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Abstract: This study examined the impact of training load periodization on neuromuscular readiness
in elite football players using the Locomotor Efficiency Index (LEI) as a measure of performance opti-
mization. Throughout the 2021/22 and 2022/23 seasons, 106 elite male players (age: 19.5 ± 3.9 years)
from an Italian professional football club were monitored using Global Positioning Systems (GPS)
external load data. The LEI was derived from a machine learning model, specifically random forest
regression, which compared predicted and actual PlayerLoad™ values to evaluate neuromuscular
efficiency. Players were categorized by weekly LEI into three readiness states: bad, normal, and good.
Analysis focused on the variation in weekly LEI relative to weekly load percentage variation (large
decrease, moderate decrease, no variation, moderate increase, large increase), which included total
distance, high-speed distance (above 25.2 km/h), and mechanical load, defined as the sum of acceler-
ations and decelerations. Statistical analysis showed significant differences only with variations in
total distance and mechanical load. Specifically, reducing weekly loads improved LEI in players in
lower readiness states, while maintaining or slightly increasing loads promoted optimal readiness.
This approach enables coaches to tailor training prescriptions more effectively, optimizing workload
and recovery to sustain player performance throughout a demanding season.

Keywords: football; load monitoring; fatigue; periodization; readiness

1. Introduction

In elite football, the competitive phase (i.e., in-season) typically extends over 9–10 months.
During this period, matches are played almost every week, with some weeks featuring
up to three matches within a 7 day span [1,2]. Ensuring a team’s sustained peak perfor-
mance throughout the entire season is paramount, especially in light of potential player
fatigue and diminished performance resulting from the weekly demands of competition [3].
Coaches may incorrectly attribute performance declines to players’ fitness deficiencies,
potentially making the error of increasing their weekly workload. In fact, according to the
fitness–fatigue paradigm [4], performance is considered the result of both fitness and fa-
tigue components, which are both induced during a training session [5]. Hence, a sufficient
level of recovery between training sessions and competition is essential to optimize players’
performance, minimize the debilitating effects associated with fatigue, and reduce their
risk of injury [6].

Achieving these goals requires a systematic periodization of training processes to
ensure players’ optimal physiological adaptations to training demands [7,8]. Then, to quan-
tify the effectiveness of such periodization strategies, specific indicators suitable to identify
the general fatigue status of the athletes are needed [6]. These markers could include
salivary hormones [9], heart-rate-derived indices [10], psychophysiological indicators [11],
and neuromuscular indices [12]. To be considered valid fatigue markers, these should
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be sensitive to the variations in weekly training load [6,13]. Consequently, numerous
researchers have explored the effectiveness of these markers in response to fluctuations
in training load. For instance, Thorpe et al. [6] found that during in-season, the perceived
ratings of wellness of elite soccer players were sensitive to the fluctuations in their training
loads. Similarly, Nobari et al. [14] found a correlation between players’ weekly acute
and chronic workloads and their weekly values of fatigue, stress, delayed onset muscle
soreness (DOMS), and sleep quality. In another study, Thorpe et al. [15] found that the
individual fluctuations in perceived ratings of fatigue were correlated with fluctuations in
high-speed running distance covered in the previous two, three, and four days. In particu-
lar, the authors observed that the fatigue score worsened by one unit for every additional
400 m of the total high-speed running distance. Therefore, perceived ratings of fatigue
showed a correlation with fluctuations in total high-speed running distance recorded in the
previous days.

These findings imply that the individual training load cumulated over the previous
week could increase players’ fatigue status and impair their neuromuscular readiness.
Periodizing training loads is therefore essential to reduce fatigue prior to matches, espe-
cially in elite football where players could compete up to three times per week. On that
subject, Gastin et al. [16] observed that manipulating weekly training loads altered the
subjective ratings of physical and psychological wellness among elite Australian football
players, underscoring the benefits of unloading periods for both physical and mental
health. Although these markers are sensitive to fluctuations in training load, they have
several practical limitations, including subjective assessments (e.g., questionnaires, scales),
time-consuming procedures (e.g., heart rate variability evaluation), and invasiveness
(e.g., blood markers). To address these limitations, using supervised machine learning
techniques (ML), Mandorino et al. [17] developed a new Locomotor Efficiency Index (LEI)
to assess players’ neuromuscular status and readiness resulting from their training/match
activity. ML offers numerous benefits, particularly in simplifying the daily assessment of
neuromuscular readiness and providing a non-intrusive method to detect potential fatigue
states, thereby reducing the necessity for athletes to undergo extensive testing. This study’s
findings indicated that the LEI varied throughout the season and across different days of
the week. Notably, when players faced increased weekly loads, measured by total distance,
high-sprint distance (>25.2 km/h), and the number of accelerations (>3.5 m/s2), the index
significantly decreased. These results underscore the critical role of managing training
loads to minimize fatigue and optimize match-day readiness.

Consequently, this study aims to explore how various training load periodization
strategies, specifically adjustments to the weekly training load, affect the neuromuscular
status of football players, as indicated by the LEI. The research examines various weekly
training scenarios within an elite football club: (1) decreasing the weekly training load,
(2) maintaining the same weekly training load, and (3) increasing the weekly training load.

2. Materials and Methods
2.1. Study Design

This observational longitudinal study was conducted over two consecutive football
seasons (2021/22 and 2022/23) to analyze locomotor efficiency and training load variations
among elite male football players using external load data. The study took place at an
Italian professional football club, encompassing players from the first team, U19, and
U18 teams. Players engaged in training sessions five to six times per week and participated
in official matches during weekends. Players who took part in <60% of training sessions
were excluded from the study to remove the subjects who had poor training continuity due
to injuries or absence [18,19].

The primary objective was to assess the players’ neuromuscular readiness, weekly
training loads, and the influence of these factors on their performance and efficiency
on the field. Data collection occurred during every training session and match, with a
comprehensive analysis conducted on a weekly basis.



Sports 2024, 12, 148 3 of 17

This approach aimed to provide a detailed understanding of how training loads impact
player neuromuscular readiness over time, thereby offering insights for optimizing training
regimens and improving overall player efficiency.

2.2. Participants

The study involved a total of one hundred and six elite male players from the first
team (n: 31; age: 24.1 ± 4.5 years; body mass: 79.7 ± 6.2 kg; height: 183.9 ± 5.3 cm), U19
(n: 44; age: 18.2 ± 0.9 years; body mass: 77.1 ± 18.6 kg; height: 182.2 ± 7.5 cm), and U18
(n: 31; age: 17.1 ± 0.7 years; body mass: 72.1 ± 6.0 kg; height: 179.1 ± 6.1 cm) teams.

Data were obtained from the club as the players were daily monitored over the course
of the season. Therefore, requesting ethics committee clearance, as one would in usual
research procedures, was not necessary [20]. However, all data were anonymized before
the analysis, and the research was conducted following the Declaration of Helsinki to
guarantee team and player confidentiality [21].

2.3. External Load Data Collection

External load data were collected using the WIMU Pro system (RealTrack Systems,
Almería, Spain), consisting of various inertial sensors (three 3D gyroscopes with 8000◦/s
full-scale output range, a 3D magnetometer, a 10-Hz global positioning system, a 20-Hz
ultra-wide band) whose validity and reliability have been previously tested [22,23]. The
GPS devices were placed between the scapulae through a tight vest to minimize unwanted
movement. All GPS devices were turned on before the 10 min warm-up to ensure an
optimal signal acquisition. To avoid interunit variability, each player wore the same GPS
device during the seasons.

3. Data Analysis
3.1. Calculation of the Locomotor Efficiency Index

Based on the procedure introduced in a previous study [17], LEI was calculated as
the difference between the PlayerLoadTM (PL) values predicted by the machine learning
(ML) model and the real PL values (∆PL). The construction and selection of the ML model
involved several steps, including data preprocessing, feature elimination, hyperparameter
tuning, cross-validation, and model evaluation. All these steps are thoroughly detailed by
Mandorino et al. [17].

Random forest regression (RF) was identified as the best ML algorithm and employed
to predict players’ training/match PL [24,25] through seven external load metrics (Table 1),
which were identified in the previous study [17] as the most important features to predict
the target variable. A positive ∆PL was interpreted as a condition where the player was able
to maximize the locomotor activity and minimize the load imposed on the body compared
to the expected value predicted by the ML model. Differently, a negative ∆PL indicated
that the player cumulated a higher PL than the value predicted by the model, suggesting
a decrease in the player’s locomotor efficiency [17]. Considering the high individual
variability [26], the ∆PL was reported using a z-score transformation (LEI), calculated for
each player individually, based on data from the two entire seasons:

LEI =
Individual ∆PL − Individual ∆PL average

Individual ∆PL standard deviation

Table 1. Variables employed in the machine learning model.

Predictors Total distance (m)
Distance > 7.2 km/h (m)
Number of decelerations < −2.5 (m/s2)
Number of accelerations > 2.5 (m/s2)
Max speed (km/h)
Max decelerations (m/s2)
Max decelerations (m/s2)

Target PlayerLoadTM (PL)
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If the players completed two training sessions per day, the final LEI for the day was
calculated as the average of the LEI values from both sessions.

3.2. Definition of the Different Training Scenarios
3.2.1. Weekly Readiness

The players’ weekly neuromuscular readiness was individually calculated as the
weekly average of the LEI values. According to the results, three different conditions were
identified within each week by using the following cutoffs:

• Bad readiness: players exhibited a weekly LEI value lower than −0.5.
• Normal readiness: players exhibited a weekly LEI value between −0.5 and 0.5.
• Good readiness: players exhibited a weekly LEI value higher than 0.5.

3.2.2. Week-to-Week Load Fluctuation

The weekly load was calculated as the sum of the load of all training sessions and
matches over a period of one week. The weekly load was calculated for total distance,
distance > 25.2 km/h (m), and mechanical load (cnt) (i.e., number of accelerations > 3.5 m/s2

+ number of decelerations < −3.5 m/s2). The fluctuation in these external load parameters
from week to week was quantified as a percentage change using the following formula:

Weekly Load (w + 1)− Weekly Load (w)

Weekly Load (w)
× 100

where w + 1 represents the most recent week and w the previous week. Concerning the
week-to-week fluctuation, five different conditions were arbitrarily classified for the w + 1
load compared to the w:

• Large decrease: <30% of the individual weekly load;
• Moderate decrease: between −30% and −10% of the individual weekly load;
• No variation: between −10% and +10% of the individual weekly load;
• Moderate increase; between +10% and +30% of the individual weekly load;
• Large increase: >30% of the individual weekly load.

3.2.3. Week-to-Week LEI Variation

To analyze the week-to-week variation in the LEI, we calculated the absolute difference
between the weekly LEIs of the most recent week and the preceding week. The steps
undertaken to identify the various training scenarios are summarized in Figure 1.
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Figure 1. Summary of the steps performed to define the different training scenarios involved in the
statistical analysis. W1 = first week; W2 = second week.
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4. Statistical Analysis

A traditional generalized linear mixed model (GLMM) was utilized to investigate
the relationship between all possible two-way interactions (weekly readiness and week-
to-week load fluctuation) and the week-to-week variation in LEI, which was designated
as the dependent variable. To account for the repeated measurements, player identity
was included as a random effect in the model. The dataset was divided into three subsets
based on weekly readiness (bad, normal, good). Within each subset, a GLMM was fitted
to determine the optimal week-to-week load fluctuation (large decrease, decrease, no
variation, increase, large increase) that maximizes the week-to-week LEI variation. The
GLMM was applied separately for each subset and for each of the selected weekly load
parameters (total distance, distance > 25.2 km/h, mechanical load). The standardized
regression coefficient (β) was employed to quantify the effect size of individual predictors
and to identify which interaction was most significant in explaining the variation in the
dependent variable [27,28]. The two-way interactions were compared with the week-to-
week load fluctuation condition identified as “no variation in the weekly load”. Therefore,
the analysis aimed to assess whether the other load manipulation strategies provided an
advantage in improving weekly readiness compared to keeping the weekly load constant.
The significance level was set at p < 0.05. The software used for the statistical analysis of the
data was IBM’s SPSS Statistics (version 27, SPSS, Inc. Chicago, Illinois IBM Corp., Armonk,
NY, USA).

5. Results

The mean (±SD) of the week-to-week variation in LEI is shown with respect to the
different week-to-week load fluctuation conditions (Table 2).

Table 2. Mean (±SD) of the week-to-week LEI variation, categorized according to the week-to-week
load fluctuation conditions and further segmented based on the two distinct seasons.

Season External Load
Parameter Week-to-Week Load Fluctuation Condition

Large
Decrease

Moderate
Decrease No Variation Large Increase Moderate

Increase

Season 2021/22 Total distance 0.70 (±2.33) 0.32 (±2.14) −0.13 (±2.28) −1.03 (±2.74) −0.37 (±2.16)

Distance > 25.2 km/h 0.31 (±2.35) −0.31 (±2.28) 0.03 (±2.42) −0.50 (±2.63) −0.38 (±2.29)

Mechanical load 0.30 (±2.42) 0.22 (±2.17) −0.15 (±2.51) −0.50 (±2.22) −0.54 (±2.44)

Season 2022/23 Total distance 0.64 (±2.40) −0.22 (±2.36) −0.10 (±2.26) −0.49 (±2.55) −0.33 (±2.80)

Distance > 25.2 km/h −0.03 (±2.35) 0.01 (±2.56) −0.07 (±1.80) −0.38 (±2.61) −0.27 (±2.73)

Mechanical load 0.08 (±2.57) −0.10 (±2.24) −0.17 (±2.13) −0.18 (±2.77) −0.33 (±2.78)

Overall Total distance 0.67 (±2.36) 0.09 (±2.25) −0.12 (±2.27) −0.35 (±2.66) −0.77 (±2.50)

Distance > 25.2 km/h 0.18 (±2.35) −0.19 (±2.39) −0.01 (±2.22) −0.46 (±2.61) −0.33 (±2.50)

Mechanical load 0.26 (±2.48) 0.08 (±2.21) −0.16 (±2.38) −0.38 (±2.44) −0.44 (±2.60)

Total Distance

Bad Readiness Condition
A large decrease in the weekly load resulted in a significantly higher week-to-week

LEI variation (p < 0.01; β = 2.07).
Normal Readiness Condition
A large decrease in the weekly load led to a significant increase in the LEI in the

subsequent week (p < 0.01; β = 0.82). Conversely, a moderate increase (p < 0.05; β = −0.40)
and a large increase (p < 0.01; β = −0.78) in the weekly load caused a significant decrease
in the LEI.
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Good Readiness Condition
Both a large decrease in the weekly load (p < 0.05; β = −1.22) and a large increase (p < 0.05;

β = −1.05) led to a significant decrease in the weekly LEI.

Distance > 25.2 km/h (m)

No significant differences were observed in week-to-week load fluctuations for
distance > 25.2 km/h (m) across bad, normal, and good readiness conditions.

Mechanical Load (cnt)

Bad Readiness Condition
A large (p < 0.01; β = 1.23) and moderate decrease (p < 0.05; β = 0.93) in the weekly

mechanical load resulted in a significant increase in the weekly LEI.
Normal Readiness Condition
A large decrease in the load (p < 0.01; β = 0.48) led to an increase in the LEI in the

subsequent week. A large increase (p < 0.01; β = −0.48) in the weekly mechanical load had
a detrimental effect on the LEI.

Good Readiness Condition
No significant differences were found when players were classified in the good readi-

ness condition.
All the two-way interactions for the different weekly load parameters are presented

in Table 3. Box plots were used to present the median values of the week-to-week LEI
variation according to the different week-to-week load fluctuation conditions (Figure 2).

Table 3. Analysis of differences in week-to-week LEI variation according to the different week-to-week
load fluctuation conditions.

External Load Parameter Readiness Condition Week-to-Week
Load Fluctuation β 95% CI p-Value

Total distance Bad readiness Large decrease 2.07 [1.20 to 2.94] 0.001

Moderate decrease 0.41 [−0.40 to 1.24] 0.319

Moderate increase −0.18 [−1.03 to 0.66] 0.666

Large increase 0.39 [−0.46 to 1.24] 0.365

No variation 0 a 0 a 0 a

Normal readiness Large decrease 0.82 [0.48 to 1.17] 0.001

Moderate decrease 0.23 [−0.05 to 0.52] 0.115

Moderate increase −0.40 [−0.73 to −0.07] 0.016

Large increase −0.78 [−1.10 to −0.46] 0.001

No variation 0 a 0 a 0 a

Good readiness Large decrease −1.22 [−2.43 to −0.01] 0.047

Moderate decrease 0.26 [−0.84 to 1.36] 0.640

Moderate increase 0.14 [−0.77 to 1.07] 0.753

Large increase −1.05 [−1.91 to −0.18] 0.018

No variation 0 a 0 a 0 a
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Table 3. Cont.

External Load Parameter Readiness Condition Week-to-Week
Load Fluctuation β 95% CI p-Value

Distance > 25.2 km/h Bad readiness Large decrease 0.15 [−0.81 to 1.11] 0.757

Moderate decrease −0.94 [−2.08 to 0.20] 0.106

Moderate increase −0.55 [−1.77 to 0.66] 0.373

Large increase −0.30 [−1.27 to 0.67] 0.546

No variation 0 a 0 a 0 a

Normal readiness Large decrease 0.33 [−0.02 to 0.69] 0.067

Moderate decrease 0.13 [−0.28 to 0.55] 0.524

Moderate increase −0.21 [−0.66 to 0.23] 0.348

Large increase −0.15 [−0.50 to 0.20] 0.397

No variation 0 a 0 a 0 a

Good readiness Large decrease −0.56 [−1.70 to 0.56] 0.323

Moderate decrease −0.16 [−1.46 to 1.14] 0.808

Moderate increase −0.29 [−1.94 to 1.36] 0.728

Large increase −0.90 [−1.92 to 0.11] 0.081

No variation 0 a 0 a 0 a

Mechanical load Bad readiness Large decrease 1.23 [0.35 to 2.12] 0.006

Moderate decrease 0.93 [0.06 to 1.79] 0.035

Moderate increase −0.34 [−1.26 to 0.57] 0.459

Large increase 0.51 [−0.33 to 1.37] 0.235
No variation 0 a 0 a 0 a

Normal readiness Large decrease 0.48 [0.14 to 0.82] 0.005

Moderate decrease 0.12 [−0.18 to 0.44] 0.428

Moderate increase −0.32 [−0.67 to 0.02] 0.062

Large increase −0.48 [−0.81 to −0.16] 0.004

No variation 0 a 0 a 0 a

Good readiness Large decrease −1.13 [−2.38 to 0.11] 0.074

Moderate decrease −0.56 [−1.61 to 0.48] 0.291

Moderate increase −0.19 [−1.20 to 0.81] 0.710

Large increase −0.65 [−1.54 to 0.23] 0.149

No variation 0 a 0 a 0 a

a Reference category; β = standardized regression coefficient. CI confidence interval. Values in bold represent
significant results.
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gies, specifically lowered, increased, or constant loads, on the neuromuscular readiness of 
football players, measured through the Locomotor Efficiency Index (LEI). Weekly neuro-
muscular readiness was determined by averaging the LEI values for each week, while the 
weekly load was defined as the cumulative total of all training sessions and matches, in-
cluding metrics such as total distance, distance exceeding 25.2 km/h, and mechanical load. 
The main findings revealed that (1) the LEI is a sensitive indicator for evaluating fluctua-
tions in players’ weekly loads concerning selected variables over the season and (2) play-
ers with low to medium readiness may benefit from reducing weekly (acute) loads, 

Figure 2. Distribution plots of the week-to-week LEI variation based on the different week-to-week
load fluctuation conditions and in relation to the different readiness conditions (bad (a), normal (b),
good (c)). * Denotes sig. difference vs. “NO VARIATION IN THE WEEKLY LOAD” condition.



Sports 2024, 12, 148 11 of 17

6. Discussion

This study aimed to explore the impact of various weekly load manipulation strate-
gies, specifically lowered, increased, or constant loads, on the neuromuscular readiness of
football players, measured through the Locomotor Efficiency Index (LEI). Weekly neuro-
muscular readiness was determined by averaging the LEI values for each week, while the
weekly load was defined as the cumulative total of all training sessions and matches, includ-
ing metrics such as total distance, distance exceeding 25.2 km/h, and mechanical load. The
main findings revealed that (1) the LEI is a sensitive indicator for evaluating fluctuations
in players’ weekly loads concerning selected variables over the season and (2) players
with low to medium readiness may benefit from reducing weekly (acute) loads, whereas
significant load reductions under optimal readiness conditions could impair performance
due to insufficient training stimuli.

Accurately assessing the individual workload-dose-adaptive responses to weekly
training or match(es) is essential to managing players’ optimal performance. However, in
football, as in other invasion team sports, these adaptive responses change more quickly
because of the large number of external loads used in individual, small-group, and team
drills that aim for technical, tactical, and fitness goals. This makes their assessment more
difficult compared to sports with simpler training strategies. In this regard, it has been
claimed that more efficient data analysis and visualization tools for coaches are needed
to evaluate the effects of variations in workload volumes and intensities [8]. For this
reason, Mandorino et al. [17] introduced a new locomotor efficiency index (LEI), based
on a previous idea presented by Lacome et al. [29], to evaluate, for a given parameter, the
effectiveness of directly comparing its predictive model with its actual measured value.
By using this index, in this study, players’ weekly readiness was calculated through the
difference between the PL value predicted by the ML model and the real value.

This study’s findings confirm the accuracy of the newly developed locomotor effi-
ciency index (LEI), which predicts PL using a machine learning technique. Furthermore,
it provides an answer to the question raised by Bourdon et al. [8] concerning the appli-
cation of new accurate models to make use of the very large data sets generated by the
current extensive daily player monitoring. Indeed, tracking the weekly fluctuations of
certain selected workload variables facilitates decision making regarding a crucial choice to
individualize players’ periodization: load or unload? Considering that within and between
weeks, training and matches follow different dynamics, can be affected by different contex-
tual factors, and can have variations in the number of sessions and time to prepare for the
next match, detecting the week-by-week LEI variation helps coaches catch the “real-world”
scenario [30].

A novel aspect of this study was the analysis of the interaction between players’
readiness and percentage of week-to-week load fluctuation in relation to total distance,
distance > 25.2 km, and mechanical load. Based on the assumption that a positive or a
negative LEI (i.e., positive or negative ∆PL) [17] leads to an increase or decrease in play-
ers’ locomotor efficiency [31], in our work, we identified three different conditions, such
as bad, normal, and good readiness. Instead, to detect the percentage of week-to-week
load fluctuation, we identified five different conditions, such as large decrease, moderate
decrease, no variation, moderate increase, and large increase. The results provided in
our study showed that LEI was sensitive to changes in weekly load for total distance
traveled but was not affected by changes for distance traveled over 25.2 km/h. Specifically,
in the bad readiness condition, the two-way interaction between weekly readiness and
week-to-week load fluctuation registered a significant value for the large decrease condition
(<30% of the weekly load), which indicates that a drastic reduction of the weekly load is
identified as beneficial to maximize the value of LEI in the following week. This principle
forms the foundation of tapering strategies, characterized by reducing the volume and/or
frequency of training sessions. Beltran-Valls et al. [32] found that a two-week tapering
period improved lower limb muscle power and acceleration capacities in soccer players
while reducing their stress levels. Similarly, Fessi et al. [33] observed that decreasing
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the training load during taper weeks, by reducing the duration and frequency of train-
ing sessions but maintaining intensity, was associated with increased physical activity
during matches.

These findings highlight the need to implement tapering strategies when needed in
order to enhance players’ well-being. Therefore, the coaching staff plays a crucial role in
optimizing the balance between training load and performance. By carefully prescribing
exercises that account for players’ sustained external load and its impact on their psycho-
physiological response, coaches can ensure that athletes are adequately prepared while
minimizing the risk of inducing a fatigue state. Hence, the necessity of daily monitor-
ing, thereby preserving the players’ physical capacity throughout the entire competitive
season [34].

Aiming to survey the practices and perceptions of training load monitoring among
coaching staff and players in elite English football, [35] demonstrated that factors such as
the current match schedule, previous training, period of season, players’ fitness, and their
own feelings were perceived to be “somewhat” to “very” influential in planning training.
However, despite being considered speculative by the author, an intriguing finding from
Weston’s study [35] is that players rated the current match schedule as more influential than
coaches. As an explanation of this fact, players, in comparison to coaches, may sometimes
have a more in-depth perception of the match’s demands as well as its implications for
fatigue and recovery. For instance, comparing the training dose perceptions between
coaches and U17/U19 professional football players during an entire season, Brink et al. [36]
revealed that these young elite players perceived training as harder than coaches, which
could lead to training maladaptation. Because of this, coaches may use overloading as a
main training method that fits with their personal coaching philosophy. In addition, they
may also find it difficult to plan weekly microcycles characterized by a workload reduction
due to a potential mismatch between their perceptions and those of the players. For this
reason, the findings of our work, analyzing the use of LEI in relation to different scenarios,
can help coaching staff in their decision making to plan a weekly load reduction based on
objective data, overwhelming the risk of a subjective mismatch with players’ perception.
In every case, in our study, the beta coefficient showed how the effects of the interaction
between players’ readiness and the percentage of week-to-week load fluctuation change
according to the training load variation strategy, with clearer effects being registered with
large variations in the training load.

According to Bannister’s fitness–fatigue model [4], performance is considered the
outcome of both fitness and fatigue as positive and negative factors, respectively, which
are in turn influenced to varying degrees by the exercises’ contents and order in a training
session. The assumption behind this statement is that each workout elicits these two
contrasting responses, which both diminish gradually over time based on their magnitude
and rate. This type of model is also commonly referred to as an impulse-response model,
which is based on observing the organism’s response to a perturbation in homeostasis
caused by the impulse (training load) within a specific time frame. Bannister’s original
model also assumes only two contrasting factors that start their after-effects at the end of the
training session, which has been considered misleading by a revised version considering
multiple fitness and fatigue after-effects [37]. It is also argued that while the maximal
value of fatigue after-effects is taken immediately after the session, the fitness after-effects
are known to be progressive, continuing from the end of the session [38]. Furthermore,
this model is also considered a time-varying linear one, and to accurately estimate the
relationships between training load and performance, it may necessitate a substantial
number of observed units [38].

In this respect, the use of rolling averages, which have been used to determine the
LEI, can help increase the accuracy of predictions. Indeed, our study bases the relationship
between LEI and weekly load fluctuation on the weekly training load, which we calculate as
the rolling sum of the seven previous days for the external parameters. The acute/chronic
workload ratio allows for considering not only the amount of load per se but also the load
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that the player is ready to tolerate. Moreover, the length of the window used to calculate
the acute/chronic and the presence of large spikes in workload (high fluctuation) might
be important aspects to be considered in the decision-making process [39]. Our study
suggests that the weekly load could also be decreased when assessing players in a “normal
readiness” condition. Indeed, according to this scenario, players’ preparedness would
worsen with an additional load increase. Following the general principle of progressive
overload, a player should slightly exceed his load capacity in a week-to-week change in
training load, as excessive or too-quick increases can provoke maladaptation and increase
the risk of injury. Indeed, Piggot et al. [40] found an association between an increase in the
weekly internal load (>10%) and the risk of injury in the subsequent 7 days in Australian
football players. Therefore, to minimize this risk, it is suggested to limit this increase to
<10% [41], which aligns with the condition of “no variation” used in our study to classify
fluctuations between −10% and +10% of the individual weekly load.

Furthermore, our study revealed that when players are in an optimal state of prepared-
ness (good readiness), it is crucial to prevent both a large decrease and a large increase
in weekly load, since both were affecting a significant decrease in the weekly LEI. These
findings are in line with general principles of training, which explain that low training loads
do not elicit positive adaptations, while excessive loads can elicit diminished performance.
A thorough understanding of the effect of training load on performance can be accom-
plished by considering the impact of load on the risk of injury. Based on the “work-load
aetiology model” [42], workloads play a role in causing injuries through exposure, which is
influenced by the overall load, and positive and negative adaptations that are governed
by both the total workloads and alterations in load. Though the primary goal of coaching
staff should be to determine a workload strategy that maximizes benefits while minimizing
costs, both strategies of underload and overload increase the risk of injury. Excessive
accumulations and significant changes in load, leading to prolonged fatigue status, have
been identified as primary risk factors [43]. Conversely, an excessively reduced load can
also negatively impact performance by leaving players underprepared for the demands
of competition.

The final point to consider in this paper is that only variations in total distance and
mechanical load showed significant associations with the neuromuscular readiness of
the players. Notably, total distance registered the highest β coefficient values. McLaren
et al.’s meta-analysis on team sports [44] highlights that total distance has the most robust
associations with internal load and intensity variables. Similarly, a systematic review on
team sports by Fox et al. [45] indicates that for most players, total distance can be used as a
key indicator, along with a few others, for quantifying training load. Therefore, monitoring
total distance can effectively help manage weekly training loads and implement loading
or unloading strategies. This approach enables coaches and sports scientists to optimize
training programs, ensuring that athletes achieve peak performance while minimizing the
fatigue status.

7. Limitations and Future Research Perspectives

The current study has some limitations that warrant discussion. Significant associ-
ations were found only with variations in total distance and mechanical load, but not
with distances exceeding 25.2 km/h. This is despite previous research indicating a strong
correlation between high-intensity sprinting and fatigue-related markers [46]. The lack of
association in this study may be due to methodological issues related to using percentage
variations. For example, the total weekly distance consistently exceeds the distance accu-
mulated above 25.2 km/h, resulting in a different scale of measurement. Consequently,
even minor weekly fluctuations in high-speed distances can appear disproportionately
large when expressed as a percentage (e.g., a reduction from 200 m to 100 m at speeds above
25.2 km/h represents a 50% reduction, yet the absolute decrease is only 100 m). Moreover,
the inclusion of teams with varying training intensities and methodologies could influence
the final results. Additionally, the study’s findings were limited by the lack of correlation
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with objective fatigue markers, which should be included in future research. Other factors,
such as sleep quality and stress status, which could impact player fatigue, also need to
be considered.

8. Practical Applications

This study provides valuable insights into the management of training loads in elite
football, with implications for both coaches and players: (1) The use of the Locomotor
Efficiency Index (LEI) offers a practical tool for assessing and adjusting loads to maintain
or enhance player readiness and performance (Figure 3). Specifically, adjustments to the
training load should be based on the weekly LEI values, reducing loads when necessary
to prevent fatigue and optimize performance. (2) Given the sensitivity of the LEI to
training loads, recovery protocols should be tailored to the players’ specific needs, based on
their weekly LEI scores. This approach ensures that players receive appropriate recovery
interventions, which are crucial during congested match periods. (3) The study highlights
the benefits of non-invasive monitoring techniques. These methods are crucial for daily
assessments, as they minimize the burden on players while providing reliable data to
inform training decisions. By applying these practical applications, football clubs may
optimize performance throughout the season, minimize the risk of injury, and maximize
the physical and psychological well-being.
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9. Conclusions

This study provides a comprehensive analysis of how varying training loads impact
the neuromuscular readiness of elite football players, as measured by the Locomotor Effi-
ciency Index (LEI). The findings confirm the LEI’s sensitivity to training load fluctuations,
offering a valuable tool for optimizing player readiness and performance. The results
indicate that players in lower states of readiness particularly benefit from reductions in
weekly training loads, highlighting the importance of tailored training interventions to
maximize performance. Moreover, inappropriate load adjustments, especially increases for
players in good readiness, can negatively impact performance, underscoring the need for
careful management of weekly training load.
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