Low Temperature Deformation Induced Microstructure Refinement and Consequent Ultrahigh Toughness of a 20Mn2SiCrNi Bainitic Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Simulation Experiment
2.2. Hot Rolling Deformation
3. Results and Discussion
3.1. Parameters of Deformation Temperature and Deformation Rate
3.2. Mechanical Properties
3.3. Microstructure
3.4. Effect of Deformation on Retained Austenite
3.5. Discussion of Toughening Effect
4. Conclusions
- (1)
- The thermal simulation experiment suggested that the deformation temperature was the key parameter during the hot deformation process. Grain size and deformation resistance should be taken into account in the selection of the deformation temperature in 20Mn2SiCrNi bainitic high strength steel.
- (2)
- The toughness of 20Mn2SiCrNi bainitic high strength steel was significantly enhanced through the increase of degree of deformation during the hot rolling process.
- (3)
- In Mn-Si-Cr bainitic high strength steel, increasing the deformation during rolling refines grain size and microstructure, which is an effective way to improve the mechanical properties.
Author Contributions
Funding
Conflicts of Interest
References
- Patel, V.K.; Bhole, S.D.; Chen, D.L. Ultrasonic spot welding of aluminum to high-strength low-alloy steel: Microstructure, tensile and fatigue properties. Metall. Mater. Trans. A 2014, 45, 2055–2066. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y. Hot deformation behavior of HSLA steel Q690 and phase transformation during compression. J. Alloys Compd. 2015, 619, 564–571. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Lei, Y. Microstructure and properties of 700 MPa grade HSLA steel during high temperature deformation. J. Alloys Compd. 2015, 631, 225–231. [Google Scholar] [CrossRef]
- Luo, K.; Bai, B. Microstructure, mechanical properties and high stress abrasive wear behavior of air-cooled Mn-Cr-B cast steels. Mater. Des. 2010, 31, 2510–2516. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, H.; Gui, X.; Luo, P.; Tan, Z.; Bai, B. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite. Acta Mater. 2014, 76, 425–433. [Google Scholar] [CrossRef]
- Feng, C.; Fang, H.S.; Bai, B.Z. Microstructure and mechanical properties of F_(GBA)/B_G air cooling bainitic steels containing niobium. Int. J. Miner. Metall. Mater. 2010, 17, 429–434. [Google Scholar] [CrossRef]
- Tan, Z.; An, B.; Gao, G.; Gui, X.; Bai, B.; Tan, Z.; An, B.; Gao, G.; Gui, X.; Bai, B. Analysis of softening zone on the surface of 20Mn2SiCrMo Bainitic railway switch. Eng. Fail. Anal. 2015, 47, 111–116. [Google Scholar] [CrossRef]
- Wang, K.; Tan, Z.; Gao, G.; Gui, X.; Misra, R.D.; Bai, B. Ultrahigh strength-toughness combination in Bainitic rail steel: The determining role of austenite stability during tempering. Mater. Sci. Eng. A 2016, 662, 162–168. [Google Scholar] [CrossRef]
- Shen, X.J.; Tang, S.; Chen, J.; Liu, Z.Y.; Misra, R.D.K.; Wang, G.D. Grain refinement in surface layers through deformation-induced ferrite transformation in microalloyed steel plate. Mater. Des. 2017, 113, 137–141. [Google Scholar] [CrossRef]
- Fernández, J.; Illescas, S.; Guilemany, J.M. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel. Mater. Lett. 2007, 61, 2389–2392. [Google Scholar] [CrossRef]
- Kennett, S.C.; Krauss, G.; Findley, K.O. Prior austenite grain size and tempering effects on the dislocation density of low-C Nb-Ti microalloyed lath martensite. Scr. Mater. 2015, 107, 123–126. [Google Scholar] [CrossRef]
- Liu, B.X.; Wei, J.Y.; Yang, M.X.; Yin, F.X.; Xu, K.C. Effect of heat treatment on the mechanical properties of copper clad steel plates. Vacuum 2018, 154, 250–258. [Google Scholar] [CrossRef]
- Atanu, S.; Mondal, D.K.; Biswas, K.; Maity, J. Development of high strength ductile hypereutectoid steel by cyclic heat treatment process. Mater. Sci. Eng. A 2012, 541, 204–215. [Google Scholar]
- Li, J.; Tan, Z.; Zhang, M.; Gao, G.; Misra, R.D.K.; Bai, B. On the significant impact of deformation coupled with cooling rate during Thermo-Mechanical Controlled Processing (TMCP) on microstructure-property relationship in 25Mn2Si2Cr high strength steel. Steel Res. Int. 2019, 90. [Google Scholar] [CrossRef]
- Mishra, A.; Mondal, C.; Maity, J. Microstructural modifications in AISI 1080 eutectoid steel under combined cyclic heat treatment. Steel Res. Int. 2016, 87, 424–435. [Google Scholar] [CrossRef]
- Ji, G.; Li, L.; Qin, F.; Zhu, L.; Li, Q. Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation. J. Alloys Compd. 2017, 695, 2389–2399. [Google Scholar] [CrossRef]
- Li, J.; Gao, B.; Huang, Z.; Zhou, H.; Mao, Q.; Li, Y. Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum 2018, 157, 128–135. [Google Scholar] [CrossRef]
- Gong, P.; Palmiere, E.J.; Rainforth, W.M. Thermomechanical processing route to achieve ultrafine grains in low carbon microalloyed steels. Acta Mater. 2016, 119, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Zhang, Y.J.; Cao, W.Q.; Shi, J.; Wang, M.Q.; Dong, H. Austenite/martensite structure and corresponding ultrahigh strength and high ductility of steels processed by Q&P techniques. Sci. Chin. Tech. Sci. 2012, 55, 1844–1851. [Google Scholar]
- Dijk, N.H.V.; Butt, A.M.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Zwaag, S.V.D. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005, 53, 5439–5447. [Google Scholar]
- Chi, Z.; Zhang, L.; Shen, W.; Liu, C.; Xia, Y.; Li, R. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel. Mater. Des. 2015, 90, 804–814. [Google Scholar]
- Han, Y.; Shi, J.; Xu, L.; Cao, W.Q.; Dong, H. Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel. Mater. Sci. Eng. A 2012, 553, 192–199. [Google Scholar] [CrossRef]
- Sung, H.K.; Sohn, S.S.; Sang, Y.S.; Lee, S.; Kim, N.J.; Chon, S.H.; Yoo, J.Y. Effects of finish rolling temperature on inverse fracture occurring during drop weight tear test of API X80 pipeline steels. Mater. Sci. Eng. A 2012, 541, 181–189. [Google Scholar] [CrossRef]
- Dougherty, L.M.; Robertson, I.M.; Vetrano, J.S. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-0.3Sc alloy. Acta Mater. 2003, 51, 4367–4378. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.; Zhu, H.; Cui, Z. Study on dynamic recrystallization behaviors in a hot-deformed FB2 ultra-supercritical rotor steel. Metall. Microstruct. Anal. 2019, 8, 145–158. [Google Scholar] [CrossRef]
- Xin, D.; Bin, Y. Study on hot deformation behavior and processing maps of SA508-V steel for novel nuclear reactor pressure vessels. Vacuum 2018, 155, 637–644. [Google Scholar]
- Ebrahimi, G.R.; Keshmiri, H.; Momeni, A.; Mazinani, M. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni. Mater. Sci. Eng. A 2011, 528, 7488–7493. [Google Scholar] [CrossRef]
- Momeni, A.; Dehghani, K.; Keshmiri, H.; Ebrahimi, G.R. Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel. Mater. Sci. Eng. A 2010, 527, 1605–1611. [Google Scholar] [CrossRef]
- Li, J.; Tan, Z.; Zhang, M.; Gao, G.; Misra, R.D.K.; Bai, B. Effect of intercritical austenitizing temperature during quenching-intercritical quenching-tempering process on toughness of 25Mn2Si2Cr bainitic steel. Steel Res. Int. 2019, 90. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Tan, Z.; Li, J.; Gao, B.; Zhang, M.; Bai, B. Low Temperature Deformation Induced Microstructure Refinement and Consequent Ultrahigh Toughness of a 20Mn2SiCrNi Bainitic Steel. Metals 2020, 10, 19. https://doi.org/10.3390/met10010019
Tian Y, Tan Z, Li J, Gao B, Zhang M, Bai B. Low Temperature Deformation Induced Microstructure Refinement and Consequent Ultrahigh Toughness of a 20Mn2SiCrNi Bainitic Steel. Metals. 2020; 10(1):19. https://doi.org/10.3390/met10010019
Chicago/Turabian StyleTian, Yu, Zhunli Tan, Ji Li, Bo Gao, Min Zhang, and Bingzhe Bai. 2020. "Low Temperature Deformation Induced Microstructure Refinement and Consequent Ultrahigh Toughness of a 20Mn2SiCrNi Bainitic Steel" Metals 10, no. 1: 19. https://doi.org/10.3390/met10010019
APA StyleTian, Y., Tan, Z., Li, J., Gao, B., Zhang, M., & Bai, B. (2020). Low Temperature Deformation Induced Microstructure Refinement and Consequent Ultrahigh Toughness of a 20Mn2SiCrNi Bainitic Steel. Metals, 10(1), 19. https://doi.org/10.3390/met10010019