Reliability of the Single-Leg, Medial Countermovement Jump in Youth Ice Hockey Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Procedures
2.3. Jump Protocol
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, L.; Li, B.; Cusimano, M.D. Economic burden of time lost due to injury in NHL hockey players. Inj. Prev. 2014, 20, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Hagel, B.E.; Marko, J.; Dryden, D.; Couperthwaite, A.B.; Sommerfeldt, J.; Rowe, B.H. Effect of bodychecking on injury rates among minor ice hockey players. CMAJ 2006, 175, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukaswadia, A.; Warsh, J.; Mihalik, J.P.; Pickett, W. Effects of changing body-checking rules on rates of injury in minor hockey. Pediatrics 2010, 125, 735–741. [Google Scholar] [CrossRef]
- Lynall, R.C.; Mihalik, J.P.; Pierpoint, L.A.; Currie, D.W.; Knowles, S.B.; Wasserman, E.B.; Dompier, T.P.; Comstock, R.D.; Marshall, S.W.; Kerr, Z.Y. The First Decade of Web-Based Sports Injury Surveillance: Descriptive Epidemiology of Injuries in US High School Boys’ Ice Hockey (2008–2009 Through). J. Athl. Train. 2018, 53, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Manske, R.; Reiman, M. Functional performance testing for power and return to sports. Sports Health 2013, 5, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Noyes, F.R.; Barber-Westin, S.D.; Fleckenstein, C.; Walsh, C.; West, J. The drop-jump screening test: Difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am. J. Sports Med. 2005, 33, 197–207. [Google Scholar] [CrossRef]
- Caffrey, E.; Docherty, C.L.; Schrader, J.; Klossner, J. The ability of 4 single-limb hopping tests to detect functional performance deficits in individuals with functional ankle instability. J. Orthop. Sports Phys. Ther. 2009, 39, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, J.J.; De Groot, G.; van Ingen Schenau, G.J. Ice friction during speed skating. J. Biomech. 1992, 25, 565–571. [Google Scholar] [CrossRef]
- Shell, J.R.; Robbins, S.M.; Dixon, P.C.; Renaud, P.J.; Turcotte, R.A.; Wu, T.; Pearsall, D.J. Skating start propulsion: Three-dimensional kinematic analysis of elite male and female ice hockey players. Sports Biomech. 2017, 16, 313–324. [Google Scholar] [CrossRef]
- Houdijk, H.; De Koning, J.; de Groot, G.; Bobbert, M.F.; van Ingen Schenau, G. Push-off mechanics in speed skating with conventional skates and klapskates. Med. Sci. Sports Exerc. 2000, 32, 635–641. [Google Scholar] [CrossRef]
- Nicola, T.L.; Jewison, D.J. The anatomy and biomechanics of running. Clin. Sports Med. 2012, 31, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Mascaro, T.; Seaver, B.L.; Swanson, L. Prediction of skating speed with off-ice testing in professional hockey players. J. Orthop. Sports Phys. Ther. 1992, 15, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runner, A.R.; Lehnhard, R.A.; Butterfield, S.A.; Tu, S.; O’neill, T. Predictors of speed using off-ice measures of college hockey players. J. Strength Cond. Res. 2016, 30, 1626–1632. [Google Scholar] [CrossRef]
- De Boer, R.W.; Cabri, J.; Vaes, W.; Clarijs, J.P.; Hollander, A.P.; de Groot, G.; van Ingen Schenau, G.J. Moments of force, power, and muscle coordination in speed-skating. Int. J. Sports Med. 1987, 8, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.E.; Kirkendall, D.T. Exercise and Sport Science; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Meylan, C.M.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J. Sports Sci. 2010, 28, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Bujang, M.A.; Baharum, N. A simplified guide to determination of sample size requirements for estimating the value of intraclass correlation coefficient: A review. Arch. Orofac. Sci. 2017, 12, 1–11. [Google Scholar]
- Read, M.M.; Cisar, C. The influence of varied rest interval lengths on depth jump performance. J. Strength Cond. Res. 2001, 15, 279–283. [Google Scholar]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Validation of power measurement techniques in dynamic lower body resistance exercises. J. Appl. Biomech. 2007, 23, 103–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative net vertical impulse determines jumping performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Vincent, W.J.; Weir, J.P. Statistics in Kinesiology; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Chan, Y. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Statistics, K. Shapiro-Wilk Test Calculator. Available online: https://www.statskingdom.com/320ShapiroWilk.html (accessed on 7 April 2021).
- Hopkins, W.G. Spreadsheets for analysis of validity and reliability. Sportscience 2015, 19, 36–44. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Hawley, J.A.; Burke, L.M. Design and analysis of research on sport performance enhancement. Med. Sci. Sports Exerc. 1999, 31, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed]
- Murtagh, C.F.; Vanrenterghem, J.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Unilateral jumps in different directions: A novel assessment of soccer-associated power? J. Sci. Med. Sport 2017, 20, 1018–1023. [Google Scholar] [CrossRef]
- Delisle-Houde, P.; Chiarlitti, N.A.; Reid, R.E.R.; Andersen, R.E. Predicting On-Ice Skating Using Laboratory- and Field-Based Assessments in College Ice Hockey Players. Int. J. Sports Physiol. Perform. 2019, 14, 1184–1189. [Google Scholar] [CrossRef]
- Farlinger, C.M.; Kruisselbrink, L.D.; Fowles, J.R. Relationships to skating performance in competitive hockey players. J. Strength Cond. Res. 2007, 21, 915–922. [Google Scholar]
- Janot, J.M.; Beltz, N.M.; Dalleck, L.D. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J. Sports Sci. Med. 2015, 14, 522. [Google Scholar] [PubMed]
- Burr, J.F.; Jamnik, V.K.; Dogra, S.; Gledhill, N. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J. Strength Cond. Res. 2007, 21, 1139–1145. [Google Scholar]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; DeKlerk, M. Single-leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.A.; Gette, P.; Mouton, C.; Seil, R.; Theisen, D. Side-to-side asymmetries in landing mechanics from a drop vertical jump test are not related to asymmetries in knee joint laxity following anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef] [PubMed]
Parameter | VERT VTO (m/s) | VERT Jump Height (cm) | VERT Peak Concentric Power (W) | VERT Average Concentric Power (W) | VERT Average Concentric Power 100 ms (W) | LAT VTO (m/s) | LAT Peak Concentric Power (W) | LAT Average Concentric Power (W) | LAT Average Concentric Power 100 ms (W) | Maximum VERT Force (N) | Maximum VERT Force above Body Weight (%BW) | Maximum LAT Force (N) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VERT jump height (cm) | 1.00 | - | - | - | - | - | - | - | - | - | - | - |
VERT peak con power (W) | 0.77 | 0.77 | - | - | - | - | - | - | - | - | - | - |
VERT Avg con power (W) | 0.55 | 0.55 | 0.58 | - | - | - | - | - | - | - | - | - |
VERT Avg con Power 100 ms (W) | 0.76 | 0.76 | 1.00 | 0.58 | - | - | - | - | - | - | - | - |
LAT VTO (m/s) | −0.36 | −0.36 | −0.08 | −0.09 | −0.05 | - | - | - | - | - | - | - |
LAT peak con power (W) | −0.18 | −0.18 | 0.32 | 0.13 | 0.34 | 0.84 | - | - | - | - | - | - |
LAT Avg con power (W) | −0.30 | −0.30 | 0.02 | 0.48 | 0.03 | 0.61 | 0.63 | - | - | - | - | - |
LAT Avg con power 100 ms (W) | −0.20 | −0.20 | 0.32 | 0.10 | 0.34 | 0.85 | 1.00 | 0.63 | - | - | - | - |
Max VERT force (N) | 0.22 | 0.220 | 0.77 | 0.42 | 0.77 | 0.30 | 0.72 | 0.45 | 0.72 | - | - | - |
Max VERT force above body weight (%BW) | 0.40 | 0.40 | 0.52 | 0.27 | 0.50 | −0.09 | 0.13 | 0.17 | 0.15 | 0.55 | - | - |
Max lateral force (N) | −0.07 | −0.07 | 0.50 | 0.19 | 0.51 | 0.63 | 0.95 | 0.54 | 0.94 | 0.86 | 0.26 | - |
Max LAT force above body weight (%BW) | −0.22 | −0.22 | 0.07 | −0.14 | 0.08 | 0.70 | 0.78 | 0.43 | 0.77 | 0.41 | 0.29 | 0.73 |
Single-Leg, Medial Countermovement Jump Force and Velocity Variables | ||||||
---|---|---|---|---|---|---|
Lateral Force/Velocity | Mean (SD) Trial 1 | Mean (SD) Trial 2 | SEM | Typical Error (90% CI) | SRD | ICC (90% CI) |
(R) Max LAT Force (N) | 487.0 (87.0) | 510.2 (85.4) | 11.0 | 12.8 (9.4–21.2) | 30.6 | 0.98 (0.95–0.99) |
(L) Max LAT Force (N) | 504.1 (79.0) | 502.2 (83.5) | 23.6 | 27.8 (20.8–45.8) | 65.4 | 0.91 (0.74–0.97) |
(R) Max LAT force above body weight (%BW) | 65.1 (4.9) | 68.0 (4.8) | 1.9 | 2.1 (1.5–3.5) | 5.2 | 0.85 (0.59–0.950 |
(L) Max LAT force above body weight (%BW) | 67.6 (5.4) | 67.0 (5.8) | 3.5 | 3.8 (2.8–6.3) | 9.6 | 0.59 (0.10–0.85) |
(R) LAT VTO (m/s) | 2.24 (0.18) | 2.18 (0.15) | 0.05 | 0.05 (0.04–0.09) | 0.15 | 0.91 (0.76–0.97) |
(L) LAT VTO (m/s) | 2.22 (0.22) | 2.20 (0.18) | 0.11 | 0.11 (0.08–0.18) | 0.31 | 0.75 (0.38–0.91) |
Vertical Force/Velocity | ||||||
(R) Max VERT Force (N) | 1272 (181.2) | 1273 (190.8) | 29.6 | 35.6 (26.0–58.6) | 82.1 | 0.97 (0.92–0.99) |
(L) Max VERT Force (N) | 1304 (200.7) | 1261 (188.6) | 24.4 | 27.9 (20.4–46.0) | 67.9 | 0.98 (0.95–1.00) |
(R) Max VERT force above body weight (%BW) | 70.8 (11.4) | 70.1 (10.9) | 4.6 | 4.9 (3.6–8.2) | 12.6 | 0.84 (0.57–0.95) |
(L) Max VERT force above body weight (%BW) | 74.8 (11.7) | 68.3 (9.4) | 3.5 | 3.6 (2.6–6.0) | 9.7 | 0.91 (0.74–0.97) |
(R) VERT VTO (m/s) | 1.38 (0.16) | 1.35 (0.08) | 0.12 | 0.09 (0.07–0.16) | 0.32 | 0.50 (−0.03–0.81) |
(L) VERT VTO (m/s) | 1.37 (0.27) | 1.30 (0.27) | 0.10 | 0.11 (0.08–0.19) | 0.29 | 0.85 (0.59–0.95) |
Single-Leg, Medial Countermovement Jump Power Variables | ||||||
Lateral Power | Mean (SD) Trial1 | Mean (SD) Trial2 | SEM | Typical Error (90% CI) | SRD | ICC (90% CI) |
(R) LAT peak con power (W) | 925.1 (225.2) | 945.3 (209.2) | 38.6 | 43.6 (31.8–71.7) | 107.1 | 0.97 (0.91–0.99) |
(L) LAT peak con power (W) | 934.9 (204.1) | 930.8 (206.7) | 84.8 | 95.9 (67.0–157.8) | 235.1 | 0.82 (0.54–0.94) |
(R) LAT Avg con power (W) | 406.6 (135.8) | 370.4 (117.5) | 53.9 | 56.6 (41.3–93.2) | 149.4 | 0.84 (0.57–0.95) |
(L) LAT Avg con power (W) | 377.3 (164.7) | 378.6 (150.9) | 90.5 | 94.2 (68.7–155.0) | 250.8 | 0.70 (0.28–0.89) |
(R) LAT Avg con power (100 ms; W) | 873.1 (221.8) | 887.7 (207.0) | 28.0 | 31.9 (23.2–52.4) | 77.7 | 0.98 (0.95–0.99) |
(L) LAT Avg con power (100 ms; W) | 886.9 (199.2) | 879.9 (193.1) | 73.8 | 82.0 (59.8–134.9) | 204.6 | 0.86 (0.62–0.95) |
Vertical Power | ||||||
(R) VERT peak con power (W) | 1663.5 (306.7) | 1668 (254.8) | 104.6 | 109.2 (79.7–179.8) | 290.2 | 0.88 (0.67–0.96) |
(L) VERT peak con power (W) | 1690.4 (458.5) | 1591 (382.9) | 127.2 | 134.7 (98.3–221.7) | 352.7 | 0.92 (0.77–0.98) |
(R) VERT Avg con power (W) | 710.6 (225.3) | 686.1 (199.2) | 84.6 | 90.1 (65.7–148.3) | 234.7 | 0.85 (0.61–0.95) |
(L) VERT Avg con power (W) | 607.0 (131.8) | 638.3 (189.2) | 70.0 | 94.4 (68.9–155.4) | 194.2 | 0.72 (0.31–0.90) |
(R) VERT Avg con power 100 ms (W) | 1582.1 (310.1) | 1616 (256.2) | 95.2 | 99.8 (72.8–164.3) | 263.9 | 0.91 (0.73–0.97) |
(L) VERT Avg con power 100 ms (W) | 1621.0 (445.0) | 1556 (368.1) | 128.4 | 135.2 (98.6–222.4) | 356.0 | 0.92 (0.76–0.97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donskov, A.S.; Brooks, J.S.; Dickey, J.P. Reliability of the Single-Leg, Medial Countermovement Jump in Youth Ice Hockey Players. Sports 2021, 9, 64. https://doi.org/10.3390/sports9050064
Donskov AS, Brooks JS, Dickey JP. Reliability of the Single-Leg, Medial Countermovement Jump in Youth Ice Hockey Players. Sports. 2021; 9(5):64. https://doi.org/10.3390/sports9050064
Chicago/Turabian StyleDonskov, Anthony S., Jeffrey S. Brooks, and James P. Dickey. 2021. "Reliability of the Single-Leg, Medial Countermovement Jump in Youth Ice Hockey Players" Sports 9, no. 5: 64. https://doi.org/10.3390/sports9050064
APA StyleDonskov, A. S., Brooks, J. S., & Dickey, J. P. (2021). Reliability of the Single-Leg, Medial Countermovement Jump in Youth Ice Hockey Players. Sports, 9(5), 64. https://doi.org/10.3390/sports9050064