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Abstract: Heart rate variability (HRV) is a non-invasive health and fitness indicator, and
machine learning (ML) has emerged as a powerful tool for analysing large HRV datasets.
This study aims to identify athletic characteristics using the HRV test and ML algorithms.
Two models were developed: Model 1 (M1) classified athletes and non-athletes using
856 observations from high-performance athletes and 494 from non-athletes. Model 2 (M2)
identified an individual soccer player within a team based on 105 observations from the
player and 514 from other team members. Three ML algorithms were applied —Random
Forest (RF), Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM)—
and SHAP values were used to interpret the results. In M1, the SVM algorithm achieved
the highest performance (accuracy = 0.84, ROC AUC = 0.91), while in M2 Random Forest
performed best (accuracy = 0.92, ROC AUC = 0.94). Based on these results, we propose an
athleticism index and a soccer identification index derived from HRV data. The findings
suggest that ML algorithms, such as SVM and RF, can effectively generate indices based
on HRV for identifying individuals with athletic characteristics or distinguishing athletes
with specific sports profiles. These insights underscore the importance of integrating HRV
assessments systematically into training regimens for enhanced athletic evaluation.

Keywords: heart rate variability; machine learning; athletes; sport profiles; team sports;
random forest; support vector machine; SHAP values; training load

1. Introduction
Recovery in sports is regarded as a multifaceted, physiological and psychological,

restorative process relative to time [1]. Fatigue is a condition of augmented tiredness due
to physical and mental effort, and it can be compensated with recovery to re-establish a
balanced state [2]. Thus, recovery is an essential process to both prevent physical injuries
and improve stress management [3]. For athletes, an adequate balance between stress and
recovery is essential to achieve continuous high-level performance [1,3]. In the field of
physical preparation integrated into sports training, internal load (IL) and external load
(EL) are distinct yet complementary measures used to evaluate an athlete’s adaptation to
effort [4]. Its evaluation offers the possibility of adjusting the loads on a day-to-day basis [5]
with the objective of reducing the risk of injury to players during the season [4,6].

A key parameter currently for measuring IL in sports is Heart Rate Variability
(HRV) [7], which is considered an effective tool for monitoring adaptation to daily loads and
training programs [8–10]. Several studies indicate the importance and usefulness of HRV
evaluation to plan the training load and avoid overtraining [11], as well as the interest in
analysing HRV in the prevention of fatigue states [12], or the quantification of the training
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load and the effect it has on sports performance [13]. Usually, HRV analysis consists of a
standardised 5 min test at rest in a supine position [7]. The same test is used in the general
population as a biomarker of athletic fitness related to health and physical performance [14].
Thus, athletes typically exhibit better cardiac autonomic function, characterised by greater
heart rate variability, compared to non-athletes [15,16].

On the other hand, data analysis in sports has evolved with the growth of data science,
particularly with the advancement of machine learning (ML) algorithms, enabling the
integration of various types of data [17,18]. ML algorithms are generally classified into
supervised learning and unsupervised learning. In supervised learning, the goal is to
train an algorithm to predict outcomes when presented with new unseen data. To achieve
this, the algorithm is trained using labelled data, where each observation in the dataset is
associated with an outcome measurement. In contrast, unsupervised learning involves data
that are not labelled, meaning there is no associated outcome measurement. The objective
in this case is to discover patterns within the data [19,20].

ML algorithms offer a new approach, generating insights from data without requiring
the imposition of a previous structure [21]. A key advantage over conventional data analysis
is their flexibility, allowing them to handle non-linear relationships between features and
outcomes [21]. However, a major limitation of ML algorithms has been their lack of
interpretability [22] often regarded as “black-boxes”. Various explainability algorithms,
such as SHapley Additive exPlanation (SHAP) values [23] or Local Interpretable Model-
agnostic Explanations (LIME) [24], have emerged to address this concern, transforming
these black-boxes into transparent models. SHAP values have been applied in the field
of sports to identify athletic characteristics, such as growth factors in pre-adolescents [25].
Furthermore, SHAP values have been utilised to determine the contribution of performance
indicators in a real-time model for predicting NBA game outcomes [26] and to identify
key performance metrics across 11 elite football leagues in European countries [27]. This
approach effectively translates model results into actionable insights for decision-making
in sports [28].

Returning to the HRV analysis of our interest and regarding recovery behaviours, it
has been found that it is a valuable parameter for classifying sleep stages closely linked
to nocturnal recovery [29,30]. In the field of sports, the main role of HRV has been as a
biomarker for classifying fatigue [31–33]. Additionally, resting HRV has been identified as
a potential feature for estimating VO2max [34]. In summary, its usefulness in the field of
team sports has been well justified, but it also has limitations [35]. For example, a difficulty
encountered is that the interpretation of results from HRV tests for resting situations is
based on the complex interaction of parameters that complicate the analysis to understand
athletes’ health and performance [7]. This may cause some results to not be replicable,
also due to the difficulty involved in monitoring control variables that may affect HRV
analysis. Although it has been shown that HRV analysis provides specific values for
elite athletes significantly different than in healthy controls, it has been noted that further
investigations are needed to determine its role in the optimisation of training or identifying
overtraining [36]. On the other hand, the use of ML algorithms in cardiac and HRV data
analysis has seen an increase in the number of publications [37]. For example, it has been
demonstrated the usefulness of ML in real-time scenarios combining physiological data
and powerful ML models to improve an individual’s comprehension of fitness levels and
the requirements for adaptive training [38]. A review shows that over the last few years,
there has been a growing use of ML techniques to help improve understanding of the
athlete’s heart, mainly from ECGs. But this review also highlights gaps for future research
such as the need to adjust the accuracies of ML models to help improve the effectiveness of
interventions [39].
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However, there are still few studies on ML applications to explain HRV patterns in
sports from datasets coming from sufficient HRV individual recordings in elite athletes.
This work aims to overcome some of the limitations of previous studies on HRV analysis
by applying ML, overcoming traditional analysis methods and addressing challenges in
sports performance monitoring. The general aim of the present study is to check and apply
ML methods in HRV parameters obtained in athletes and non-athletes according to the
same strict methodology. The specific objectives are (a) to obtain an athleticism index
for identifying people with athletic characteristics; and (b) to identify individual sports
profiles for differentiating or recognising an athlete from the set of athletes who practice the
same sport. We hypothesize that we will obtain specific ML algorithms for each objective:
(a) an athleticism index based on the contribution of HRV parameters, both in the time and
spectral domains, for calculating specific levels of physical fitness; (b) an individual sports
index, based mainly on HRV spectral parameters, for differentiating a specific soccer player
from the rest of the players on his team.

2. Materials and Methods
2.1. Study Sample

The study sample was a dataset containing 1350 recordings from 5 min HRV tests
performed all at rest in the supine position in the same conditions. These recordings were
obtained during 5 sports seasons and academic courses from 331 participants, of which
141 were high-performance athletes (78 soccer players, 37 basketball players, and 26 field
hockey players; n = 856 HRV recordings) and 190 were healthy non-athletes (university
students; n = 494 HRV recordings). All athletes trained daily and competed in the highest
national and international categories. The soccer players belonged to the same club that
was always ranked among the top two teams in the top state league and always qualified
for the final phase of the European Champions League. No participants were excluded after
being asked if they suffered from any of the following symptoms: physical abnormalities
related to heart conditions, high blood pressure or taking heart medication, bone and joint
problems, chest pain during activity, chest pain at rest, loss of balance, or dizziness. The age
range was between 18 and 30 years old (mean = 24.45; SD = 4.69; 201 men and 130 women).
All participants were volunteers, provided written informed consent to participate in the
study and agreed to be sampled on several occasions by sports physicians. The protocol
has been reviewed and approved by The Commission on Ethics in Animal and Human
Experimentation (CEEAH) of the Autonomous University of Barcelona (protocol code
CEEAH-5745; approved date 23 July 2021).

2.2. Procedure and Measures

Athletes were evaluated just before several trainings and students were evaluated just
before university lessons. HRV assessment was performed usually in the mornings in a
semi-dark room maintained at a comfortable temperature. After five minutes of rest lying
down on a mat on the floor, participants were asked to remain supine and still without
speaking or making any movements, and HRV data were registered continuously for five
minutes of natural breathing. Before the sessions, all participants received information
about specifications related to some variables, which could affect HRV analysis. Specifically,
they were asked to avoid strenuous physical activity, caffeinated and alcoholic beverages,
and taking nonessential medicines in the 24 h prior to the session, to avoid smoking and
eating a heavy meal in the 3 h prior to the session, and to sleep at least 6 h the night prior to
the session. Athletes always perform the HRV test before the training sessions. HRV data
were collected using Omega Wave Sport System (Omegawave Oy, Espoo, Finland), with a
resolution of 2 ms. The Omega Wave Sport System has been validated for detecting RR
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intervals [40] (Figure 1). This system uses a three-lead Electrocardiogram (ECG) which is
connected to a computer by a transceiver box responsible for digitising the signal for pro-
cessing within the computer. The digitised signal was filtered, in accordance with common
standards for ECG readings, and processed by the Omega Wave Sport System software
(Win 7 version) to obtain the R-R series. In order to obtain optimal ECG signal quality,
artefacts in RR intervals were identified and corrected automatically prior to analysis as
described in previous works [40]. The calculation of these HRV indices is consistent with
the recommendations of the Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology (1996) [7]. The HRV parameters
used in this study are presented in Table 1.
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Table 1. Description of time, frequency, and non-linear domain heart rate variability parameters.

Measure Parameter Units Description

Time
domain

Mean R-R ms Average duration of all R-R intervals (mRR).
SDNN ms Standard deviation of all R-R intervals.
RMSSD ms Square root of the mean of the sum of the squared differences of all RR intervals.
pNN50 % Percentage of consecutive RR intervals that differ by more than 50 ms.

TI ms Triangular index (TI). Baseline width of the minimum square difference
triangular interpolation of the highest peak of the histogram of all NN intervals.

Frequency
domain

HF ms 2 Power in high frequency (HF) range (0.15–0.4 Hz).
LF ms 2 Power in low frequency (LF) range (0.04–0.15 Hz).

VLF ms 2 Power in very low frequency (VLF) range (0.003–0.04 Hz).
LF/HF Ratio of low-to-high frequency.
HFnu n.u. 1 HF power in normalised units. HF/(Total Power–VLF) × 100.
LFnu n.u. 1 LF power in normalised units. LF/(Total Power–VLF) × 100.

HFnu_TP 2 n.u. 1 HF power in normalised units. HF/(Total Power) × 100.
LFnu_TP 2 n.u. 1 LF power in normalised units. LF/(Total Power) × 100.

VLFnu_TP 2 n.u. 1 VLF power in normalised units. VLF/(Total Power) × 100.
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Table 1. Cont.

Measure Parameter Units Description

Non-linear
domain

SD1 ms Standard deviation of the orthogonal intervals from RRi, RRi + a to the
transverse diameter of the ellipse. Poincaré plot crosswise.

SD2 ms Standard deviation of the orthogonal intervals from RRi, RRi + a to the
longitudinal diameter of the ellipse. Poincaré plot lengthwise.

1 Normalised units; 2 TP: Total power for spectral analysis (HF + LF + VLF).

2.3. Data Preparation

This study presents 2 different models with varying objectives. In model 1 (M1), the
objective was to distinguish athletes and non-athletes (students), with 856 observations
from athletes and 494 from students. In model 2 (M2), the goal was to identify a spe-
cific soccer player within the subsample of soccer players from the same M1 dataset. In
M2,105 observations came from the individual player and 514 from the rest of the team.

In both models, the data were divided into 80% training and 20% testing, stratified by
the variable of interest to maintain the same proportion in both parts (Figure 1). To prevent
the model from being biased towards the majority class, the dataset in each model was
balanced using the synthetic minority oversampling technique (SMOTE). SMOTE creates
synthetic samples from the existing minority class through interpolation from its nearest
neighbours, thereby increasing the number of minority samples in the datasets [41]. The
number of neighbours was set at 10.

Furthermore, the search for the best hyperparameters was conducted on 25 bootstrap
samples (Figure 1). Bootstrapping is a resampling method that repeatedly draws random
samples with replacements from the original sample [42]. In these samples, the grid search
method was employed, which considers all possible combinations of hyperparameters for
each algorithm, selecting the best combination based on the area under the ROC curve
(AUC-ROC) as a performance metric. The AUC-ROC metric ranges from 0 to 1, where a
value of 1 represents a perfectly accurate classifier. In addition to selecting the optimal
algorithm, accuracy, precision, and recall were chosen as performance metrics. These
metrics also range from 0 to 1, with a score of 1 indicating a perfect classification.

2.4. Machine Learning Analysis

For this study, the supervised machine learning algorithms Random Forest (RF),
extreme gradient boosting (XGBoost), and Support Vector Machine (SVM) were selected.
These algorithms were deemed suitable for addressing HRV-related problems because
they go beyond linear assumptions, offering flexibility by avoiding the imposition of a
fixed structure [21,43]. This adaptability enhances their ability to generalize effectively
to new data [19,44]. RF is an ensemble learning algorithm used for both regression and
classification problems. It is based on the bagging method, although its main advantage
over bagging is that RF considers only a set of predictors in each tree, thereby reducing the
impact that some predictors may have on the model. This ensures that the trees in the RF
are not correlated, making them more reliable [45]. RF is a highly popular algorithm that
has been applied to various health-related problems and different types of data. XGBoost
is a boosting algorithm that operates similarly to RF, except that its trees grow sequentially
using information from the previous tree [46]. SVM was initially designed for binary
and linear classification. It divides the observations using a hyperplane and calculates
the distance of the nearest observations from it, with the closest observation referred to
as a support vector. However, many problems require some non-linear solutions. To
address this, SVM transforms the feature space by applying functions to the predictors
(e.g., quadratic and cubic terms) [19]. To interpret the results of the ML algorithms for
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each model, SHapley Additive exPlainations (SHAP) values were used. SHAP values are
based on cooperative game theory, where each feature of the model represents a player
and their interactions towards the overall outcome [23]. All analyses were performed
using the open-source software RStudio version 4.2.2 [47]. The R packages used were
tidyverse [48] for exploratory data analysis, and tidymodels [49] for data modelling. All
code is available at https://github.com/estrellatonyy/HRV_ML_analysis.git the creation
date 19 September 2024.

3. Results
In this Section, descriptive parameters for each model and the steps followed in the ML

process are outlined. First, model evaluation with hyperparameters tunning was performed
for each algorithm to select the configuration that best fits the data. Next, the optimal
configuration was applied to each model and was evaluated in terms of performance
metrics. In addition, the best solution generated was interpreted using SHAP values.
Finally, a predictive index is proposed for each model.

3.1. Descriptive Parameters

In M1 a total of 1350 observations were included, 494 from university students and
856 from high performance athletes. Table 2 shows all HRV initial parameters included in
ML calculations for M1.

Table 2. Description of all HRV parameters included in ML calculations, for time and frequency
domains for each model.

Parameter

Model 1 Model 2

Students
(non-Athletes) Athletes Soccer Player Soccer Team

Mean R-R (ms) 902.54 (139.70) 1120.00 (163.11) 1060.87 (98.52) 1112.35 (165.26)
SDNN (ms) 72.59 (32.56) 78.12 (35.69) 79.47 (13.38) 75.01 (33.77)
RMSSD (ms) 73.28 (44.28) 81.58 (49.38) 85.22 (17.79) 76.85 (47.49)
pNN50 (%) 39.22 (22.84) 45.55 (22.33) 60.19 (10.39) 42.23 (23.00)
HF (ms2) 3795.96 (4554.67) 2705.26 (4278.90) 3243.41 (1445.94) 2394.53 (4167.77)
LF (ms2) 1069.78 (1518.45) 2020.43 (3663.65) 1069.57 (537.87) 1879.51 (3615.19)

VLF (ms2) 717.30 (1251.30) 1665.88 (2044.05) 1569.86 (1317.49) 1603.35 (1728.86)
LF/HF 0.63 (1.25) 1.37 (1.78) 0.40 (0.29) 1.59 (1.99)

HFnu (n.u.) 1 72.65 (20.24) 53.70 (20.51) 73.63 (12.05) 50.25 (20.27)
LFnu (n.u.) 1 27.35 (20.24) 46.30 (20.51) 26.37 (12.05) 49.75 (20.27)

HFnu_TP 2 (n.u.) 1 61.73 (22.53) 38.63 (19.31) 55.47 (14.76) 35.30 (18.89)
LFnu_TP 2 (n.u.) 1 21.74 (15.96) 31.71 (16.05) 19.52 (9.51) 33.10 (16.03)

VLFnu_TP 2 (n.u.) 1 16.53 (14.61) 29.66 (18.27) 25.01 (13.50) 31.60 (19.20)
SD1 (ms) 51.81 (31.31) 57.68 (34.91) 60.26 (12.58) 54.34 (33.58)
SD2 (ms) 87.76 (35.84) 92.80 (39.77) 94.39 (16.38) 89.52 (37.78)
TI (ms) 223.82 (97.13) 233.07 (115.35) 268.92 (81.76) 221.26 (97.96)

Mean (SD); 1 Normalised units; 2 TP: Total power for spectral analysis (HF + LF + VLF).

In M2 a total of 619 observations were included, 105 of them from a single soccer
player, and 514 from the soccer team to which the soccer player belongs. HRV initial
parameters for M2 are outlined in Table 2.

3.2. Machine Learning Evaluation

Hyperparameters tunning was performed on 25 bootstrap samples using a maximum
entropy design, which identifies a configuration of points that effectively covers the pa-
rameter space while minimising overlap and redundancy [49,50]. For RF algorithms, the
selected hyperparameters included were the number of sampled predictors, the number of

https://github.com/estrellatonyy/HRV_ML_analysis.git
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trees, and the number of data points required for a split. For the XGBoost model, the same
hyperparameters as the RF algorithm were used, with the addition of the learning rate. For
SVM, the cost and radial basis function sigma were selected. The optimal hyperparameter
combinations for each algorithm are presented in Table 3. Consult Supplementary Materials
for a further description about the hyperparameter tuning process.

Table 3. Best algorithms’ hyperparameters configuration for each model.

Algorithm M1 M2

RF 1
Number of sampled predictors (mtry) = 5;

Number of trees (trees) = 429;
Number of data points to Split (min_n) = 16

Number of sampled predictors (mtry) = 2;
Number of trees (trees) = 214;

Number of data points to Split (min_n) = 10

XGBoost 2

Number of sampled predictors (mtry) = 7;
Number of trees (trees) = 219;

Number of data points to Split (min_n) = 18;
Learning rate (learn_rate) = 0.007

Number of sampled predictors (mtry) = 5;
Number of trees (trees) = 469;

Number of data points to Split (min_n) = 17;
Learning rate (learn_rate) = 0.00126

SVM 3 Cost = 20.74;
Radial Basis Function sigma = 0.00012;

Cost = 0.011;
Radial Basis Function sigma = 0.054;

1 RF: Random Forest; 2 XGBoost: Extreme Gradient Boosting; 3 SVM: Support Vector Machine.

Regarding model evaluation with the test data, in M1 the algorithm that performed
best was SVM (Cost = 20.74; Radial Basis Function sigma = 0.00012), with an accuracy
of 0.84 and a ROC AUC of 0.91. Tree-based algorithms performed slightly worse. The
RF algorithm achieved an accuracy of 0.82, with a ROC AUC of 0.90. XGBoost showed
the lowest performance in terms of accuracy and ROC AUC (0.80 and 0.89, respectively).
Table 4 presents the performance metrics for each algorithm. Although the three algo-
rithms produced different results, overall performance in M1 was very good for athlete
classification.

Table 4. Algorithms’ performance for each model.

M1 M2

Parameter/Algorithm RF 1 XGBoost 2 SVM 3 RF 1 XGBoost 2 SVM 3

Accuracy 0.82 0.80 0.84 0.92 0.87 0.81
Precision 0.73 0.70 0.75 0.93 0.93 0.95

Recall 0.82 0.81 0.86 0.97 0.90 0.81
AUC-ROC 0.90 0.89 0.91 0.94 0.95 0.92

1 RF: Random Forest; 2 XGBoost: Extreme Gradient Boosting; 3 SVM: Support Vector Machine.

In M2, the RF algorithm (number of sampled predictors (mtry) = 2; number of trees
(trees) = 214; number of data points to split (min_n) = 10) achieved the highest performance,
in terms of accuracy (0.93). However, the XGBoost achieved the highest ROC AUC (0.95).
In contrast, the SVM showed the lowest performance, with an accuracy of 0.81, and a
ROC AUC of 0.92. Table 4 presents the results for these algorithms in M2. In this model,
tree-based algorithms outperformed the SVM.

3.3. Interpretability with SHAP Values

SHAP values have been applied to RF algorithms with hyperparameter tunning for
the M1 and M2. The contribution of the HRV parameters for each model is shown in
Figure 2. Explanatory variables are ordered from the most to least contributor on the
y-axis. The top 5 HRV parameters are based on their average absolute contribution to
the target. On the x-axis indicates the SHAP value expressed as the change in the log
odds, resulting in a positive or negative contribution for a specific observation. Each dot
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represents an observation in the dataset and the colour is indicative of the original value
for that observation, with high values displayed as red and low as blue. The vertical
dotted line represents when the SHAP contribution is zero, the right side assigns a positive
contribution and the left side a negative contribution.
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In M1, the five HRV variables with the highest contribution are mRR, HFnu_TP, TI,
LF, and SD2. The mRR parameter indicates that higher values are associated with positive
athlete classification, contributing up to 0.3 SHAP value. In other words, higher mRR
values are linked to the athlete category. In M2, the five HRV parameters with a higher
contribution to identifying a soccer player are mRR, LFnu, HFnu, HF, and VLF. Since this
is a different model, the interpretation changes, higher mRR and LFnu values, contribute
negatively to player identification, while higher HF and HFnu values contribute positively
to identifying the target player.

The HRV parameter mRR was the most significant contributor in both models, and
along with TI in M1, was one of the only time domain variables among the top 5 contribu-
tors. In contrast, the frequency domain HRV parameters appeared in both models.

3.4. Athleticism Index

In this Section, an athleticism index derived from M1 is proposed based on the pre-
diction performance of the SVM algorithm in the test data. Figure 3 shows a bar chart
illustrating the mean value of the athleticism index assigned to true athletes (blue) and true
students (red) in the test set. The SVM algorithm predicts an average athleticism index of
80.85% for athletes and 29.69% for students. The index represents the proportion of athletics
characteristics identified in each group. The overall performance of the SVM algorithm, as
depicted in Figure 3, demonstrates its effectiveness in distinguishing between athletes and
non-athletes in the test sample. Therefore, based on these results, the proportion used to
classify athletes is proposed as an athleticism index.
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The SVM algorithm in M1 was applied for the prediction of three distinct HRV tests
performed on new participants who were not included in the initial sample of the study:
one from a sedentary (non-athlete) participant, one from a soccer player, and one from
a basketball player. For the sedentary participant, the algorithm predicted a probability
of 0.128 (12.8%) for being classified as an athlete. For the soccer player, the predicted
probability of being classified as an athlete was 0.824 (82.4%). Finally, for the basketball
player, the probability of being classified as an athlete was 0.922 (92.2%) (Figure 4). Table 5
shows the HRV parameters for each new observation introduced in the model.
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Table 5. Five top HRV parameters incorporated into the two best-performing ML algorithms, with
3 observations that were previously unseen by SVM in M1, and 2 observations from the test dataset
for RF in M2.

Parameter

M1: SVM M2: RF

Sedentary
Person

Soccer
Player

Basketball
Player S30-R1 1 S30-R2 2

Mean R-R (ms) 818.21 1056.9 1094.8 956.16 981.71
HF (ms2) 2350.26 3959.85
LF (ms2) 466.46 1423.8 2901.9

VLF (ms2) 818.89 1107.81
HFnu (n.u.) 3 58.96 81.90
LFnu (n.u.) 3 41.04 18.10

HFnu_TP 4 (n.u) 3 21.94 39.11 38.99
SD2 (ms) 37.3 57.96 81.91
TI (ms) 148 226 377

1 S30-R1: HRV test observations where the soccer player S30 is misclassified (0.2044). 2 S30-R2: HRV test
observations where the soccer player S30 is almost perfectly identified (0.9924). 3 Normalised units; 4 TP: Total
power for spectral analysis (HF + LF + VLF).

3.5. Soccer Identification Index

In this Section, an individual soccer identification index derived from M2 is proposed
based on the prediction performance of the RF algorithm. This identification index repre-
sents the probability of correctly identifying a specific soccer player. A high identification
index indicates a strong prediction, while a low identification index reflects a weaker
prediction.

Regarding M2, the RF algorithm demonstrated strong predictive performance, with
evaluation metrics exceeding 0.9 (Table 4). In this model, the resulting index makes it
possible to identify an individual soccer player (S30) from the rest of his soccer team. Thus,
we use the HRV parameters depicted in Table 5 to calculate the soccer identification index
for each observation (S30-R1 and S30-R2). Figure 5 illustrates the two test observations,
one in which the player is almost perfectly identified (S30-R2: 0.9924) and another where
the model misclassifies him (S30-R1: 0.2044). The comparison between these two records
in Figure 5 is based on the five HRV parameters identified by the SHAP value algorithm
as top contributors in M2. Each parameter’s percentage is calculated with respect to the
maximum observed value within the soccer team. As shown in Figure 5, all HRV parameter
percentages are higher in R2 than in R1 except for LFnu, with an inverse relationship
observed in the parameters HFnu and LFnu.
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4. Discussion
This study employed a novel approach to identify athletic and sports-related char-

acteristics based on a simple and non-invasive HRV test at rest. Time domain, frequency
domain, and non-linear parameters from HRV analysis were computed to determine these
characteristics. Two distinct models were developed: Model 1 (M1) aimed to distinguish
between athletes and non-athletes proposing an athleticism index, while Model 2 (M2)
sought to identify a specific soccer player from the subsample of soccer players in the M1
dataset. This contribution is supported by the high quality of the data used in the models.
In this study, we carefully selected methods to assess athletes over five seasons, prioritising
quality over quantity to build robust ML models [51]. It should be noted that all HRV
recordings were performed individually and strictly following the procedure described
in Section 2. For calculating each individual’s HRV parameters, we consistently began
with the raw data composed of all interbeat intervals (IBI or RR intervals), applying the
same filtering process to correct any RR registration error. In other words, we have always
relied on the same calculations from the original IBIs, and not on HRV parameter values
from unknown databases. The results for M1 and M2 show that Support Vector Machine
(SVM) and Random Forest (RF) algorithms achieved an accuracy of 84% (0.84) and 92%
(0.92), respectively (accuracy values range from 0 to 1, where 1 is the maximum, and it can
be interpreted as a percentage). According to the results of these models, it is possible to
identify individual athletic and sports-related characteristics.

Additionally, an athleticism index is proposed in M1 derived from the high perfor-
mance of the SVM algorithm. The resulting index provides a percentage of athleticism
indicating the likelihood that an individual belongs to the athlete group. It should be noted
that this index is tested using new individual HRV test recordings, assigning a probability
of classification with respect to the target group. In our study, we applied the SVM algo-
rithm in M1 for the prediction of three distinct HRV tests collected from new participants
who were not included in the initial sample of the study. The first is a non-athlete, a
healthy but non-physical active person who was not included in the initial dataset and
who performed an HRV test following exactly the same procedure indicated in Section 2.
The SVM algorithm calculates an athleticism index of 12.8% (0.128) or, which is the same,
a probability of 87.2% that the individual is a non-athlete. This result suggests that the
algorithm accurately predicts a low level of physical fitness for this person. The second
new participant, a soccer player, has an athleticism index of 82.4%, with a probability of
17.6% of being a non-athlete. The third new participant, a basketball player, shows an
athleticism index of 92.2%, with a 7.8% probability of being a non-athlete. We can interpret
in both cases that the SVM algorithm also correctly predicts that these two persons have a
high level of physical fitness, probably derived from their daily workouts. In addition, we
could also interpret that the basketball player has a higher training load overall than the
soccer player, to in accordance with the idea that basketball players present an absolute
total energy expenditure greater than that of soccer players [52].

Therefore, the athleticism index proposed could serve as a training load measure in
athletes or a fitness indicator in non-athletes, based on HRV analysis and ML algorithms.
Remember that in M1 the five HRV parameters that achieved higher contributions to classify
athletes were mRR, HFnu_TP TI, LF, and SD2. Particularly, mRR and HFnu_TP were the
most contributive HRV parameters, probably reflecting the effort recovery characteristic
of athletes. These results align with previous research which highlighted that athletes
exhibit higher vagal tone that contributes to a lower resting heart rate [53]. Furthermore,
another study that compared the HRV values between athletes and sedentary subjects
found that HF was one of the most important parameters for measuring the athletes’ health
status [54]. However, in M1, the HFnu_TP parameter could be interpreted as higher values
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contribute negatively to the identification of athletes, as Table 2 shows as well. This result
could be because elite athletes are subjected to continuous high-intensity training sessions
that could affect the involvement of HF in the recovery of the effort [55]. However, a
different study which aimed to predict athletic performance in anaerobic sprinters found
that the HRV parameter with higher relative importance was RMSSD [56]. These differences
with the present study might be due to the use of different time duration registers (24 h
vs. 5 min) [53], and the use of the relative importance index instead of the SHAP value
algorithm.

In the case of M2, we compared two HRV test recordings for the same soccer player
(S30), corresponding to the 20% of them reserved for analysing the testing or predictive
performance. He is a soccer player coming from the base soccer school of the club to
which the soccer team belongs and with more than 10 years of experience playing in the
highest category according to his age. He performed a total of 105 HRV tests, included
in the dataset, following the same procedure indicated in Section 2. In M2, we interpret
the results so that applying the RF algorithm to the two specific HRV tests yields different
outcomes: the first one (R1) identifies the soccer player S30 with a 20.4% among the team
members, while the second HRV test (R2) identifies him with a 99.2%. This identification
index proposed in M2 could have potential application from the performance of daily and
regular HRV tests, particularly during the pre-season phase when athletes are subjected
to higher external load training than during the in-season [57,58]. In M2, the five most
contributive HRV parameters were mRR, LFnu, HFnu, HF, and VLF. Apart from RRmean,
in this model, the frequency parameters have an important role in identifying the specific
soccer player. It could serve as a useful tool for assessing readiness, how well athletes are
adapting to training loads, or how external load affects the individual internal loads [2].
In this sense, HRV analysis has been proposed as an adequate index of internal load [59],
which is sensitive to changes in the athletes’ state. Specifically, the index misclassifies
the soccer player when significant deviations occur in their internal load. Likewise, the
usefulness of HRV analysis to assess the level of fitness in a non-athlete population has also
been indicated [15]. Thus, the index found in M2 could be applied as an internal training
load index for monitoring both acute and chronic training loads for an individual player
in a team sports context. This index could be integrated into daily training routines and
used when there is sufficient team data from previous HRV tests, as in the aforementioned
example of the soccer player S30. Only in this case could the index obtained from a simple
HRV test before a specific workout have the potential for real-time feedback in athlete
monitoring. This may provide valuable insights for training smarter and for preventing
training-related injuries by tracking how an athlete’s HRV responds to different training and
competition loads [60]. However, a limitation of our study is the difficulty in generalising
the results to other team sports. It is possible that the ML algorithm is different, that it does
not fit the data equally well, and that the HRV parameters that compose it are different.
Future research could address this limitation by integrating daily HRV measurements into
ML models. This would offer a more dynamic understanding of individual responses to
training loads. By incorporating these daily HRV measurements, ML models could be
further refined, generating more robust indices and personalised recommendations for
athletes.

In this study, three classification algorithms were employed from two different families.
The use of diverse algorithms is recommended due to the varying ways algorithms fit the
data [61]. Despite all three algorithms showing strong performance in terms of evaluation
metrics, SVM and RF achieved superior results in M1 and M2, respectively. These findings
suggest that both ensemble methods (such as RF) and SVM are highly effective for HRV
data, implying that more complex models may not be necessary in this context. HRV data
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are considered mostly non-linear, consequently, the use of non-linear algorithms, such as
those used in this study, improves their application in a real-life situation [62,63]. These
results are consistent with previous research that predicted subjective exertion during
endurance training by combining Inertial Measurement Units (IMU) and HRV features,
where SVM, RF, and XGBoost were similarly used [64]. Additionally, another study on
physical exertion during exercise found that RF outperformed neural networks and linear
regression in classifying cardiorespiratory data [65]. However, our study has a limitation
related to the class imbalance in each model, which was addressed using SMOTE. While
SMOTE is an effective technique for handling imbalanced datasets, it is not without its
limitations. SMOTE can potentially bias the model performance by overfitting the minority
class. This issue is particularly pronounced in datasets containing noise, as synthetic
observations may replicate these artefacts. To mitigate this risk in our study, the dataset
was filtered and cleaned prior to applying any processing step.

A comparison of results between M1 and M2 showed that not only did the hyperpa-
rameters need adjustment, but the overall algorithm performance shifted as well. This
suggests that the target outcome, group classification in M1 (athletes vs. non-athletes)
versus individual identification in M2 (soccer player), significantly impacts the algorithm’s
performance, even when using the same type of HRV data [66]. These differences under-
score the importance of selecting and tuning algorithms based on the specific problem
being addressed.

5. Conclusions
As the main conclusion of our study, we can state that applying ML methods to

HRV analysis can be a very useful tool for monitoring training loads in team sports. HRV
analysis at rest can be a simple and non-invasive test to monitor how the external load in
team sports affects the individual internal load. ML methods such as SVM and RF allow
us to obtain indices for identifying people with athletic characteristics or athletes with
specific sports profiles. This is only possible when we integrate rigorous and systematic
HRV test recordings into daily training routines. Thus, tracking how athletes respond to
different training and competition loads through a simple HRV test, can provide immediate
feedback, enabling adjustments to individual training load if an extreme index is obtained
when applying the ML algorithm. This may provide valuable insights for optimising
training and preventing training-related injuries.
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