Exergames as an Effective Alternative to Real Environmental Tennis Training for Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurement and Assessment Tools
2.3.1. Reaction Time Assessment
2.3.2. Virtual Reality Exergaming Assessment
2.3.3. Tennis Training Assessment
- Exercise 1: ball control and perception (10 min).
- Exercise 2: forehand (10 min).
- Exercise 3: backhand (10 min).
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, L.; Flôres, F.; Matheus, S. Can Exergames Be Used as an Alternative to Conventional Exercises? Mot. Rev. De. Educ. Física 2021, 27, e1021020197. [Google Scholar] [CrossRef]
- Schlemmer, E. Gamificação Em Espaços de Convivência Híbridos e Multimodais: Design e Cognição Em Discussão. Rev. Da FAEEBA—Educ. E Contemp. 2014, 23, 73–89. [Google Scholar] [CrossRef]
- Jin, S.A.A.; Park, N. Parasocial Interaction with My Avatar: Effects of Interdependent Self-Construal and the Mediating Role of Self-Presence in an Avatar-Based Console Game, Wii. Cyberpsychology Behav. 2009, 12, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Ennis, C. Implications of Exergaming for the Physical Education Curriculum in the 21st Century. J. Sport. Health Sci. 2013, 2, 152–157. [Google Scholar] [CrossRef]
- Hallal, P.; Andersen, L.; Bull, F.; Guthold, R.; Haskell, W.; Ekelund, U.; Alkandari, J.; Bauman, A.; Blair, S.; Brownson, R.; et al. Global Physical Activity Levels: Surveillance Progress, Pitfalls, and Prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Vaghetti, C.; Botelho, S. Ambientes Virtuais de Aprendizagem Na Educação Física: Uma Revisão Sobre a Utilização de Exergames. Ciências Cognição 2010, 15, 76–88. [Google Scholar]
- Baldissera, V.; Carvalho, M.; Pelloso, S. Adesão Ao Tratamento Não-Farmacológico Entre Hipertensos de Um Centro de Saúde Escola. Rev. Gauch. Enferm. 2009, 30, 27–32. [Google Scholar]
- Huang, H.C.; Wong, M.K.; Lu, J.; Huang, W.F.; Teng, C.I. Can Using Exergames Improve Physical Fitness? A 12-Week Randomized Controlled Trial. Comput. Hum. Behav. 2017, 70, 310–316. [Google Scholar] [CrossRef]
- McCallum, S. Gamification and Serious Games for Personalized Health. Stud. Health Technol. Inf. 2012, 177, 85–96. [Google Scholar] [CrossRef]
- Politopoulos, N.; Tsiatsos, T. Tennis Attack: An Exergame Utilizing a Natural User Interface to Measure and Improve the Simple Reaction Time. Appl. Sci. 2022, 12, 9590. [Google Scholar] [CrossRef]
- Bhabhor, M.; Vidja, K.; Bhanderi, P.; Dodhia, S.; Kathrotia, R.; Joshi, V. A Comparative Study of Visual Reaction Time in Table Tennis Players and Healthy Controls. Indian. J. Physiol. Pharmacol. 2013, 57, 439–442. [Google Scholar]
- Zeng, N.; Lee, J.E.; Gao, Z. Effects of Home-Based Exergaming on Preschool Children’s Cognition, Sedentary Behavior, and Physical Activity: A Randomized Crossover Trial. Brain Behav. Immun. Integr. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Epstein, L.; Beecher, M.; Graf, J.; Roemmich, J. Choice of Interactive Dance and Bicycle Games in Overweight and Nonoverweight Youth. Ann. Behav. Med. 2007, 33, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z. Motivated but not active: The dilemmas of incorporating interactive dance into gym class. J. Phys. Act. Health 2012, 9, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Mhurchu, C.; Maddison, R.; Jiang, Y.; Jull, A.; Prapavessis, H.; Rodgers, A. Couch Potatoes to Jumping Beans: A Pilot Study of the Effect of Active Video Games on Physical Activity in Children. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, J.; Tenzek, K.E.; Lee, K.M. The Effects of Competition and Competitiveness upon Intrinsic Motivation in Exergames. Comput. Hum. Behav. 2013, 29, 1702–1708. [Google Scholar] [CrossRef]
- Roopchand-Martin, S.; Nelson, G.; Gordon, C. Can Persons with Paraplegia Obtain Training Heart Rates When Boxing on the Nintendo Wii? N. Z. J. Physiother. 2014, 42, 28–32. [Google Scholar]
- Kim, S.Y.; Prestopnik, N.; Biocca, F.A. Body in the Interactive Game: How Interface Embodiment Affects Physical Activity and Health Behavior Change. Comput. Hum. Behav. 2014, 36, 376–384. [Google Scholar] [CrossRef]
- Max, E.J.; Samendinger, S.; Winn, B.; Kerr, N.L.; Pfeiffer, K.A.; Feltz, D.L. Enhancing Aerobic Exercise with a Novel Virtual Exercise Buddy Based on the Köhler Effect. Games Health J. 2016, 5, 252–257. [Google Scholar] [CrossRef]
- Lin, J.H. “Just Dance”: The Effects of Exergame Feedback and Controller Use on Physical Activity and Psychological Outcomes. Games Health J. 2015, 4, 183–189. [Google Scholar] [CrossRef]
- Purath, J.; Keller, C.S.; McPherson, S.; Ainsworth, B. A Randomized Controlled Trial of an Office-Based Physical Activity and Physical Fitness Intervention for Older Adults. Geriatr. Nurs. 2013, 34, 204–211. [Google Scholar] [CrossRef]
- Ahn, S.; Johnsen, K.; Ball, C. Points-Based Reward Systems in Gamification Impact Children’s Physical Activity Strategies and Psychological Needs. Health Educ. Behav. 2019, 46, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Witt, P.; Dangi, T. Why Children/Youth Drop Out of Sports. J. Park. Recreat. Admi 2018, 36, 191–199. [Google Scholar] [CrossRef]
- Griggs, G.; Fleet, M. Most People Hate Physical Education and Most Drop out of Physical Activity: In Search of Credible Curriculum Alternatives. Educ. Sci. 2021, 11, 701. [Google Scholar] [CrossRef]
- Crane, J.; Temple, V. A Systematic Review of Dropout from Organized Sport among Children and Youth. Eur. Phy Educ. Rev. 2015, 21, 114–131. [Google Scholar] [CrossRef]
- Anderson, C.B. When More Is Better: Number of Motives and Reasons for Quitting as Correlates of Physical Activity in Women. Health Educ. Res. 2003, 18, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.; Brudzynski, L. Motivations and Barriers to Exercise among College Students. J. Exerc. Physiol. Online 2008, 11, 1–11. [Google Scholar]
- Ekkekakis, P. Let Them Roam Free? Sports Med. 2009, 39, 857–888. [Google Scholar] [CrossRef]
- Graves, L.; Ridgers, N.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N. The Physiological Cost and Enjoyment of Wii Fit in Adolescents, Young Adults, and Older Adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Wu, X.; Gao, Z.; Ye, S. Effects of Exergaming on Executive Functions of Children: A Systematic Review and Meta-Analysis from 2010 to 2023. Arch. Public Health 2023, 81, 182. [Google Scholar] [CrossRef]
- Fairbrother, J.T. Fundamentals of Motor Behavior; Human Kinetics: Champaign, IL, USA, 2010; Volume 1, ISBN 13: 978-0-7360-7714-9. [Google Scholar]
- Magill, R.; Anderson, D. Motor Learning and Control: Concepts and Applications. McGraw-Hill: New York, NY, USA, 2017; ISBN 9781259823992. [Google Scholar]
- Letovsky, H. Player Skill Equalizer for Video Games. Patent US7361091B2, 22 April 2008. [Google Scholar]
- Mori, S.; Ohtani, Y.; Imanaka, K. Reaction Times and Anticipatory Skills of Karate Athletes. Hum. Mov. Sci. 2002, 21, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Audiffren, M.; Delignieres, D. Influence of physical exercise on simple reaction time: Effect of physical fitness. Percept. Mot. Ski. 1997, 85, 1019–1027. [Google Scholar]
- Bozkurt, S.; Erkut, O.; Akkoç, O. Relationships between Static and Dynamic Balance and Anticipation Time, Reaction Time in School Children at the Age of 10-12 Years. Univers. J. Educ. Res. 2017, 5, 927–931. [Google Scholar] [CrossRef]
- Dane, S.; Erzurumluoglu, A. Sex and Handedness Differences in Eye-Hand Visual Reaction Times in Handball Players. Int. J. Neurosci. 2003, 113, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.M.; Zuhairi, N.A.; Manan, F.A.; Knight, V.F.; Omar, R. Visual Reaction Time and Visual Anticipation Time between Athletes and Non-Athletes. Malays. J. Public. Health Med. 2018, 2018, 135–141. [Google Scholar]
- Akhani, P.; Harsoda, J. Mental Chronometry in Table Tennis Players and Football Players: Who Have Faster Reaction Time? Int. J. Basic. Appl. Physiol. 2015, 4, 53–57. [Google Scholar]
- Noce, F.; Ferreira, T.; Moreira, C.; De Andrade, A.; De Mello, M.; Da Costa, V. Influência Do Tempo de Reação Simples Na Seleção de Jovens Talentos No Tênis. Rev. Da Educ. Fis. 2013, 23, 369–377. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- General Assembly of the World World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Coll. Dent. 2014, 81, 14–18.
- Szpak, A.; Michalski, S.; Loetscher, T. Exergaming with Beat Saber: An Investigation of Virtual Reality Aftereffects. J. Med. Internet Res. 2020, 22, e19840. [Google Scholar] [CrossRef]
- Bégel, V.; Di Loreto, I.; Seilles, A.; Dalla Bella, S. Music Games: Potential Application and Considerations for Rhythmic Training. Front. Hum. Neurosci. 2017, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics with SPSS, 2nd ed.; Sage Publications: London, UK, 2005; ISBN 9788536320182. [Google Scholar]
- Pedersen, S.J.; Cooley, P.D.; Cruickshank, V.J. Caution Regarding Exergames: A Skill Acquisition Perspective. Phys. Educ. Sport. Pedagog. 2017, 22, 246–256. [Google Scholar] [CrossRef]
- Mohd Jai, N.; Mat Rosly, M.; Abd Razak, N. Physiological Responses of Exergaming Boxing in Adults: A Systematic Review and Meta-Analysis. Games Health J. 2020, 10, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Wrisberg, C. Motor Learning and Performance: A Situation-Based Learning Approach; Human Kinetics: Champaign, IL, USA, 2008; ISBN 073606964X. [Google Scholar]
- Resende, N.; Flôres, F. Efeitos Agudos Dos Exergames No Tempo de Reação de Crianças Em Idade Escolar. Master’s Thesis, Instituto Piaget, Almada, Portugal, 2023. [Google Scholar]
- Brychta, P.; Hojka, V.; Heller, J.; Konarski, J.; Coufalova, K.; Ruda, T. A Comparison of Reaction Times of Boys and Girls Aged 10–11 and 14–15 Years. Trends Sci. Sport 2013, 3, 147–152. [Google Scholar]
- Silverman, I. Gender Differences in Delay of Gratification: A Meta-Analysis. Sex. Roles 2003, 49, 451–463. [Google Scholar] [CrossRef]
Sex | Group | Variables | N | Mean | SD |
---|---|---|---|---|---|
Boys and Girls | Tennis | Age (y) | 25 | 12.8 | 1.7 |
Weight (kg) | 25 | 47.9 | 13.6 | ||
Height (m) | 25 | 1.6 | 0.1 | ||
BMI (kg/m2) | 25 | 18.9 | 2.9 | ||
Virtual reality exergaming | Age (y) | 39 | 16.7 | 1.2 | |
Weight (kg) | 39 | 61.7 | 14.0 | ||
Height (m) | 39 | 1.7 | 0.1 | ||
BMI (Kg/m2) | 39 | 21.5 | 3.8 | ||
Control | Age (y) | 66 | 16.0 | 1.6 | |
Weight (kg) | 66 | 58.9 | 11.4 | ||
Height (m) | 66 | 1.7 | 0.1 | ||
BMI (kg/m2) | 66 | 21.1 | 3.2 | ||
Boys | Tennis | Age (y) | 16 | 12.7 | 1.8 |
Weight (kg) | 16 | 46.7 | 13.6 | ||
Height (m) | 16 | 1.6 | 0.1 | ||
BMI (kg/m2) | 16 | 18.6 | 3.0 | ||
Virtual reality exergaming | Age (y) | 18 | 16.9 | 1.3 | |
Weight (kg) | 18 | 68.1 | 15.1 | ||
Height (m) | 18 | 1.8 | 0.1 | ||
BMI (kg/m2) | 18 | 22.0 | 3.7 | ||
Control | Age (y) | 33 | 16.1 | 1.6 | |
Weight (kg) | 33 | 64.0 | 12.4 | ||
Height (m) | 33 | 1.7 | 0.1 | ||
BMI (kg/m2) | 33 | 21.5 | 3.9 | ||
Girls | Tennis | Age (y) | 9 | 13.0 | 1.6 |
Weight (kg) | 9 | 50.0 | 14.1 | ||
Height (m) | 9 | 1.6 | 0.1 | ||
BMI (kg/m2) | 9 | 19.3 | 2.9 | ||
Virtual reality exergaming | Age (y) | 21 | 16.4 | 1.2 | |
Weight (kg) | 21 | 56.3 | 10.6 | ||
Height (m) | 21 | 1.6 | 0.1 | ||
BMI (kg/m2) | 21 | 21.1 | 4.0 | ||
Control | Age (y) | 33 | 15.9 | 1.6 | |
Weight (kg) | 33 | 53.8 | 7.4 | ||
Height (m) | 33 | 1.6 | 0.1 | ||
BMI (kg/m2) | 33 | 20.8 | 2.3 |
Group | Phase | N | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|---|
Tennis | Familiarization (ms) | 25 | 376 | 646 | 493.1 | 66.9 |
Pre-test (ms) | 25 | 351 | 626 | 461.4 | 73.3 | |
Post-test (ms) | 25 | 339 | 552 | 448.4 | 58.4 | |
Control | Familiarization (ms) | 66 | 358 | 873 | 472.3 | 85.3 |
Pre-test (ms) | 66 | 335 | 637 | 438.0 | 63.5 | |
Post-test (ms) | 66 | 315 | 776 | 429.6 | 77.3 | |
Virtual reality exergaming | Familiarization (ms) | 39 | 361 | 674 | 460.1 | 65.4 |
Pre-test (ms) | 39 | 329 | 715 | 435.0 | 77.4 | |
Post-test (ms) | 39 | 317 | 520 | 423.0 | 49.7 |
Phase | (I) RT | (J) RT | Mean Difference (I–J) | p |
---|---|---|---|---|
Familiarization | Tennis | Control | 20.9 | 0.8 |
Virtual reality exergaming | 33.0 | 0.3 | ||
Control | Tennis | −20.9 | 0.7 | |
Virtual reality exergaming | 12.1 | 1.0 | ||
Virtual reality exergaming | Tennis | −33.0 | 0.3 | |
Control | −12.1 | 1.0 | ||
Pre-test | Tennis | Control | 23.4 | 0.5 |
Virtual reality exergaming | 26.4 | 0.4 | ||
Control | Tennis | −23.4 | 0.5 | |
Virtual reality exergaming | 3.1 | 1.0 | ||
Virtual reality exergaming | Tennis | −26.4 | 0.4 | |
Control | −3.1 | 1.0 | ||
Post-test | Tennis | Control | 18.9 | 0.7 |
Virtual reality exergaming | 25.4 | 0.4 | ||
Control | Tennis | −18.9 | 0.7 | |
Virtual reality exergaming | 6.6 | 1.0 | ||
Virtual reality exergaming | Tennis | −25.4 | 0.4 | |
Control | −6.6 | 1.0 |
Group | (I) RT | (J) RT | Mean Difference (I–J) | Sig |
---|---|---|---|---|
Tennis | Familiarization | Pre-test | 31.7 | 0.1 |
Post-test | 44.7 | 0.0 | ||
Pre-test | Familiarization | −31.7 | 0.1 | |
Post-test | 13.0 | 0.8 | ||
Post-test | Familiarization | −44.7 | 0.0 | |
Pre-test | −13.0 | 0.8 | ||
Control | Familiarization | Pre-test | 34.2 | 0.00 |
Post-test | 42.7 | 0.0 | ||
Pre-test | Familiarization | −34.2 | 0.0 | |
Post-test | 8.5 | 0.7 | ||
Post-test | Familiarization | −42.7 | 0.0 | |
Pre-test | −8.5 | 0.7 | ||
Virtual reality exergaming | Familiarization | Pre-test | 25.2 | 0.1 |
Post-test | 37.1 | 0.0 | ||
Pre-test | Familiarization | −25.2 | 0.1 | |
Post-test | 12.0 | 0.6 | ||
Post-test | Familiarization | −37.1 | 0.0 | |
Pre-test | −12.0 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flôres, F.; Silva, A.; Willig, R.; Reyes, A.; Serpa, J.; Marconcin, P.; Vieira, F.; Soares, D.; Casanova, N. Exergames as an Effective Alternative to Real Environmental Tennis Training for Adolescents. Sports 2024, 12, 168. https://doi.org/10.3390/sports12060168
Flôres F, Silva A, Willig R, Reyes A, Serpa J, Marconcin P, Vieira F, Soares D, Casanova N. Exergames as an Effective Alternative to Real Environmental Tennis Training for Adolescents. Sports. 2024; 12(6):168. https://doi.org/10.3390/sports12060168
Chicago/Turabian StyleFlôres, Fábio, André Silva, Renata Willig, Ana Reyes, Joana Serpa, Priscila Marconcin, Fernando Vieira, Denise Soares, and Nuno Casanova. 2024. "Exergames as an Effective Alternative to Real Environmental Tennis Training for Adolescents" Sports 12, no. 6: 168. https://doi.org/10.3390/sports12060168
APA StyleFlôres, F., Silva, A., Willig, R., Reyes, A., Serpa, J., Marconcin, P., Vieira, F., Soares, D., & Casanova, N. (2024). Exergames as an Effective Alternative to Real Environmental Tennis Training for Adolescents. Sports, 12(6), 168. https://doi.org/10.3390/sports12060168