021, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Kalata, M.; Maly, T.; Hank, M.; Michalek, J.; Bujnovsky, D.; Kunzmann, E.; Zahalka, F. Unilateral and Bilateral Strength Asymmetry among Young Elite Athletes of Various Sports. Medicina 2020, 56, 683. [Google Scholar] [CrossRef] [PubMed]
- di Cagno, A.; Iuliano, E.; Buonsenso, A.; Giombini, A.; Di Martino, G.; Parisi, A.; Calcagno, G.; Fiorilli, G. Effects of Accentuated Eccentric Training vs Plyometric Training on Performance of Young Elite Fencers. J. Sports Sci. Med. 2020, 19, 703–713. [Google Scholar]
- Witkowski, M.; Tomczak, M.; Karpowicz, K.; Solnik, S.; Przybyla, A. Effects of Fencing Training on Motor Performance and Asymmetry Vary with Handedness. J. Mot. Behav. 2020, 52, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Do, M.C. In Fencing, Does Intensive Practice Equally Improve the Speed Performance of the Touche when it is Performed Alone and in Combination with the Lunge? Int. J. Sports Med. 2000, 21, 122–126. [Google Scholar] [CrossRef]
- Herpin, G.; Gauchard, G.C.; Lion, A.; Collet, P.; Keller, D.; Perrin, P.P. Sensorimotor specificities in balance control of expert fencers and pistol shooters. J. Electromyogr. Kinesiol. 2010, 20, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Starosta, W.; Markiewicz, G.; Pawłowa-Starosta, T. Relations between basic anthropometric indexes and selected elements of maintain balance abilities in high level fencers. J. Combat Sports Martial Arts 2012, 3, 131–133. [Google Scholar] [CrossRef]
- Aquili, A.; Tancredi, V.; Triossi, T.; Sanctis, D.D.; Padua, E.; D’Arcangelo, G.; Melchiorri, G. Performance Analysis in Saber. J. Strength Cond. Res. 2013, 27, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Cagno, A.D.; Fiorilli, G.; Iuliano, E.; Aquino, G.; Giombini, A.; Battaglia, C.; Piazza, M.; Tsopani, D.; Calcagno, G. Time-of-Day Effects on Static and Dynamic Balance in Elite Junior Athletes and Untrained Adolescents. Int. J. Sports Sci. Coach. 2014, 9, 615–625. [Google Scholar] [CrossRef]
- Akbaş, A.; Marszałek, W.; Bacik, B.; Juras, G. Influence of base of support on early postural adjustments and fencing lunge performance. Sports Biomech. 2021, 1–13. [Google Scholar] [CrossRef]
- Smith, J.A.; Basabose, J.d.D.; Brockett, M.; Browne, D.T.; Shamon, S.; Stephenson, M. Family Medicine with Refugee Newcomers During the COVID-19 Pandemic. J. Am. Board Fam. Med. JABFM 2021, 34, S210–S216. [Google Scholar] [CrossRef]
Age (Years) | Weight (Kg) | Height (m) | BMI (Kg/m2) | Thigh Right (cm) | Thigh Left (cm) | Difference of Thigh (%) | Calf Right (cm) | Calf Left (cm) | Difference of Calf (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Sample (n = 26) | 19.15 ± 2.24 | 67.65 ± 11.13 | 1.77 ± 0.09 | 21.50 ± 2.57 | 54.93 ± 5.14 | 54.07 ± 4.45 | −3.41 ± 2.40 | 35.25 ± 2.25 | 35.10 ± 2.15 | −0.16 ± 1.75 |
Foil (n = 9) | 19.56 ± 2.40 | 63.00 ± 9.25 | 1.74 ± 0.09 | 19.85 ± 2.06 | 54.69 ± 5.56 | 54.03 ± 4.86 | −2.93 ± 2.10 | 35.19 ± 2.49 | 35.02 ± 2.57 | −0.33 ± 1.81 |
Epee (n = 7) | 17.14 ± 0.38 * | 67.86 ± 5.87 | 1.82 ± 0.07 | 20.54 ± 2.50 | 56.64 ± 6.18 | 56.00 ± 5.55 | −3.46 ± 3.68 | 35.36 ± 2.06 | 35.50 ± 2.03 | 0.26 ± 1.46 |
Sabre (n = 10) | 20.20 ± 2.04 | 71.70 ± 14.71 | 1.78 ± 0.10 | 22.43 ± 3.27 | 53.96 ± 4.12 | 52.75 ± 2.96 | −3.81 ± 1.62 | 35.22 ± 2.39 | 34.89 ± 2.02 | −0.29 ± 2.00 |
Postural Parameter | Acronym | Description |
---|---|---|
Sway Length (mm) | SL | The length of the COP path during the test |
Sway Area (mm2) | SA | The area of the surface swept by the radius connecting the mean COP to all subsequent path points |
Sway Length/Sway Area Ratio (mm) | SL/SA | The ratio between Sway Length and Sway Area. This ratio is proportional to postural tone (a value under 1.5 suggests a hypotonic postural tone, whilst a value over 3 suggests a hypertonic postural tone) |
Speed Variation (mm/s2) | SV | Average change in the velocity of the centre of pressure |
Weight percentage on non-dominant-side quadrants (%) | % ND-S | The percentage of weight distributed on the non-dominant-side quadrants of the platform. |
Weight percentage on dominant-side quadrants (%) | % D-S | The percentage of weight distributed on the dominant side of the platform. |
Weight percentage on non-dominant-anterior quadrant (%) | % ND-ANT | The percentage of weight distributed over the non-dominant anterior of the platform. |
Weight percentage on non-dominant-posterior quadrant (%) | % ND-POST | The percentage of weight distributed over the non-dominant-posterior quadrant of the platform. |
Weight percentage on dominant-anterior quadrant (%) | % D-ANT | The proportion of weight distributed over the dominant-anterior quadrant of the platform |
Weight percentage on dominant-posterior quadrant (%) | % D-POST | The proportion of weight distributed over the dominant-posterior quadrant of the platform. |
Sample | Male | Females | Left-Handed | Right-Handed | Sabre | Epee | Foil | |
---|---|---|---|---|---|---|---|---|
Parameter | Means ± SD | Means ± SD | Means ± SD | Means ± SD | Means ± SD | Means ± SD | Means ± SD | Means ± SD |
Sway Area (mm2/s) | 5.49 ± 4.14 | 5.09 ± 2.96 | 6.41 ± 6.22 | 4.39 ± 1.36 | 5.90 ± 4.75 | 3.72 ± 1.40 | 5.34 ± 3.06 | 7.59 ± 5.95 |
Sway Length (mm/s) | 11.21 ± 2.45 | 11.09 ± 2.62 | 11.48 ± 2.17 | 11.01 ± 2.51 | 11.29 ± 2.49 | 10.25 ± 2.33 | 10.90 ± 1.94 | 12.53 ± 2.58 |
Sway Length/Sway Area Ratio (mm) | 2.57 ± 1.00 | 2.56 ± 0.91 | 2.59 ± 1.24 | 2.61 ± 0.46 | 2.56 ± 1.15 | 2.97 ± 0.89 | 2.30 ± 0.63 | 2.33 ± 1.27 |
Variation in Speed (mm/s2) | 68.10 ± 34.75 | 63.54 ± 33.77 | 78.72 ± 36.88 | 67.95 ± 32.42 | 68.31± 36.42 | 58.56 ± 30.6 | 59.22 ± 20.56 | 85.93 ± 43.15 |
Weight percentage on non-dominant-side quadrants (%) | 48.74 ± 3.42 | 48.46 ± 3.53 | 49.38 ± 3.30 | 46.66 ± 2.54 | 49.51 ± 3.44 | 48.92 ± 2.63 | 49.67 ± 2.99 | 47.82 ± 4.51 |
Weight percentage on dominant-side quadrants (%) | 51.05 ± 3.41 | 51.34 ± 3.52 | 50.4 ± 3.29 | 53.13 ± 2.57 | 50.28 ± 3.42 | 50.85 ± 2.60 | 50.16 ± 2.95 | 51.97 ± 4.54 |
Weight percentage on non-dominant-anterior quadrant (%) | 23.39 ± 5.39 | 22.48 ± 4.72 | 25.44 ± 6.04 | 21.84 ± 3.61 | 23.96 ± 5.89 | 23.85 ± 4.90 | 21.36 ± 4.89 | 24.47 ± 6.37 |
Weight percentage on non-dominant-posterior quadrant (%) | 25.35 ± 5.00 | 25.98 ± 4.72 | 23.94 ± 5.65 | 24.81 ± 2.59 | 25.55 ± 5.69 | 25.07 ± 4.22 | 28.31 ± 6.36 | 23.36 ± 3.93 |
Weight percentage on dominant-anterior quadrant (%) | 25.81 ± 4.08 | 26.02 ± 3.77 | 25.35 ± 4.97 | 24.46 ± 3.38 | 26.31 ± 4.28 | 25.38 ± 3.19 | 26.31 ± 4.38 | 25.9 ± 5.07 |
Weight percentage on dominant-posterior quadrant (%) | 25.24 ± 5.23 | 25.32 ± 5.33 | 25.05 ± 5.33 | 28.67 ± 4.62 | 23.97 ± 4.96 | 25.47 ± 4.16 | 23.84 ± 4.86 | 26.07 ± 6.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, G.; Centorbi, M.; Buonsenso, A.; Fiorilli, G.; della Valle, C.; Iuliano, E.; Calcagno, G.; di Cagno, A. Assessing the Impact of Fencing on Postural Parameters: Observational Study Findings on Elite Athletes. Sports 2024, 12, 130. https://doi.org/10.3390/sports12050130
Di Martino G, Centorbi M, Buonsenso A, Fiorilli G, della Valle C, Iuliano E, Calcagno G, di Cagno A. Assessing the Impact of Fencing on Postural Parameters: Observational Study Findings on Elite Athletes. Sports. 2024; 12(5):130. https://doi.org/10.3390/sports12050130
Chicago/Turabian StyleDi Martino, Giulia, Marco Centorbi, Andrea Buonsenso, Giovanni Fiorilli, Carlo della Valle, Enzo Iuliano, Giuseppe Calcagno, and Alessandra di Cagno. 2024. "Assessing the Impact of Fencing on Postural Parameters: Observational Study Findings on Elite Athletes" Sports 12, no. 5: 130. https://doi.org/10.3390/sports12050130
APA StyleDi Martino, G., Centorbi, M., Buonsenso, A., Fiorilli, G., della Valle, C., Iuliano, E., Calcagno, G., & di Cagno, A. (2024). Assessing the Impact of Fencing on Postural Parameters: Observational Study Findings on Elite Athletes. Sports, 12(5), 130. https://doi.org/10.3390/sports12050130