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Abstract: This study presents a novel system for diagnosing and evaluating soccer perfor-
mance using wearable inertial sensors integrated into players’ insoles. Designed to meet
the needs of professional podiatrists and sports practitioners, the system focuses on three
key soccer-related movements: passing, shooting, and changes of direction (CoDs). The
system leverages low-power IMU sensors, Bluetooth Low Energy (BLE) communication,
and a cloud-based architecture to enable real-time data analysis and performance feedback.
Data were collected from nine professional players from the SD Huesca women’s team
during controlled tests, and bespoke algorithms were developed to process kinematic data
for precise event detection. Results indicate high accuracy rates for detecting ball-striking
events and CoDs, with improvements in algorithm performance achieved through adap-
tive thresholds and ensemble neural network models. Compared to existing systems, this
approach significantly reduces costs and enhances practicality by minimizing the number
of sensors required while ensuring real-time evaluation capabilities. However, the study is
limited by a small sample size, which restricts generalizability. Future research will aim to
expand the dataset, include diverse sports, and integrate additional sensors for broader
applications. This system offers a valuable tool for injury prevention, player rehabilitation,
and performance optimization in professional soccer, bridging technical advancements
with practical applications in sports science.

Keywords: wearable technology; machine learning algorithms; inertial sensors; soccer
biomechanics; foot kinematics

1. Introduction
The use of sensors for monitoring in the world of sport, and especially in soccer,

generates great interest due to its potential for improving sports performance, analyzing
players’ movements [1,2], and lowering the injury risk through the assessment of physical
loads borne by each player [3,4]. Moreover, these technologies play an important role
in rehabilitation processes, providing objective metrics to check the health status of the
player [5,6].

Despite these advancements, there is a critical need to bridge the gap between sports
performance analysis and clinical applications. Many musculoskeletal injuries in athletes
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arise from repetitive biomechanical stresses, which can be identified and mitigated through
precise kinematic analysis [7]. A clinical approach, therefore, complements traditional
performance monitoring by offering tools to optimize biomechanics and reduce injury risks.
This dual focus allows the system to serve not only coaches and sports scientists but also
clinicians aiming to improve the health and functionality of athletes.

Currently, the challenges of applying sensors to collective sport scenarios, including
collisions and unpredictable movements, have led to most of the work in this field being
focused on individual player monitoring [8]. Players commonly wear vests equipped
with sensors that monitor their speed, position, distance traveled and heart rate. While
video-based systems are also widely used for monitoring actions, their implementation
involves high costs due to the necessity of multiple cameras to ensure full coverage and
avoid line-of-sight occlusions [9]. In addition, the identification of events such as passes or
shots requires the use of artificial intelligence (AI) or manual labeling by personnel, both of
which are resource-intensive in terms of cost and time [10,11].

Event monitoring through the identification of specific gestures like passes, shots, or
dribbles provides valuable insights for both individual and team performance improvement.
Systems like ProZone [2] and Opta [12] are widely recognized professional tools that deliver
high-quality information, leveraging camera-based systems to track players and events.
However, the aforementioned constrains limit their accessibility and practicality, especially
for semi-professional and amateur teams.

In contrast, inertial sensor-based systems for event detection, like the one presented in
this study, provide a cost-effective and adaptable solution. These systems eliminate line-of-
sight issues by embedding sensors directly into players’ equipment, ensuring uninterrupted
data collection even in complex scenarios [10]. Inertial sensors can identify events such as
passes and shots in real-time using embedded algorithms or cloud architectures, reducing
the need for manual intervention or extensive AI training. Furthermore, their portability
and non-intrusive design allow for use in matches, training sessions, or doctor consultations,
offering immediate feedback. This real-time capability, combined with lower costs and
simplified implementation, positions inertial sensors as a practical alternative for teams at
various competitive levels.

Despite the potential advantages of this type of approach, research employing inertial
sensors for soccer-specific remains limited. Most of them focus on the detection of passes
and shots, as these are the primary events of interest. For instance, ref. [4] utilized
five IMUs placed on the shins, thighs, and sacrum to estimate physical loads during
training and matches. Similarly, ref. [13] employed neural networks to identify passing,
shooting, and running movements using a comparable five-sensor setup. On the other
hand, ref. [10,14] demonstrated the feasibility of using a single sensor located in the insole
to detect passes, shots, and instep strikes in controlled scenarios. More recently, ref. [11]
extended this approach to real-match conditions, focusing on pass and shot detection.
Additional innovations include the use of heel-mounted sensors for strike detection [15]
and textile pressure matrix sensors embedded in soccer shoes to evaluate various types
of kicks [16]. Studies like [17,18] have also utilized inertial sensors (one to five units) to
estimate physical loads during matches.

From the review of existing IMU-based systems, it is evident that significant progress
has been made, particularly in reducing the number of required sensors and implementing
neural network models capable of recognizing diverse events. However, several limitations
persist. Firstly, comfort remains a crucial concern for wearable design [19], but many
systems depend on multiple body-mounted sensors, heavy external batteries, or storage
units, which may interfere with the player activity. The worst-case scenario involves wired
setups, further complicating their usability in dynamic sports environments. Secondly,
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real-time data processing remains a significant challenge, with most studies relying on post
hoc analysis [10,11,13–18]. This delay in delivering actionable insights limits the practical
application of such systems during training sessions, doctor consultations, or live matches,
where immediate feedback is essential.

This paper addresses the limitations of current performance evaluation systems by inte-
grating a clinical perspective into sports analysis. Biomechanical insights derived from foot
kinematics are crucial not only for optimizing athletic performance but also for preventing
injuries. A clinical approach enables the identification of subtle biomechanical imbalances
or risk factors, which can be addressed through targeted interventions [20], aligning the
system with broader applications in rehabilitation and movement optimization [21].

To achieve this, this paper presents a novel system for soccer performance evaluation
that leverages inertial wireless sensors embedded in players’ insoles [22]. This approach
allows for seamless usage during matches without interfering with players’ movements.
Real-time evaluation is made possible through wireless communication and decentralized
algorithms executed on a cloud infrastructure. By analyzing players’ foot dynamics in situ,
this system provides actionable insights that benefit both performance enhancement and
injury prevention, bridging the gap between sports and healthcare applications.

2. Materials and Methods
2.1. System Overview

A comprehensive solution was developed, comprising an inertial sensor for capturing
foot movement data, a cloud application for analyzing this data, and a mobile application
that bridges these components while serving as the user interface (see Figure 1).

Figure 1. System architecture.

2.1.1. Embedded Sensors

The core of the system is a compact sensor module designed to capture and transmit
motion data without obstructing the athlete’s performance. Key features include:

• Inertial Measurement Unit (IMU): The LSM6DSOX [23], a six-axis sensor integrating
a 3D accelerometer and gyroscope, captures precise motion data. Its low power
consumption (550 µA) and compact dimensions (2.5 × 3.0 × 0.83 mm) make it suitable
for wearable applications and outperforms alternatives like the BMI160 (Bosch) [24]
and MPU-6050 (InvenSense) [25].

• Microcontroller: The EFR32BG22 from Silicon Labs [26] handles data processing and
wireless communication via Bluetooth Low Energy (BLE 5.2). With a 32-bit ARM
Cortex-M33 processor and low energy usage (2.6/3.6 mA in Rx/Tx), it ensures efficient
data management and transmission.

• Flash Memory: A 64 Mbit MX25R6435F [27] stores motion data, supporting both
real-time analysis and offline logging.

• Battery: The system is powered by a 3.7 V, 60 mAh lithium-ion battery, providing
up to 20 h of continuous operation. Its rechargeable design ensures convenience and
reliability for prolonged use.
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The entire module is housed within a 20 × 40 × 5 mm enclosure, small enough to fit
inside a standard insole or on the instep, as shown in Figure 2.

Figure 2. (left) IMU Sensor. (middle) IMU Sensor placed inside the insole. (right) IMU Sensor placed
on the instep.

2.1.2. Cloud Application

A cloud platform is responsible for analyzing the data recorded by the sensor during
each test and extracting relevant performance metrics for the user. The architecture of this
platform is depicted in Figure 3. Data from the sensors are transmitted via the mobile
app to the cloud, where they are processed using a combination of Apache Kafka [28] for
messaging and Faust [29] for stream processing. This setup enables parallel data handling,
ensuring efficient performance even when accommodating multiple users. The processed
data are stored in an Apache Cassandra NoSQL database [30], which is optimized for
efficiently managing time-series data. A REST API developed with FastAPI [31] allows
seamless integration with external systems, while an MQTT broker [32] notifies the mobile
app once the analysis is complete.

Figure 3. Cloud APP architecture.

2.1.3. Mobile App

A mobile application, designed for seamless user interaction, serves as an interface
between the sensors and the cloud (Figure 4). The application enables users to configure
tests and view live motion data from the sensors, streaming this data to the cloud in real
time for analysis. Once the cloud processing is complete, the app retrieves and displays the
results in a user-friendly format, facilitating user-centric decision-making. Additionally,
the app integrates with an external ERP system to securely manage user data and link trials
to individual users.



Sports 2025, 13, 10 5 of 20

Figure 4. View of different screens of the mobile APP.

2.2. Data Exchange

The data recording and analysis process is based on the concept of a session. When
recording data for a user’s test (Figure 5), the mobile app first establishes a connection
with the sensors on both feet. It then requests the cloud application to create a session
for the user and test type. The cloud application creates and stores the session in the
database, then sends the mobile app a session identifier, which includes the user ID, test
type, and session creation timestamp. The mobile app instructs the sensors to start IMU
data logging, sending acceleration and angular velocity packets every 20 ms. To prevent
overloading communication with the cloud application, packets are accumulated and sent
in batches along with the session identifier. The data are then saved in the database. At the
end of the test, sensor data recording stops, the session is closed, and the data are ready
for analysis.

Figure 5. First part of the sequence diagram for session data register.

To analyze the data (Figure 6), the mobile application requests the cloud application
to analyze the session data identified by their ID. Because the analysis process can be
resource-intensive depending on the test type and data volume, the process is performed
asynchronously by sending a request to Kafka/Faust for background processing. Once the
processing service receives the request, it retrieves the session data, performs the analysis,
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and saves the results to the database. The application is then notified of the analysis
completion via the MQTT broker.

Figure 6. Second part of the sequence diagram for session data register.

2.3. Experiment Design

This study focuses on analyzing foot kinematics across three test types relevant to
professional soccer (Figure 7): set shots, passes, and changes of direction (CoDs). The
objective is to develop a clinical analysis tool for professional podiatrists. This tool
helps assess player performance during training, identify potential issues, and refine
their technique.

To generate a robust dataset, the tests were performed by professional players from
SD Huesca, a team in the 2nd Spanish women’s division. The group included players from
various positions, as well as both right- and left-footed players.

The development of this clinical tool focused on three main objectives: achieving
high precision in data collection, ensuring the comfort of players during testing, and
creating actionable insights that could inform clinical interventions. Each of these objectives
presented specific challenges:

1. Precision in Data Collection: The kinematic data collected during the tests needed to
capture even the smallest deviations in movement patterns. This required refining
algorithms to accurately identify key biomechanical events such as asymmetries or
abnormal loading, particularly in dynamic activities like CoD.

2. Player Comfort: Given that professional athletes were participating, it was essential to
ensure the tests were minimally invasive. The integration of sensors in the insoles pri-
oritized unobtrusiveness while maintaining accuracy. Multiple prototypes were tested
to ensure that the placement of sensors did not interfere with player performance
or comfort.

3. Clinical Actionability: The tool was designed to produce outputs that would provide
clear, clinically relevant insights. This included developing customizable reports and
dashboards that clinicians could use to assess injury risks or recommend improve-
ments in technique.
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Figure 7. This image shows the different setups of the tests. The green mark indicates the starting
point, the red mark indicates the end point and the blue arrows indicate the movement of the ball.
The continuous arrows show the movement of the player during the test and the dashed arrows
show the return movement to the starting point. (a) Shooting test setup, (b) passing test setup, and
(c) change of direction test setup.

2.3.1. Shooting Test

The shooting test aims to obtain data to analyze the biomechanics of shots such as free
kicks and penalty kicks. This trial considers a shot of some power after a short run, with
the ball static and in a completely controlled situation in which the player can prepare with
sufficient time (Figure 7a). From a clinical approach, it is essential to understand how foot
placement and striking technique affect both shot efficiency and player health. The tool
can identify patterns that may predispose to injury or highlight optimal techniques that
minimize risk while maximizing performance.

The shooting test consists of 30 set shots with each foot. The player will start the test
standing two meters away from the ball; when given the signal, she will run towards the
ball and hit it, after which she will stand still for two seconds and walk back to the starting
point, where she will wait a short time before repeating the movement.

Methodology for Analysis:

1. Kinematic Data Collection: The inertial sensors embedded in the insoles record angular
velocities and accelerations during each shot. These parameters are processed to
identify peak forces and joint angles at the moment of ball impact.

2. Event Detection Algorithms: A combination of threshold-based methods and machine
learning models is used to distinguish critical events such as the plant foot stabilization
and follow-through phases.

3. Clinical Interpretation: The data are analyzed to detect potential inefficiencies or
patterns associated with increased injury risk, such as lateral imbalances or excessive
impact forces.

2.3.2. Passing Test

The passing test presents a different scenario where passing power is lower, but
the movement dynamics introduce more stress due to the lack of full ball control. This
requires user mobility and limits reaction and preparation times. In sports practice, it
is valuable to evaluate the technique of foot contact with the ball and the biomechanical
effects of different passing styles and forces. Clinically, it is important to analyze how these
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movements influence the accumulated impact loads on the foot and to optimize technique
for injury prevention while improving passing accuracy and speed.

The passing test consists of 30 passes with each foot while the ball is in motion. A
passer sends the ball to the player, who must return it without stopping and then return to
the starting position (Figure 7b).

Methodology for Analysis:

1. Spatiotemporal Metrics: Metrics such as contact time, foot trajectory, and ball velocity
are extracted from the sensor data.

2. Dynamic Stability Assessment: The data are analyzed to assess the player’s ability
to maintain balance and control during dynamic movements, which is critical for
accurate passing.

2.3.3. CoD Test

The CoD test does not involve the ball and focuses on assessing agility and biomechan-
ics during quick CoDs, which are crucial in soccer movements. Clinical analysis emphasizes
foot stability, balance, and positioning on the ground, identifying potential injury risks such
as sprains or muscle strains. It also examines reactivity during propulsion off the ground.

The CoD test consists of 30 CoDs to the right and left. The player starts at the beginning
of a circuit and runs to a cone, where she performs a CoD to the left, then runs to another
cone to perform a CoD to the right. After leaving this cone, she continues running for a few
meters to the last cone. There, she stops briefly before returning to the start and waits a
short time before repeating the movement (Figure 7c).

Methodology for Analysis:

1. Change of Direction Metrics: The system evaluates parameters such as reaction time,
ground contact time, and foot placement angles during each CoD.

2. Stability: The insoles measure lateral stability, identifying potential imbalances.
3. Agility Scoring: A composite agility score is generated based on speed, precision, and

biomechanical efficiency, which can guide training interventions.

2.4. Algorithm Description
2.4.1. Data Preprocessing

Once the data were collected, the dataset was configured. For this purpose, the data
were unified by synchronizing the recordings, as they were captured by two independent
sensors. This synchronization process followed these steps:

1. Each data sample is numbered with a sequence number. Since the sampling period is
constant, this allows establishing a time reference relative to the start of data capture
and detecting any lost messages.

2. The absolute time reference of a signal is determined from the reception instant of the
first data message from each sensor.

3. To synchronize both signals, the reception instants of the first N samples from both
sensors are analyzed, and the average difference is calculated to determine the offset
between the signals.

4. This offset is used to adjust the relative time base of one sensor to align it with the
other, as the relative time base is used for data analysis, while the reception instants
align with the sampling period.

Synchronizing the data ensures access to information from both feet at any time. This
synchronization is essential for all tests. In tapping tests, the supporting foot is clinically
significant, but the tapping foot facilitates easier identification. In CoD tests, either foot
can serve as the support foot, making both sensors critical for data collection. As shown in
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Figure 8, changes of direction coincide with moments when the supporting foot remains
immobile longer than usual during running.

Figure 8. Representation of data for both feet from player 1’s labeled and synchronized change-of-
direction test.

2.4.2. Algorithm Description

The next step was data labeling, which involved considering the entire gesture as a
stroke, from the moment the foot opposite to the striking foot is supported until the striking
foot makes contact with the ground. This process was applied to both passes and shots.

With the data labeled, algorithm development began. The Y-axis accelerations revealed
that the moments of the stroke appeared as peaks of varying durations (Figure 9).

Figure 9. Overview of the shooting test data.

To analyze significant motion during the striking process, the signal was processed to
quantify motion intensity (M) as the product of the signal’s value and its first derivative.
This approach avoids relying solely on peaks, which may lead to errors due to rebounds. A
moving average M was then calculated over a defined window size to smooth the data and
identify trends. Using the average motion across all windows and a scaling factor (ratio), a
threshold was established to determine whether motion was significant. A binary decision
function was applied, categorizing movements as significant or not based on whether the
motion exceeded the threshold.
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Mi = |xi − xi−1| · xi (1)

Mi =
1

size

i+ size
2

∑
j=i− size

2

Mj (2)

Threshold =
∑n

0 Mi
n · ratio

(3)

Signi f icantMovementi =

{
1 ⇒ Mi < Threshold
0 ⇒ Mi > Threshold

(4)

where:

M = amount of motion;
i = index of each measurement;
n = total number of windows analyzed;
size = number of elements in each window for the moving average;
ratio = dimensionless factor to scale the threshold.

Once significant movement areas are identified, a filtering process is applied, eliminat-
ing all events with a duration shorter than a predefined parameter. Thus, the detection of
shots and passes is as follows (Figures 10 and 11):

Figure 10. Example of the process followed by the algorithm to detect shooting events.

Figure 11. Example of the process followed by the algorithm to detect passing events.
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For the hit and pass tests, significant motion detection algorithms were sufficient
to identify events. However, for detecting CoDs, more advanced neural network-based
algorithms were required. This process is significantly more complex than the previous
ones and involves extensive data processing. Before utilizing the neural networks, it was
essential to prepare the data (Figure 12) to ensure their suitability for the subsequent
training process. Each of these phases will be explained below.

Figure 12. Diagram of the data preparation process.

The first step was the segmentation of the data, since, in order to speed up the data
collection, each player performed the 30 repetitions of the test followed by short pauses in
between. For this purpose, each player was assigned an identifier and her 30 rounds of
each exercise were labeled (Figure 13).

Figure 13. Raw data representation of a change-of-direction test file with eight rounds indicated.

A closer look at the first round of the CoD test (Figure 14) reveals two distinct zones
with movement. These zones correspond to moments when the players were running (part
A) and moments when they were walking back to the starting point (part B). The segmen-
tation process was performed using the significant motion detection algorithm described
previously, as the pauses between part A and part B made it possible to differentiate them.
This also allowed for the exclusion of the B parts of each repetition and the stationary parts,
as they did not provide data of interest.

The next step consisted of manually labeling the data, since the exact point at which
the CoD occurred was not available. For this purpose, the videos taken from all the trials
were used and COD was considered as the movement between the player placing the
support foot on the ground near the cone until she lifted it to continue the run.

Once labeled, three subsets were generated for training, validation, and testing. The
test subset includes all data from a single player, while the training and validation subsets
include data from the remaining eight players. In this way, the system would not have
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any information from her before processing. Of the remaining data, 20% was used for
validation and 80% for training, randomly distributing the different rounds of each player.

Figure 14. Representation of the first round of the CoD test and its different parts.

The algorithm aims to identify time series samples corresponding to CoD events.
To achieve this, the sensor data are segmented into windows, which act as snapshots
of consecutive data samples, and these are then fed into the neural model. Based on
an analysis of the sizes of CoD events and testing various window lengths and overlap
percentages, windows of 0.7 s (at a sampling frequency of 50 Hz) with a 90% overlap were
selected. As for the variables used, the Y and Z components of the gyroscope and the Z
component of the accelerometer from both feet were chosen, as these exhibited the most
significant variation during changes of direction.

When generating them, they needed to be classified as windows with a CoD event or
without one. The criterion used to determine whether a window contained an event was
that it must include at least 30% of the complete event data samples.

It was found that there were a very small number of CoD event windows compared
to non-event windows, and to address the imbalance between CoD event windows (ap-
proximately 10% of total events) and non-event windows, data augmentation techniques
were applied. This involved adding random sensor noise, modeled as a normal distri-
bution with zero mean and standard deviation σ, extracted from idle moments when
players were stationary. This process increased the ratio of CoD events to total events to
approximately 50%, ensuring a better representation in the dataset. Additionally, data
from all sensors were normalized to prevent those with larger scales (e.g., gyroscope)
from dominating the neural network’s training. Care was taken to normalize the training,
validation, and test subsets separately to avoid data leakage that could artificially inflate
model performance.

For neural network design, convolutional neural networks (CNNs) were chosen
because of their ability to capture temporal patterns in time series data, outperforming
standalone fully connected architectures. The final architecture (Table 1) consisted of
two convolutional layers (32 and 64 filters, kernel size 3, stride 1, ReLU activation, no
padding) followed by a dense layer with 24 neurons, an intermediate dropout layer to
reduce overfitting, and a final dense layer with 12 neurons to capture non-linear patterns.

To maximize performance with limited data, an ensemble model comprising eight
networks was implemented, with each network trained on data excluding a different test
player. This ensemble approach allowed less powerful individual models to combine their
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outputs, creating a more robust final prediction system. Finally, due to the typical duration
of a change of direction, detections lasting less than 0.1 s were filtered out.

Table 1. Structure of the neural networks used in the ensemble model.

Layer (Type) Output Shape Number of Parameters

Batch normalization 6, 35 140
Convolutional 1D 4, 32 3392

Batch normalization 4, 32 128
Convolutional 1D 2, 64 6208

Flatten 128 0
Batch normalization 128 512

Dense 24 3096
Batch normalization 24 96

Dropout 24 0
Dense 12 300

Batch normalization 12 48
Dense 2 26

Total parameters: 13,946
Trainable parameters: 13,484

Non-trainable parameters: 462

3. Results
In the case of the kicking event detection, the main difficulty of this detection process

lies in carrying out a first processing that emphasizes the areas of interest and in finding the
appropriate parameters (window size, ratio, and event duration) to be able to identify the
events taking into account the inherent variability of each player. In this case, a compromise
between accuracy and generalization was reached to achieve a reasonably good accuracy
for all the cases studied, as shown by the confusion matrices of both tests (Figure 15).

Figure 15. (a) Confusion matrix of the shooting test. (b) Confusion matrix of the passing test.

Regarding the CoDs, nine different ensemble models were generated, trained, and
tested with their corresponding test player. After applying the aforementioned filtering,
the results were as shown in Figure 18. As it can be seen, the accuracies at the output of
the ensemble model are quite good and even improve in some cases after applying the
final filtering. However, the results obtained in complicated players such as players 6 or 7
are significantly worse and even worsen when filtering; this is because the models have
more difficulties to identify the CoDs and this results in consecutive isolated detections
Figure 16.
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Figure 16. Representation of the true labels, the results of the ensemble model (the raw averaged
results in red and the rounded averaged results in green), and the final predictions after filtering out
those with insufficient duration.

A CoD is composed of several consecutive event windows, but the model does not
take previous results into account for its prediction. The final prediction (AP) is calculated
as the average of the predictions from the eight models (Xij), where 0 represents a non-event
and 1 represents an event. To incorporate prior results, these AP values are smoothed
using a moving average, generating the Windowed Averaged Prediction (WAP), calculated
over a defined window size (size). The WAP reduces noise and provides a stable measure
for comparison against a dynamic threshold, instead of relying on the peaks observed in
Figure 16. Finally, the change of direction (CoD) event is identified when the WAP exceeds
this Threshold, with detections lasting less than 0.1 s filtered out to remove spurious peaks.
Variables such as Threshold and WAP inherit the same unit as the predictions (Xij), which
represent normalized probabilities between 0 and 1.

APj =
1
7

7

∑
i=0

Xij, (5)

WAPk =
1

size

k+ size
2

∑
j=k− size

2

APj, (6)

Threshold =
1.75

n ∑ WAPk, (7)

CoDk

{
1 ⇒ WAPk > Threshold
0 ⇒ WAPk < Threshold

(8)

where:

i = number of model;
j = number of predictions;
k = number of window;
n = total number of windows;
size = number of elements in a window.
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The effect of this post-processing clustering applied to the ensemble results is shown
in Figure 17, where it can be seen how the isolated events get removed.

Figure 17. Representation of the true labels, the processing made after the ensemble model results
(the threshold in green varies since test rounds have been processed separately), and the results
obtained after the final filtering process.

Looking at Figure 18, it can be seen how after applying this process the accuracy in
those cases of greater difficulty increases, going, for example, from 12% to 75% in the case
of player 7.

Figure 18. Confusion matrices of the 9 different models generated (E., event; N.E., no event). Diagonal
values below 0.5 are shown in red and values below 0.7 are shown in orange.

4. Discussion
This article presents an innovative complete system for the diagnosis and evaluation

of performance in soccer from a technical point of view. The work described is part of a
more ambitious project that, based on the analysis of foot kinematics, seeks to develop



Sports 2025, 13, 10 16 of 20

support services for high-performance sports practice, the study of neurodegenerative
diseases, or the development of growth, among others.

Compared to other systems used in soccer, the use of inertial sensors instead of
cameras [2] is a breakthrough, reducing the cost of system implementation and avoiding
the inconvenience associated with line-of-sight obstructions. Another aspect of innovation
is the use of insole-embedded sensors, something that is unusual in a field where bulky,
hard-wired systems with a large number of sensors distributed throughout the body are
commonly seen [4,13,16,17,33]. These setups are often not comfortable for users.

The good results obtained in the detection of passes, hits, and CoDs reinforce the
innovations incorporated. In practical terms, the ability to reliably detect events with
such high accuracy ensures that the system can provide actionable insights for both sports
performance enhancement and injury prevention. In the case of hits, the detections showed
a great coincidence with the moments of impact with the ball. The algorithm used focused
on making the difference in movement between the impact moments and the rest more
noticeable. This precise differentiation allows clinicians and coaches to optimize striking
techniques, thereby improving efficiency and reducing the risk of overuse injuries.

There is not much literature that does something similar to detect passes and shots,
the most similar being the work presented in [14] and its continuations in [10,34]. These
papers present a system that includes a sensor that goes in the insoles just as in our case.
However, our approach differs from the one they present, since in those papers, the system
shown first uses a fixed threshold to determine if the peak recorded by the sensor is relevant
and then using machine learning (SVM) techniques to determine whether or not it is a
pass or a shot. In our case, by using a threshold that dynamically adapts according to
the player’s movement, the system eliminates the need for machine learning techniques,
making it more efficient in real-world applications. Moreover, the results obtained show
that our method is equally effective, being able to differentiate between events and other
actions with an accuracy of 97.8% (combining the results of both tests) compared to the
96.7% of [14]. Similarly, in [10], they achieve a rate of true positives in the detection of
peaks associated with hits of 95.7%, again using a fixed threshold, while our method has
reached a true positives rate of 98.2%, further enhancing its applicability for monitoring
and refining player performance.

It is also worth noting that the system implemented sample data at a frequency of
50 Hz, as opposed to the 100 Hz used in [14] and the 1000 Hz used in [10,34]. Obtaining
similar or better results with a smaller amount of data has two upsides. On the one hand,
there is no need for an additional storage unit, which is hard-wired and can be a nuisance
to the player. On the other hand, since the system has been simplified, it can now be
implemented on devices with limited resources.

In the case of CoD detection, there is no specific bibliography available as in previous
cases. However, there are some similar studies, such as [35], which applies a compara-
ble approach using insole inertial sensors and machine learning algorithms to basketball.
Another example is [36], which detects certain gait events in the context of motor dysfunc-
tion detection. Both studies utilize machine learning-based approaches and achieve good
results, but they differ from ours in that their processing is not performed in real time.
Additionally, their datasets consist of only three and four subjects, which are even smaller
than ours.

Regarding traditional clinical methods and similar technologies used in sports biome-
chanics, traditional tools, such as visual observation or motion capture systems, often
require controlled laboratory settings and involve subjective interpretation or extensive
post-processing times, limiting their applicability in real-world scenarios [37,38]. While
pressure plates and force platforms are considered gold-standard tools for assessing plantar
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forces and balance, they are often stationary, expensive, and not feasible for field-based
assessments [39]. Camera-based systems, frequently used in team sports, suffer from
limitations such as line-of-sight occlusion and high implementation costs [40]. In con-
trast, the inertial sensors embedded in the insoles used in this study provide portability,
objective data collection, and the ability to analyze movements in dynamic, real-world
conditions. Additionally, unlike previous studies relying on fixed thresholds or machine
learning for event detection, this system incorporates adaptive thresholds that account for
individual variability, improving its accuracy and flexibility [41]. Table 2 summarizes the
comparison presented, highlighting aspects related to user experience and the high-level
information obtained.

Table 2. Summary of user experience and high-level information for sports scientists discussion.

Aspect Other Studies Our Approach Discussion

User experience

- Device Location and Size Insoles + Storage unit on shins [14] Insoles Less interference
with activity

- Sampling Frequency 100, 1000 Hz [10,14,34] 50 Hz

More efficient
approach, longer

usage time
Reduced data, no
need for an extra

storage unit

High-Level Information for Sports Scientists

- CoD Detection Datasets of 3 and 4 subjects [35,36] Dataset of 9 subjects
Better

generalization due
to larger dataset

- Pass/Shot Detection Fixed threshold + ML [10,14,34,41] Variable threshold
Simpler approach
with equivalent

results

- Real-Time Data No [10,14,34] Yes

Increased
convenience for

practitioners
due to real-time

feedback

- Applicability Controlled laboratory settings [37,38] Portable inertial sensors

Enables analysis of
movements in

real-world
conditions

However, the system is not without its limitations. Its exclusive reliance on inertial
sensors poses challenges, such as the inability to directly measure forces, which could be
mitigated in future iterations by integrating complementary technologies [41]. Furthermore,
the limited number of participants used in this study may restrict the system’s general-
izability. Expanding the dataset with more diverse samples represents a key avenue for
future research to enhance the robustness and applicability of the system.

This demonstrates that the system presented represents a reliable tool for the detection
of both passing and hitting events, as well as CoDs. In addition, being a custom system,
although focused on soccer, it could easily be adapted to other areas with other requirements
without the need for major changes.
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5. Conclusions
This study presents a novel system for the diagnosis and evaluation of sports per-

formance, specifically in soccer, based on the use of inertial sensors embedded in insoles.
The system has demonstrated high accuracy in detecting events such as passes, hits, and
changes of direction, with true positive rates of 98.2% for hits, surpassing previous ap-
proaches in the field. The use of adaptive thresholds and a simplified architecture that
operates at 50 Hz highlights the system’s potential for practical, resource-efficient imple-
mentation without compromising precision.

From a clinical perspective, the system offers significant utility for podiatric applica-
tions. By providing detailed biomechanical insights, it facilitates the optimization of player
performance and the identification of injury risk factors. This positions the system as a
valuable tool not only in sports rehabilitation and prevention but also in broader podiatric
contexts, such as gait analysis and the study of neurodegenerative diseases.

Future research directions should focus on expanding the dataset to include a wider
variety of players, skill levels, and playing conditions to enhance generalizability. Addi-
tionally, the application of this system could be explored in other sports where similar
biomechanical analyses are relevant, such as basketball, rugby, or tennis. Integrating ad-
ditional sensors, such as pressure or electromyographic sensors, could provide a more
comprehensive understanding of player movements and further refine injury prevention
strategies. Lastly, real-time feedback capabilities could be developed to allow athletes and
clinicians to make immediate adjustments during training or rehabilitation sessions.

By addressing these future directions, the proposed system can continue to evolve,
ultimately contributing to both the advancement of podiatric science and the enhancement
of athletic performance.

Author Contributions: A.G.: writing—original draft, conceptualization, data curation; Á.M.: writ-
ing—original draft, conceptualization, software, supervision; D.B.: methodology, validation; J.A.-S.:
supervision, funding acquisition; J.V.A.-S.: supervision, funding acquisition; A.G.-B.: resources,
validation; R.C.: writing—review and editing, supervision, funding acquisition. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Spanish Ministry of Science and Inovation (Grant Number:
PID2020-116011RB-C22 and RTC2019-007016-1) and by Government of Aragon (Grant Number:
T27_23R).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Comité de Ética de la Investigación de la Comunidad de Aragón,
CEICA (The study was conducted in accordance with the Declaration of Helsinki and was approved
by the Comité de Ética de la Investigación de la Comunidad de Aragón (CEICA), under protocol
code PI22/424, with the approval date of 5 October 2022.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviation
The following abbreviation is used in this manuscript:

CoD Change of Direction



Sports 2025, 13, 10 19 of 20

References
1. Cintia, P.; Pappalardo, L.; Pedreschi, D.; Giannotti, F.; Malvaldi, M. The harsh rule of the goals: Data-driven performance

indicators for football teams. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), Paris, France, 19–21 October 2015; pp. 1–10. [CrossRef]

2. Di Salvo, V.; Adam, C.; Barry, M.; Cardinale, M. Validation of Prozone®: A new video-based performance analysis system. Int. J.
Perform. Anal. Sport 2006, 6, 108–119. [CrossRef]

3. Bastiaansen, B.J.; Vegter, R.J.; Wilmes, E.; de Ruiter, C.J.; Lemmink, K.A.; Brink, M.S. Biomechanical Load Quantification Using a
Lower Extremity Inertial Sensor Setup During Football Specific Activities. Sport Biomech. 2022, 1–16. [CrossRef] [PubMed]

4. Wilmes, E.; de Ruiter, C.J.; Bastiaansen, B.J.C.; Zon, J.F.J.A.v.; Vegter, R.J.K.; Brink, M.S.; Goedhart, E.A.; Lemmink, K.A.P.M.;
Savelsbergh, G.J.P. Inertial Sensor-Based Motion Tracking in Football with Movement Intensity Quantification. Sensors 2020,
20, 2527. [CrossRef] [PubMed]

5. Giggins, O.; Sweeney, K.; Caulfield, B. Rehabilitation exercise assessment using inertial sensors: A cross-sectional analytical study.
J. Neuroeng. Rehabil. 2014, 11, 158. [CrossRef] [PubMed]

6. Milosevic, B.; Leardini, A.; Farella, E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: State of the
art and an experimental comparison. BioMedical Eng. OnLine 2020, 19, 25. [CrossRef]

7. Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport
Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [CrossRef] [PubMed]

8. Ferraz, A.; Duarte-Mendes, P.; Sarmento, H.; Valente-Dos-Santos, J.; Travassos, B. Tracking devices and physical performance
analysis in team sports: A comprehensive framework for research—trends and future directions. Front. Sports Act. Living 2023,
5, 1284086. [CrossRef] [PubMed]

9. Torres-Ronda, L.; Beanland, E.; Whitehead, S.; Sweeting, A.; Clubb, J. Tracking Systems in Team Sports: A Narrative Review of
Applications of the Data and Sport Specific Analysis. Sports Med.-Open 2022, 8, 15. [CrossRef] [PubMed]

10. Schuldhaus, D.; Koll, C.; Zwick, C.; Koerger, H.; Eskofier, B. Your personal movie producer: Generating highlight videos in soccer
using wearables. In Proceedings of the UbiComp’16: The 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Heidelberg, Germany, 12–16 September 2016; pp. 80–83. [CrossRef]

11. Stöve, M.; Schuldhaus, D.; Gamp, A.; Zwick, C.; Eskofier, B. From the Laboratory to the Field: IMU-Based Shot and Pass Detection
in Football Training and Game Scenarios Using Deep Learning. Sensors 2021, 21, 3071. [CrossRef]

12. Konefał, M.; Chmura, P.; Zacharko, M.; Chmura, J.; Rokita, A.; Kowalczuk, E.; Andrzejewski, M. Match outcome vs match status
and frequency of selected technical activities of soccer players during UEFA Euro 2016. Int. J. Perform. Anal. Sport 2018, 18,
568–581. [CrossRef]

13. Cuperman, R.; Jansen, K.; Ciszewski, M. An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on
Wearable Acceleration Sensors. Sensors 2022, 22, 1347. [CrossRef] [PubMed]

14. Schuldhaus, D.; Zwick, C.; Koerger, H.; Dorschky, E.; Kirk, R.; Eskofier, B. Inertial Sensor-Based Approach for Shot/Pass
Classification During a Soccer Match. In Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Sydney, Australia, 19 November 2015; pp. 1–4.

15. Kim, W.; Kim, M. Soccer kick detection using a wearable sensor. In Proceedings of the 2016 International Conference
on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2016;
pp. 1207–1209. [CrossRef]

16. Zhou, B.; Koerger, H.; Wirth, M.; Zwick, C.; Martindale, C.; Cruz, H.; Eskofier, B.; Lukowicz, P. Smart soccer shoe: Monitoring
foot-ball interaction with shoe integrated textile pressure sensor matrix. In Proceedings of the 2016 ACM International Symposium
on Wearable Computers, ISWC ’16, New York, NY, USA, 12–16 September 2016; pp. 64–71. [CrossRef]

17. Pillitteri, G.; Giustino, V.; Petrucci, M.; Rossi, A.; Leale, I.; Bellafiore, M.; Thomas, E.; Iovane, A.; Palma, A.; Battaglia, G. Match
Load Physical Demands in U-19 Professional Soccer Players Assessed by a Wearable Inertial Sensor. J. Funct. Morphol. Kinesiol.
2023, 8, 22. [CrossRef] [PubMed]

18. Bastiaansen, B.; Vegter, R.; Wilmes, E.; Ruiter, C.; Goedhart, E.; Lemmink, K.A.; Brink, M. Biomechanical load quantification of
national and regional soccer players with an inertial sensor setup during a jump, kick, and sprint task: Assessment of discriminative
validity. Sports Eng. 2024, 27, 17. [CrossRef]

19. Wu, H.; Liu, M. A Survey on Universal Design for Fitness Wearable Devices. arXiv 2020, arXiv:cs.HC/2006.00823.
20. Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the

clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [CrossRef]
[PubMed]

21. McKeon, P.O.; Hertel, J.; Bramble, D.; Davis, I. The foot core system: A new paradigm for understanding intrinsic foot muscle
function. Br. J. Sport Med. 2015, 49, 290. [CrossRef]

22. Crea, S.; Donati, M.; De Rossi, S.M.M.; Oddo, C.M.; Vitiello, N. A wireless flexible sensorized insole for gait analysis. Sensors 2014,
14, 1073–1093. [CrossRef] [PubMed]

http://doi.org/10.1109/DSAA.2015.7344823
http://dx.doi.org/10.1080/24748668.2006.11868359
http://dx.doi.org/10.1080/14763141.2022.2051596
http://www.ncbi.nlm.nih.gov/pubmed/35344475
http://dx.doi.org/10.3390/s20092527
http://www.ncbi.nlm.nih.gov/pubmed/32365622
http://dx.doi.org/10.1186/1743-0003-11-158
http://www.ncbi.nlm.nih.gov/pubmed/25431092
http://dx.doi.org/10.1186/s12938-020-00762-7
http://dx.doi.org/10.3390/s18030873
http://www.ncbi.nlm.nih.gov/pubmed/29543747
http://dx.doi.org/10.3389/fspor.2023.1284086
http://www.ncbi.nlm.nih.gov/pubmed/38077284
http://dx.doi.org/10.1186/s40798-022-00408-z
http://www.ncbi.nlm.nih.gov/pubmed/35076796
http://dx.doi.org/10.1145/2971763.2971772
http://dx.doi.org/10.3390/s21093071
http://dx.doi.org/10.1080/24748668.2018.1501991
http://dx.doi.org/10.3390/s22041347
http://www.ncbi.nlm.nih.gov/pubmed/35214245
http://dx.doi.org/10.1109/ICTC.2016.7763408
http://dx.doi.org/10.1145/2971763.2971784
http://dx.doi.org/10.3390/jfmk8010022
http://www.ncbi.nlm.nih.gov/pubmed/36810506
http://dx.doi.org/10.1007/s12283-024-00458-4
http://dx.doi.org/10.1016/j.gaitpost.2014.03.189
http://www.ncbi.nlm.nih.gov/pubmed/24768525
http://dx.doi.org/10.1136/bjsports-2013-092690
http://dx.doi.org/10.3390/s140101073
http://www.ncbi.nlm.nih.gov/pubmed/24412902


Sports 2025, 13, 10 20 of 20

23. STMicroelectronics. 6-Axis IMU (Inertial Measurement Unit) with Embedded AI: Always-on 3-Axis Accelerometer and 3-Axis
Gyroscope. Available online: https://www.st.com/en/mems-and-sensors/lsm6dsox.html (accessed on 1 May 2024).

24. Bosch Sensortec. Inertial Measurement Unit: BMI160. Available online: https://www.bosch-sensortec.com/products/motion-
sensors/imus/bmi160/ (accessed on 1 May 2024).

25. TDK InvenSense. MPU-6050-Six-Axis (Gyro + Accelerometer) MEMS MotionTracking™ Devices. Available online: https:
//invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/ (accessed on 1 May 2024).

26. Silicon Labs. EFR32BG22 Based Modules (Series 2). Available online: https://www.silabs.com/wireless/gecko-series-2/efr3
2bg22 (accessed on 1 May 2024).

27. Macronix International Co., Ltd. MX25R6435F-64Mb Ultra-Low Power Serial NOR Flash Memory. Available online: https:
//www.mxic.com.tw/en-us/products/NOR-Flash/Pages/Ultra-Low-Power-Flash.aspx (accessed on 1 May 2024).

28. The Apache Software Foundation. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 1 May 2024).
29. Robinhood Markets, Inc. Faust-Python Stream Processing. Available online: https://faust.readthedocs.io/ (accessed on 1

May 2024).
30. The Apache Software Foundation. Apache Cassandra. Available online: https://cassandra.apache.org/ (accessed on 1 May 2024).
31. @tiangolo. FastAPI. Available online: https://fastapi.tiangolo.com/ (accessed on 1 May 2024).
32. EMQ Technologies Inc. EMQX. Available online: https://www.emqx.io/ (accessed on 1 May 2024).
33. Shahar, N.; Ghazali, N.; As’ari, M.; Swee, T. Wearable Inertial Sensor for Human Activity Recognition in Field Hockey: Influence

of Sensor Combination and Sensor Location. J. Phys. Conf. Ser. 2020, 1529, 022015. [CrossRef]
34. Dorschky, E.; Schuldhaus, D.; Koerger, H.; Eskofier, B. A framework for early event detection for wearable systems. In Proceedings

of the UbiComp’15: The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11
September 2015; pp. 109–112. [CrossRef]

35. Peng, M.; Zhang, Z.; Zhou, Q. Basketball footwork recognition using smart insoles integrated with multiple sensors. In
Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11
August 2020; pp. 1202–1207.

36. Hua, R.; Wang, Y. Daily locomotor movement recognition with a smart insole and a pre-defined route map: Towards early motor
dysfunction detection. In Proceedings of the 2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT),
Bethesda, MD, USA, 20–22 November 2019; pp. 87–90.

37. Van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J.
Sport Sci. 2018, 18, 806–819. [CrossRef]

38. Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283. [CrossRef]
39. Fong, D.T.P.; Chan, Y.Y. The use of wearable inertial motion sensors in human lower limb biomechanics studies: A systematic

review. Sensors 2010, 10, 11556–11565. [CrossRef] [PubMed]
40. Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait

analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [CrossRef]
41. Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and repeatability of inertial measurement

units for measuring gait parameters. Gait Posture 2017, 55, 87–93. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.st.com/en/mems-and-sensors/lsm6dsox.html
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi160/
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi160/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://www.silabs.com/wireless/gecko-series-2/efr32bg22
https://www.silabs.com/wireless/gecko-series-2/efr32bg22
https://www.mxic.com.tw/en-us/products/NOR-Flash/Pages/Ultra-Low-Power-Flash.aspx
https://www.mxic.com.tw/en-us/products/NOR-Flash/Pages/Ultra-Low-Power-Flash.aspx
https://kafka.apache.org/
https://faust.readthedocs.io/
https://cassandra.apache.org/
https://fastapi.tiangolo.com/
https://www.emqx.io/
http://dx.doi.org/10.1088/1742-6596/1529/2/022015
http://dx.doi.org/10.1145/2802083.2808389
http://dx.doi.org/10.1080/17461391.2018.1463397
http://dx.doi.org/10.3390/s120202255
http://dx.doi.org/10.3390/s101211556
http://www.ncbi.nlm.nih.gov/pubmed/22163542
http://dx.doi.org/10.3109/03091902.2014.909540
http://dx.doi.org/10.1016/j.gaitpost.2017.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28433867

	Introduction
	Materials and Methods
	System Overview
	Embedded Sensors
	Cloud Application
	Mobile App

	Data Exchange
	Experiment Design
	Shooting Test
	Passing Test
	CoD Test

	Algorithm Description
	Data Preprocessing
	Algorithm Description


	Results
	Discussion
	Conclusions
	References

