Failure Mechanisms in Alloys
1. Introduction and Scope
2. Contributions
- (i)
- (ii)
- (iii)
- (iv)
- Heat Treatment [22]
- (v)
- Systems or Quality [9]
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Dedication
References
- UlHaq Toor, I.; Muzammil Irshad, H.; Mohamed Badr, H.; Abdul Samad, M. The effect of impingement velocity and angle variation on the erosion corrosion performance of API 5L-X65 carbon steel in a flow loop. Metals 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; John Pons, D. Crack propagation mechanisms for creep fatigue: A consolidated explanation of fundamental behaviours from initiation to failure. Metals 2018, 8, 623. [Google Scholar] [CrossRef] [Green Version]
- Haidemenopoulos, G.N.; Kamoutsi, H.; Polychronopoulou, K.; Papageorgiou, P.; Altanis, I.; Dimitriadis, P.; Stiakakis, M. Investigation of stress-oriented hydrogen-induced cracking (SOHIC) in an amine absorber column of an oil refinery. Metals 2018, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Park, M.; Jang, J.; Chan Kim, H.; Moon, H.-S.; Lim, D.-H.; Bae Jeon, J.; Kwon, S.-H.; Kim, H.; Jun Kim, B. Improvement of strength and impact toughness for cold-worked austenitic stainless steels using a surface-cracking technique. Metals 2018, 8, 932. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yin, H.; Zhang, H.; Kang, J.; Li, Y.; Dan, Y. Electrochemical investigation of corrosion of X80 steel under elastic and plastic tensile stress in CO2 environment. Metals 2018, 8, 949. [Google Scholar] [CrossRef] [Green Version]
- Pashos, G.; Pantazopoulos, G.A.; Contopoulos, I. A comprehensive CFD model for dual-phase brass indirect extrusion based on constitutive laws: Assessment of hot-zone formation and failure prognosis. Metals 2018, 8, 1043. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.; Lang, L.; Liu, K.; Yang, X. Evaluation study on iterative inverse modeling procedure for determining post-necking hardening behavior of sheet metal at elevated temperature. Metals 2018, 8, 1044. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; O’Neal, D.L. Improving the reliability of mechanical components that have failed in the field due to repetitive stress. Metals 2019, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Pantazopoulos, G.A. A short review on fracture mechanisms of mechanical components operated under industrial process conditions: Fractographic analysis and selected prevention strategies. Metals 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Bazios, P.; Tserpes, K.; Pantelakis, S.G. Numerical computation of material properties of nanocrystalline materials utilizing three dimensional Voronoi models. Metals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Y.; Wang, X. In situ observation of the deformation and fracture behaviors of long-term thermally aged cast duplex stainless steels. Metals 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Lampropoulos, A.D.; Markopoulos, A.P.; Manolakos, D.E. Modeling of Ti6Al4V alloy orthogonal cutting with smooth particle hydrodynamics: A parametric analysis on formulation and particle density. Metals 2019, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Hu, Y. An extended iterative identification method for the GISSMO model. Metals 2019, 9, 568. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Chen, P.; Li, K.; Su, L. A macroscopic strength criterion for isotropic metals based on the concept of fracture plane. Metals 2019, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Liu, J.; Cao, J.; Li, S.; Liu, X.; He, C.; Xue, X. Enhanced ductility of a W-30Cu composite by improving microstructure homogeneity. Metals 2019, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Monkova, K.; Monka, P.P.; Sekerakova, A.; Hruzik, L.; Burecek, A.; Urban, M. Comparative study of chip formation in orthogonal and oblique slow-rate machining of EN 16MnCr5 steel. Metals 2019, 9, 698. [Google Scholar] [CrossRef] [Green Version]
- Haidemenopoulos, G.N.; Polychronopoulou, K.; Zervaki, A.D.; Kamoutsi, H.; Alkhoori, S.I.; Jaffar, S.; Cho, P.; Mavros, H. Aging phenomena during in-service creep exposure of heat-resistant steels. Metals 2019, 9, 800. [Google Scholar] [CrossRef] [Green Version]
- González-Ciordia, B.; Fernández, B.; Artola, G.; Muro, M.; Sanz, Á.; de Lacalle, L.N.L. Failure-analysis based redesign of furnace conveyor system components: A case study. Metals 2019, 9, 816. [Google Scholar] [CrossRef] [Green Version]
- Angella, G.; Zanardi, F. Validation of a new quality assessment procedure for ductile irons production based on strain hardening analysis. Metals 2019, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Monkova, K.; Monka, P.P.; Sekerakova, A.; Tkac, J.; Bednarik, M.; Kovac, J.; Jahnatek, A. Research on chip shear angle and built-up edge of slow-rate machining EN C45 and EN 16MnCr5 steels. Metals 2019, 9, 956. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Taheri, P. A Study on the failure of AISI 304 stainless steel tubes in a gas heater unit. Metals 2019, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Mihaliková, M.; Zgodavová, K.; Bober, P.; Sütoová, A. Prediction of bake hardening behavior of selected advanced high strength automotive steels and hailstone failure discussion. Metals 2019, 9, 1016. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Taheri, P. Creep failure of reformer tubes in a petrochemical plant. Metals 2019, 9, 1026. [Google Scholar] [CrossRef] [Green Version]
- Psyllaki, P.P. An introduction to wear degradation mechanisms of surface-protected metallic components. Metals 2019, 9, 1057. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Xu, J.; Jiang, Z. Finite element analysis of forward slip in micro flexible rolling of thin aluminium strips. Metals 2019, 9, 1062. [Google Scholar] [CrossRef] [Green Version]
- Vazdirvanidis, A.; Pressas, I.; Papadopoulou, S.; Toulfatzis, A.; Rikos, A.; Katsivarda, M.; Symeonidis, G.; Pantazopoulos, G. Examination of formability properties of 6063 alloy extruded profiles for the automotive industry. Metals 2019, 9, 1080. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Monkova, K. Research of tribological properties of 34CrNiMo6 steel in the production of a newly designed self-equalizing thrust bearing. Metals 2020, 10, 84. [Google Scholar] [CrossRef] [Green Version]
Material Type | Reference |
---|---|
Structural and pipeline steels | [1,5,9,13,16,20,22,27] |
Cast iron | [14,19] |
Special resistance and stainless steels | [3,4,9,11,17,18,21,23,24] |
Wear resistant coatings and surface layers | [24,27] |
Ti, Ti alloys | [7,12] |
Al alloys | [13,25,26] |
Mg alloy | [13] |
Cu, Cu alloys | [6,9,10] |
Nanomaterials | [10] |
W–Cu composite | [15] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantazopoulos, G.A. Failure Mechanisms in Alloys. Metals 2020, 10, 117. https://doi.org/10.3390/met10010117
Pantazopoulos GA. Failure Mechanisms in Alloys. Metals. 2020; 10(1):117. https://doi.org/10.3390/met10010117
Chicago/Turabian StylePantazopoulos, George A. 2020. "Failure Mechanisms in Alloys" Metals 10, no. 1: 117. https://doi.org/10.3390/met10010117
APA StylePantazopoulos, G. A. (2020). Failure Mechanisms in Alloys. Metals, 10(1), 117. https://doi.org/10.3390/met10010117