If You Want to Prevent Hamstring Injuries in Soccer, Run Fast: A Narrative Review about Practical Considerations of Sprint Training
Abstract
:1. Introduction
2. Methods
3. Findings and Practical Proposals
3.1. Sprinting as a Protective Factor
3.2. Sprint Training Proposal for Soccer Players
3.2.1. Determine How You Will Integrate It within Your Particular Training Environment
3.2.2. Choose the Right Moment
3.2.3. Sprint Monitoring
3.2.4. Searching for the Right Dose
3.2.5. Measure Whenever You Can, but Measure Properly
4. Practical Applications
- -
- Combine different training methods (from more analytical to more specific) throughout your macrocycles, mesocycles and microcycles.
- -
- Include flying sprints from different positions with multidirectional stimuli (acceleration, deceleration, change in direction, curvilinear sprint and sprint in a straight line) when working on speed. For example, 10-20 m for acceleration, or 45 m flying sprints (15 + 30 m) for maximum velocity should be ideal.
- -
- Progress in complexity as your players adapt to different speed stimuli and game situations applying the “control-chaos continuum”.
- -
- Distribute the weekly load appropriately, avoiding excessive neuromuscular overload and favoring the necessary supercompensation processes in the days before the game.
- -
- Create your own sprint profile for competition and training based on your particular context and remember that no “magic” dose is valid for everyone. As suggestion, “training/competition ratios” falling within the range of 0.5 to 1.3 approximately, can be used. During the microcycle, 35–40% of their total volume should exceed 85% of the MSS, and 15–20% should exceed 95%.
- -
- Define the sprint properly. Remember that using similar absolute thresholds for all players is not the best way to individualize their needs.
- -
- Evaluate whenever you can, but only if the collected data will be useful for making future decisions. The isometric strength of the posterior chain could be a helpful strategy when adjusting the load of each player. The S-MAS is a qualitative screening tool which allows us to measure the quality of the athlete’s movement during the sprint.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Majumdar, A.; Robergs, R. The Science of Speed: Determinants of Performance in the 100 m Sprint: A Response to Commentary. Int. J. Sports Sci. Coach. 2011, 6, 479–493. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Hisdal, J.; Seiler, S. The Role and Development of Sprinting Speed in Soccer. Int. J. Sports Physiol. Perform. 2014, 9, 432–441. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of High Intensity Activity in Premier League Soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Filter, A.; Olivares-Jabalera, J.; Santalla, A.; Morente-Sánchez, J.; Robles-Rodríguez, J.; Requena, B.; Loturco, I. Curve Sprinting in Soccer: Kinematic and Neuromuscular Analysis. Int. J. Sports Med. 2020, 41, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The Evolution of Physical and Technical Performance Parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Koch, T.; Meyer, T. Straight Sprinting Is the Most Frequent Action in Goal Situations in Professional Football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, A.; Gómez Díaz, A.; Bradley, P.; Morera, F.; Casamichana, D. Quantification of a Professional Football Team’s External Load Using a Microcycle Structure. J. Strength. Cond. Res. 2018, 32, 3511–3518. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Nakamura, F.Y.; Maldonado, R.A.; Torreno, N.; Di Salvo, V.; Mendez-Villanueva, A. Applying a Holistic Hamstring Injury Prevention Approach in Elite Football: 12 Seasons, Single Club Study. Scand. J. Med. Sci. Sports 2021, 31, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Spreco, A.; Bengtsson, H.; Bahr, R. Injury Rates Decreased in Men’s Professional Football: An 18-Year Prospective Cohort Study of Almost 12 000 Injuries Sustained during 1.8 Million Hours of Play. Br. J. Sports Med. 2021, 55, 1084–1092. [Google Scholar] [CrossRef]
- Lovell, R.; Knox, M.; Weston, M.; Siegler, J.C.; Brennan, S.; Marshall, P. Hamstring Injury Prevention in Soccer: Before or after Training? Scand. J. Med. Sci. Sports 2018, 28, 658–666. [Google Scholar] [CrossRef]
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring Injuries Have Increased by 4% Annually in Men’s Professional Football, since 2001: A 13-Year Longitudinal Analysis of the UEFA Elite Club Injury Study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring Injury Rates Have Increased during Recent Seasons and Now Constitute 24% of All Injuries in Men’s Professional Football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2022, 57, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Eliakim, E.; Morgulev, E.; Lidor, R.; Meckel, Y. Estimation of Injury Costs: Financial Damage of English Premier League Teams’ Underachievement Due to Injuries. BMJ Open Sport Exerc. Med. 2020, 6, e000675. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.; Hawkins, R.; Hulse, M.; Hodson, A. The Football Association Medical Research Programme: An Audit of Injuries in Professional Football Analysis of Preseason Injuries. Br. J. Sports Med. 2002, 36, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Aiello, F.; Di Claudio, C.; Fanchini, M.; Impellizzeri, F.M.; McCall, A.; Sharp, C.; Brown, S.J. Do Non-Contact Injuries Occur during High-Speed Running in Elite Football? Preliminary Results from a Novel GPS and Video-Based Method. J. Sci. Med. Sport 2023, 6–11, In press. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Perez, V.; Sotos-Martínez, V.; Lopez-Valenciano, A.; Lopez Del-Campo, R.; Resta, R.; Coso, J. Del Hamstring Muscle Injury Is Preceded by a Short Period of Higher Running Demands in Professional Football Players. Biol. Sport 2024, 41, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Bucci, G.; Galante, N.; McGovern, R.P.; Richards, S.; Christoforetti, J.J.; Singleton, S.B. Hamstrings Injuries with MRI Findings in a Major League Soccer Team. Arch. Orthop. 2020, 1, 89–97. [Google Scholar] [CrossRef]
- Bekker, S.; Clark, A. Bringing Complexity to Sports Injury Prevention Research: From Simplification to Explanation. Br. J. Sports Med. 2016, 50, 1489–1490. [Google Scholar] [CrossRef]
- Bittencourt, N.; Meeuwssie, W.; Mendonca, L.; Netter-Aguirre, A.; Ocarino, J.; Fonseca, S. Complex Systems Approach for Sports Injuries: Moving from Risk Factor Identification to Injury Pattern Recognition—Narrative Review and New Concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef]
- Nassis, G.P.; Brito, J.; Figueiredo, P.; Gabbett, T.J. Injury Prevention Training in Football: Let’s Bring It to the Real World. Br. J. Sports Med. 2019, 53, 1328–1329. [Google Scholar] [CrossRef]
- Malone, S.; Roe, M.; Doran, D.A.; Gabbett, T.J.; Collins, K. High Chronic Training Loads and Exposure to Bouts of Maximal Velocity Running Reduce Injury Risk in Elite Gaelic Football. J. Sci. Med. Sport 2017, 20, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, M.; Waldén, M.; Ekstrand, J. Previous Injury as a Risk Factor for Injury in Elite Football: A Prospective Study over Two Consecutive Seasons. Br. J. Sports Med. 2006, 40, 767–772. [Google Scholar] [CrossRef]
- Martín Martínez, J.P.; Pérez Gómez, J.; Vivas, J.C.; Pedro, J.; Martínez, M. The Influence of Fatigue in Hamstrings:Quadriceps Ratio. A Systematic Review. Arch. Med. Deporte 2016, 33, 267–275. [Google Scholar]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short Biceps Femoris Fascicles and Eccentric Knee Flexor Weakness Increase the Risk of Hamstring Injury in Elite Football (Soccer): A Prospective Cohort Study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Schuermans, J.; Danneels, L.; Van Tiggelen, D.; Palmans, T.; Witvrouw, E. Proximal Neuromuscular Control Protects against Hamstring Injuries in Male Soccer Players: A Prospective Study with Electromyography Time-Series Analysis during Maximal Sprinting. Am. J. Sports Med. 2017, 45, 1315–1325. [Google Scholar] [CrossRef]
- Bramah, C.; Mendiguchia, J.; Dos’Santos, T.; Morin, J.-B. Exploring the Role of Sprint Biomechanics in Hamstring Strain Injuries: A Current Opinion on Existing Concepts and Evidence. Sports Med. 2023, 54, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Huygaerts, S.; Cos, F.; Cohen, D.D.; Calleja-González, J.; Guitart, M.; Blazevich, A.J.; Alcaraz, P.E. Mechanisms of Hamstring Strain Injury: Interactions between Fatigue, Muscle Activation and Function. Sports 2020, 8, 65. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Wright, S.; Bruce-Low, S.; Nanni, G.; Sturdy, T.; Gross, A.; Bowen, L.; Styles, B.; Della Villa, S.; Davison, M.; et al. Recommendations for Hamstring Injury Prevention in Elite Football: Translating Research into Practice. Br. J. Sports Med. 2019, 53, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Edouard, P.; Mendiguchia, J.; Guex, K.; Lahti, J.; Samozino, P.; Morin, J. Sprinting: A Potential Vaccine for Hamstring Injury? Sport Perform. Sci. Rep. 2019, 1, 1–2. [Google Scholar]
- McCall, A.; Pruna, R.; Van der Horst, N.; Dupont, G.; Buchheit, M.; Coutts, A.J.; Impellizzeri, F.M.; Fanchini, M.; Azzalin, A.; Beck, A.; et al. Exercise-Based Strategies to Prevent Muscle Injury in Male Elite Footballers: An Expert-Led Delphi Survey of 21 Practitioners Belonging to 18 Teams from the Big-5 European Leagues. Sports Med. 2020, 50, 1667–1681. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Conceição, F.; Edouard, P.; Fonseca, M.; Pereira, R.; Lopes, H.; Morin, J.; Jiménez-Reyes, P. Sprint versus Isolated Eccentric Training: Comparative Effects on Hamstring Architecture and Performance in Soccer Players. PLoS ONE 2020, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Owen, A.; Mendes, B.; Hughes, B.; Collins, K.; Gabbett, T.J. High-Speed Running and Sprinting as an Injury Risk Factor in Soccer: Can Well-Developed Physical Qualities Reduce the Risk? J. Sci. Med. Sport 2018, 21, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Colby, M.J.; Dawson, B.; Peeling, P.; Heasman, J.; Rogalski, B.; Drew, M.K.; Stares, J. Improvement of Prediction of Noncontact Injury in Elite Australian Footballers with Repeated Exposure to Established High-Risk Workload Scenarios. Int. J. Sports Physiol. Perform. 2018, 13, 1130–1135. [Google Scholar] [CrossRef]
- Iacono, A.D.; Beato, M.; Unnithan, V.B.; Shushan, T. Programming High-Speed and Sprint Running Exposure in Football: Beliefs and Practices of More Than 100 Practitioners Worldwide. Int. J. Sports Physiol. Perform. 2023, 18, 742–757. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Solheim, J.A.B.; Bencke, J. Comparison of Hamstring Muscle Activation during High-Speed Running and Various Hamstring Hamstring Strengthening Exercises. Int. J. Sports Phys. Ther. 2017, 12, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.M.; Conway, R.; Harrison, A.J. Muscle Activity in Sprinting: A Review. Sports Biomech. 2018, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Silder, A.; Thelen, D.G.; Heiderscheit, B.C. Effects of Prior Hamstring Strain Injury on Strength, Flexibility, and Running Mechanics. Clin. Biomech. 2010, 25, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. Hamstring Musculotendon Dynamics during Stance and Swing Phases of High-Speed Running. Med. Sci. Sports Exerc. 2011, 43, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Higashihara, A.; Ono, T.; Kubota, J.; Okuwaki, T.; Fukubayashi, T. Functional Differences in the Activity of the Hamstring Muscles with Increasing Running Speed. J. Sports Sci. 2010, 28, 1085–1092. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Garrues, M.A.; Schilders, E.; Myer, G.D.; Dalmau-Pastor, M. Anterior Pelvic Tilt Increases Hamstring Strain and Is a Key Factor to Target for Injury Prevention and Rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 573–582. [Google Scholar] [CrossRef]
- Clark, K.P.; Weyand, P.G. Are Running Speeds Maximized with Simple-Spring Stance Mechanics? J. Appl. Physiol. 2014, 117, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Zabalov, S.; Freitas, T.T.; Pareja-Blanco, F.; Alcaraz, P.; Loturco, I. Narrative Review on the Use of Sled Training to Improve Sprint Performance in Team Sport Athletes. Strength. Cond. J. 2023, 45, 13–28. [Google Scholar] [CrossRef]
- Struzik, A.; Karamanidis, K.; Lorimer, A.; Keogh, J.W.L.; Gajewski, J. Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview. Appl. Bionics Biomech. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Brazier, J.; Maloney, S.; Bishop, C.; Read, P.J.; Turner, A.N. Lower Extremity Stiffness: Considerations for Testing, Performance Enhancement, and Injury Risk. J. Strength. Cond. Res. 2019, 33, 1156–1166. [Google Scholar] [CrossRef]
- Edouard, P.; Mendiguchia, J.; Guex, K.; Lahti, J.; Prince, C.; Samozino, P.; Morin, J.B. Sprinting: A Key Piece of the Hamstring Injury Risk Management Puzzle. Br. J. Sports Med. 2022, 57, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Filter, A.; Olivares-Jabalera, J.; Dos’Santos, T.; Madruga, M.; Lozano, J.; Molina, A.; Santalla, A.; Requena, B.; Loturco, I. High-Intensity Actions in Elite Soccer: Current Status and Future Perspectives. Int. J. Sports Med. 2023, 44. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Piqueras, P.; Martinez-Serrano, A.; Freitas, T.; Gomez-Diaz, A.; Loturco, I.; Gimenez, E.; Brito, J.; Garcia-Lopez, D.; Giuria, H.; Granero-Gil, P.; et al. Weekly Programming of Hamstring-Related Training Contents in European Professional Soccer. Sports 2024, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Douchet, T.; Settembre, M.; Mchugh, D.; Hader, K.; Verheijen, R. The 11 Evidence-Informed and Inferred Principles of Microcycle Periodization in Elite Football. Sport Perform. Sci. Rep. 2024, 218. [Google Scholar]
- Lopategui, I.G.; Paulis, J.C.; Escudero, I.E. Physical Demands and Internal Response in Football Sessions According to Tactical Periodization. Int. J. Sports Physiol. Perform. 2021, 16, 858–864. [Google Scholar] [CrossRef]
- Nicholson, B.; Dinsdale, A.; Jones, B.; Till, K. The Training of Short Distance Sprint Performance in Football Code Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2020, 51, 1179–1207. [Google Scholar] [CrossRef]
- Loturco, I.; Freitas, T.T.; Zabaloy, S.; Pereira, L.A.; Moura, T.B.M.A.; Fernandes, V.; Mercer, V.P.; Alcaraz, P.E.; Zając, A.; Bishop, C. Speed Training Practices of Brazilian Olympic Sprint and Jump Coaches: Toward a Deeper Understanding of Their Choices and Insights (Part II). J. Hum. Kinet. 2023, 89, 187–211. [Google Scholar] [CrossRef] [PubMed]
- McBurnie, A.J.; Dos’Santos, T. Multidirectional Speed in Youth Soccer Players. Strength. Cond. J. 2021, 1–19, Publish Ahead. [Google Scholar] [CrossRef]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Low, S.; Li, F.X. Spikes in Acute: Chronic Workload Ratio (ACWR) Associated with a 5-7 Times Greater Injury Rate in English Premier League Football Players: A Comprehensive 3-Year Study. Br. J. Sports Med. 2020, 54, 731–738. [Google Scholar] [CrossRef]
- Windt, J.; Gabbett, T.J. How Do Training and Competition Workloads Relate to Injury? The Workload Injury Aetiology Model. Br. J. Sports Med. 2017, 51, 428–435. [Google Scholar] [CrossRef]
- Taberner, M.; Allen, T.; Cohen, D.D. Progressing Rehabilitation after Injury: Consider the “Control-Chaos Continuum”. Br. J. Sports Med. 2020, 54, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Ade, J.D. Are Current Physical Match Performance Metrics in Elite Soccer Fit for Purpose or Is the Adoption of an Integrated Approach Needed? Int. J. Sports Physiol. Perform. 2018, 13, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Doran, D.; Hawkins, R.; Gómez-Díaz, A.; Martin-Garcia, A.; Ade, J.D.; Laws, A.; Evans, M.; Bradley, P.S. Contextualised Peak Periods of Play in English Premier League Matches. Biol. Sport 2022, 39, 973–983. [Google Scholar] [CrossRef]
- Caldbeck, P.; Dos’Santos, T. How Do Soccer Players Sprint from a Tactical Context? Observations of an English Premier League Soccer Team. J. Sports Sci. 2022, 40, 2669–2680. [Google Scholar] [CrossRef]
- Asian-Clemente, J.A.; Rabano-Muñoz, A.; Requena, B.; Suarez-Arrones, L. High-Speed Training in a Specific Context in Soccer: Transition Games. Int. J. Sports Med. 2022, 43, 881–888. [Google Scholar] [CrossRef]
- Castellano, J.; Puente, A.; Echeazarra, I.; Casamichana, D. Influence of the Number of Players and the Relative Pitch Area per Player on Heart Rate and Physical Demands in Youth Soccer. J. Strength. Cond. Res. 2015, 29, 1683–1691. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Seiler, S.K. The Difference Is in the Start: Impact of Timing and Start Procedure on Sprint Running Performance. J. Strength. Cond. Res. 2012, 26, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.K.; Finch, C.F. The Relationship between Training Load and Injury, Illness and Soreness: A Systematic and Literature Review. Sports Med. 2016, 46, 861–883. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Sandua, M.; Berndsen, J.; Shelton, A.; Smith, S.; Norman, D.; McHugh, D.; Hader, K. Loading Patterns and Programming Practices in Elite Football: Insights from 100 Elite Practitioners. Sport Perform. Sci. Rep. 2021, 153, 1–18. [Google Scholar]
- Fessi, M.S.; Zarrouk, N.; Di Salvo, V.; Filetti, C.; Barker, A.R.; Moalla, W. Effects of Tapering on Physical Match Activities in Professional Soccer Players. J. Sports Sci. 2016, 34, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Bessa, C.; Nikolaidis, P.T.; Teoldo, I.; Clemente, F. A Systematic Review of Research on Tactical Periodization: Absence of Empirical Data, Burden of Proof, and Benefit of Doubt. Hum. Mov. 2020, 21, 37–43. [Google Scholar] [CrossRef]
- Buchheit, M.; Lacome, M.; Cholley, Y.; Simpson, B. Neuromuscular Responses to Conditioned Soccer Sessions Assessed via Gps- Embedded Accelerometers: Insights into Tactical Periodization. Int. J. Sports Physiol. Perform. 2018, 13, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Settembre, M.; Hader, K.; McHugh, D. Exposures to Near-to-Maximal Speed Running Bouts during Different Turnarounds in Elite Football. Biol. Sport 2023, 40, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Serrano, A.; Freitas, T.T.; Franquesa, X.; Enrich, E.; Mallol, M.; Alcaraz, P.E. Does External Load Reflect Acute Neuromuscular Fatigue and Rating of Perceived Exertion in Elite Young Soccer Players? J. Strength. Cond. Res. 2022. Publish Ahead. [Google Scholar] [CrossRef]
- Tzatzakis, T.; Papanikolaou, K.; Draganidis, D.; Tsimeas, P.; Kritikos, S.; Poulios, A.; Laschou, V.C.; Deli, C.K.; Chatzinikolaou, A.; Batrakoulis, A.; et al. Recovery Kinetics after Speed-Endurance Training in Male Soccer Players. Int. J. Sports Physiol. Perform. 2020, 15, 395–408. [Google Scholar] [CrossRef]
- Harper, D.J.; Kiely, J. Damaging Nature of Decelerations: Do We Adequately Prepare Players? BMJ Open Sport Exerc. Med. 2018, 4, 1–3. [Google Scholar] [CrossRef]
- Stevens, T.; de Ruiter, C.; Twisk, J.; Savelsbergh, G.; Beek, P. Quantification of In-Season Training Load Relative to Match Load in Professional Dutch Eredivisie Football Players. Sci. Med. Footb. 2017, 1, 117–125. [Google Scholar] [CrossRef]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Milsom, J.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of Seasonal-Long Physical Load in Soccer Players with Different Starting Status from the English Premier League: Implications for Maintaining Squad Physical Fitness. Int. J. Sports Physiol. Perform. 2016, 11, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.; Rampinini, E.; Sassi, R.; Beato, M. Workload Monitoring in Top-Level Soccer Players during Congested Fixture Periods. Int. J. Sports Med. 2020, 41, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Dellaserra, C.L.; Gao, Y.; Ransdell, L. Use of Integrated Technology in Team Sports: A Review of Opportunities, Challenges, and Future Directions for Athletes. J. Strength. Cond. Res. 2014, 28, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.J.; Cormack, S.J.; Morgan, S.; Aughey, R.J. When Is a Sprint a Sprint? A Review of the Analysis of Team-Sport Athlete Activity Profile. Front. Physiol. 2017, 8, 256116. [Google Scholar] [CrossRef] [PubMed]
- Casamichana, D.; Morencos, E.; Romero-Moraleda, B.; Gabbett, T.J. The Use of Generic and Individual Speed Thresholds for Assessing the Competitive Demands of Field Hockey. J. Sports Sci. Med. 2018, 17, 366–371. [Google Scholar] [PubMed]
- O’Connor, F.; Thornton, H.R.; Ritchie, D.; Anderson, J.; Bull, L.; Rigby, A.; Leonard, Z.; Stern, S.; Bartlett, J.D. Greater Association of Relative Thresholds than Absolute Thresholds with Noncontact Lower-Body Injury in Professional Australian Rules Footballers: Implications for Sprint Monitoring. Int. J. Sports Physiol. Perform. 2020, 15, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Kyprianou, E.; Di Salvo, V.; Lolli, L.; Al Haddad, H.; Villanueva, A.M.; Gregson, W.; Weston, M. To Measure Peak Velocity in Soccer, Let the Players Sprint. J. Strength. Cond. Res. 2022, 36, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Campos Vázquez, M.Á.; Zubillaga, A.; Toscano Bendala, F.J.; Owen, A.L.; Castillo-Rodríguez, A. Quantification of High Speed Actions across a Competitive Microcycle in Professional Soccer. J. Hum. Sport Exerc. 2021, 18, 1–13. [Google Scholar] [CrossRef]
- Gualtieri, A.; Rampinini, E.; Dello Iacono, A.; Beato, M. High-Speed Running and Sprinting in Professional Adult Soccer: Current Thresholds Definition, Match Demands and Training Strategies. A Systematic Review. Front. Sports Act. Living 2023, 5, 1–16. [Google Scholar] [CrossRef]
- Buchheit, M. From High-Speed Running to Hobbling on Crutches: A Machine Learning Perspective on the Relationships Between Training Doses and Match Injury Trends. Sport Perform. Sci. Rep. 2023, 216, 1–11. [Google Scholar]
- Randers, M.B.; Mujika, I.; Hewitt, A.; Santisteban, J.; Bischoff, R.; Solano, R.; Zubillaga, A.; Peltola, E.; Krustrup, P.; Mohr, M. Application of Four Different Football Match Analysis Systems: A Comparative Study. J. Sports Sci. 2010, 28, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Allen, A.; Poon, T.K.; Modonutti, M.; Gregson, W.; Di Salvo, V. Integrating Different Tracking Systems in Football: Multiple Camera Semi-Automatic System, Local Position Measurement and GPS Technologies. J. Sports Sci. 2014, 32, 1844–1857. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Fiorenza, M.; Larghi, L.; Alberti, G.; Millet, G.P.; Girard, O. Short-or Long-Rest Intervals during Repeated Sprint Training in Soccer? PLoS ONE 2017, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Cuenca-López, J.; Suárez, J.; Granero-Gil, P.; Muyor, J.M. When and How Do Soccer Players From a Semi-Professional Club Sprint in Match Play? J. Hum. Kinet. 2023, 86, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.L.; Wong, D.P.; Newton, M.; Weldon, A.; Koundourakis, N.E. Quantification, Tapering and Positional Analysis of across 9-Weekly Microcycles in a Professional Chinese Super League Soccer Team. EC Orthop. 2020, 12, 39–56. [Google Scholar]
- Houtmeyers, K.C.; Jaspers, A.; Figueiredo, P. Managing the Training Process in Elite Sports: From Descriptive to Prescriptive Data Analytics. Int. J. Sports Physiol. Perform. 2021, 16, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Crossley, K.M.; Macindoe, I.G.; Fahrner, B.B.; Pandy, M.G. Can a Clinical Test of Hamstring Strength Identify Football Players at Risk of Hamstring Strain? Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 38–41. [Google Scholar] [CrossRef]
- Constantine, E.; Taberner, M.; Richter, C.; Willett, M.; Cohen, D.D. Isometric Posterior Chain Peak Force Recovery Response Following Match-Play in Elite Youth Soccer Players: Associations with Relative Posterior Chain Strength. Sports 2019, 7, 218. [Google Scholar] [CrossRef]
- McCall, A.; Nedelec, M.; Carling, C.; Le Gall, F.; Berthoin, S.; Dupont, G. Reliability and Sensitivity of a Simple Isometric Posterior Lower Limb Muscle Test in Professional Football Players. J. Sports Sci. 2015, 33, 1298–1304. [Google Scholar] [CrossRef]
- Matinlauri, A.; Alcaraz, P.E.; Freitas, T.T.; Mendiguchia, J.; Abedin-Maghanagi, A.; Castillo, A.; Martínez-Ruiz, E.; Vivas, J.C.; Cohen, D.D. A Comparison of the Isometric Force Fatigue-Recovery Profile in Two Posterior Chain Lower Limb Tests Following Simulated Soccer Competition. PLoS ONE 2019, 14, 1–16. [Google Scholar] [CrossRef]
- Kakavas, G.; Malliaropoulos, N.; Gabbett, T.; Mitrotasios, M.; Van Dyk, N.; Bikos, G.; Maffulli, N. A 90 Minute Soccer Match Induces Eccentric Hamstring Muscles Fatigue. Muscles Ligaments Tendons J. 2021, 11, 318–323. [Google Scholar] [CrossRef]
- Brown, M.; Hader, K.; Guilhem, G.; Simpson, B.M.; Buchheit, M.; Lacome, M. The Ballistic Hip Thrust Test: A Potential Tool to Monitor Neuromuscular Performance. Biol. Sport 2021, 39, 73–77. [Google Scholar] [CrossRef]
- Bramah, C.; Tawiah-Dodoo, J.; Rhodes, S.; Elliott, J.D.; Dos’Santos, T. The Sprint Mechanics Assessment Score: A Qualitative Screening Tool for the In-Field Assessment of Sprint Running Mechanics. Am. J. Sports Med. 2024, 28, 03635465241235525. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Piqueras, P.; Alcaraz, P.E. If You Want to Prevent Hamstring Injuries in Soccer, Run Fast: A Narrative Review about Practical Considerations of Sprint Training. Sports 2024, 12, 134. https://doi.org/10.3390/sports12050134
Gómez-Piqueras P, Alcaraz PE. If You Want to Prevent Hamstring Injuries in Soccer, Run Fast: A Narrative Review about Practical Considerations of Sprint Training. Sports. 2024; 12(5):134. https://doi.org/10.3390/sports12050134
Chicago/Turabian StyleGómez-Piqueras, Pedro, and Pedro E. Alcaraz. 2024. "If You Want to Prevent Hamstring Injuries in Soccer, Run Fast: A Narrative Review about Practical Considerations of Sprint Training" Sports 12, no. 5: 134. https://doi.org/10.3390/sports12050134
APA StyleGómez-Piqueras, P., & Alcaraz, P. E. (2024). If You Want to Prevent Hamstring Injuries in Soccer, Run Fast: A Narrative Review about Practical Considerations of Sprint Training. Sports, 12(5), 134. https://doi.org/10.3390/sports12050134