Erosion Resistance and Particle Erosion-Induced Tensile Embrittlement of 3D-Selective Laser Melting Inconel 718 Superalloy
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Particle Erosion Wear Characteristics and Mechanisms
3.2. Particle Erosion Induced Phase Transformation
3.3. Influence of Erosion Induced Phase Transformation on Mechanical Properties
4. Conclusions
- The maximal corrosion rate of AS, A, SA, and HSA occurred at a 30° angle, while the lowest one occurred at 90°. This corresponds to the dominant corrosion behavior of ductile cutting. Heat treatment, especially double aging heat treatment, could increase erosion resistance. In the ductile domination region (<45°), the difference of increasing was remarkable, which positively correlated with the ductility of each specimen. In the brittle domination region (>45°), the erosion rates of A, SA, and HSA remained similar. In this system, the erosion resistance of the SLM specimen was better than the commercial rolling specimen.
- After particle erosion, orientation changes and phase transformation occurs to generate γ′ phase or MO. With the work-hardening effect induced by the impact of Al2O3 particles, the specimens obtained their highest hardness at the surface region.
- After heat treatment, the strength of SLM IN718 increased, while ductility decreased. The double aging heat treatment precipitated γ′ to enhance the strength and reduce the ductility. After erosion, orientation change and phase transformation to generate γ′ phase or MO on both sides of EAZ, the tensile strength merely varied a little, yet tensile embrittlement occurred.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strondl, A.; Fischer, R.; Frommeyer, G.; Schneider, A. Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting. Mater. Sci. Eng. A 2008, 480, 138–147. [Google Scholar] [CrossRef]
- Hong, C.; Gu, D.; Dai, D.; Gasser, A.; Weisheit, A.; Kelbassa, I.; Zhong, M.; Poprawe, R. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt. Laser Technol. 2013, 54, 98–109. [Google Scholar] [CrossRef]
- Murr, L.E.; Martinez, E.; Gaytan, S.M.; Ramirez, D.A.; Machado, B.I.; Shindo, P.W.; Martinez, J.L.; Medina, F.; Wooten, J.; Ciscel, D.; et al. Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting. Metall. Mater. Trans. A 2011, 42, 3491–3508. [Google Scholar] [CrossRef] [Green Version]
- Kistler, N.A. Characterization of Inconel 718 Fabricated through Powder Bed Fusion Additive Manufacturing. Bachelor’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2015. [Google Scholar]
- Strößner, J.; Terock, M.; Glatzel, U. Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM). Adv. Eng. Mater. 2015, 17, 1099–1105. [Google Scholar] [CrossRef]
- Sun, J.F.; Yang, Y.Q.; Wang, D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt. Laser Technol. 2013, 49, 118–124. [Google Scholar] [CrossRef]
- Shiomi, M.; Osakada, K.; Nakamura, K.; Yamashita, T.; Abe, F. Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Ann. 2004, 53, 195–198. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Liu, F.; Lin, X.; Yang, G.; Song, M.; Chen, J.; Huang, W. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt. Laser Technol. 2011, 43, 208–213. [Google Scholar] [CrossRef]
- Finnie, I. Some observations on the erosion of ductile metals. Wear 1973, 23, 87–96. [Google Scholar] [CrossRef]
- Dai, W.S.; Chen, L.H.; Lui, T.S. A study on SiO2 particle erosion of flake graphite and spheroidal graphite cast irons. Wear 2000, 239, 143–152. [Google Scholar] [CrossRef]
- Shanov, V.; Tabakoff, W. Erosion resistance of coatings for metal protection at elevated temperatures. Surf. Coat. Technol. 1996, 86–87, 88–93. [Google Scholar] [CrossRef]
- Mishra, S.B.; Prakash, S.; Chandra, K. Studies on erosion behavior of plasma sprayed coatings on a Ni-based superalloy. Wear 2006, 260, 422–432. [Google Scholar] [CrossRef]
- Bircan, B.; Fidan, S.; Çimenoğlu, H. Solid particle erosion behavior of Inconel 718 super alloys under elevated temperatures. Jamme. 2014, 66, 5–12. [Google Scholar]
- Liou, J.W.; Lui, T.S.; Chen, L.H. SiO2 particle erosion of A356.2 aluminum alloy and the related microstructural changes. Wear 1997, 211, 169–176. [Google Scholar] [CrossRef]
- Hung, F.Y.; Chen, L.H.; Lui, T.S. Phase transformation of an austempered ductile iron during an erosion process. Mater. Trans. 2004, 45, 2981–2986. [Google Scholar] [CrossRef]
- Wood, R.J.K.; Walker, J.C.; Harvey, T.J.; Wang, S.; Rajahram, S.S. Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steel. Wear 2013, 306, 254–262. [Google Scholar] [CrossRef]
- Zhao, J.R.; Hung, F.Y.; Lui, T.S. Particle erosion induced phase transformation of different matrix microstructures of powder bed fusion Ti-6Al-4V alloy flakes. Metals 2019, 9, 730. [Google Scholar] [CrossRef] [Green Version]
- Chlebus, E.; Gruber, K.; Kuźnicka, B.; Kurzac, J.; Kurzynowski, T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 2015, 639, 647–655. [Google Scholar] [CrossRef]
- Mostafa, A.; Rubio, I.P.; Brailovski, V.; Jahazi, M.; Medraj, M. Structure, texture and phases in 3D printed IN718 alloy subjected to homogenization and HIP treatments. Metals 2017, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, D. Aerospace Materials Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Lewandowski, M.S.; Sahai, V.; Wilcox, R.C.; Matlock, C.A.; Overfelt, R.A. High temperature deformation of Inconel 718 castings. In Superalloys 718, 625, 706 and Various Dérivatives; Loria, E.A., Ed.; TMS-AIME: Warrendale, PA, USA, 1994; pp. 345–354. [Google Scholar]
- Lindsley, B.A.; Marder, A.R. The Effect of velocity on the solid particle erosion rate alloys. Wear 1999, 225–229, 510–516. [Google Scholar] [CrossRef]
- Winter, R.E.; Hutchings, I.M. Solid particle erosion srudies using single angular particles. Wear 1974, 29, 181–194. [Google Scholar] [CrossRef]
- Liu, F.; Lin, X.; Jeng, H.; Cao, J.; Liu, Q.; Huang, C.; Huang, W. Microstructural changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction. Opt. Laser Technol. 2013, 45, 330–335. [Google Scholar] [CrossRef]
- SAE Aerospace. Aerospace Material Specification; AMS 5662; SAE International: Warrendale, PA, USA, 2009. [Google Scholar]
- Nalawade, S.A.; Sundararaman, M.; Singh, J.B.; Verma, A.; Kishore, R. Precipitation of γ′ phase in δ-precipitated alloy 718 during deformation at elevated temperatures. Mater. Sci. Eng. A 2010, 527, 2906–2909. [Google Scholar] [CrossRef]
- Kuo, C.M.; Yang, Y.T.; Bor, H.Y.; Wei, C.N.; Tai, C.C. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng. A 2009, 510–511, 289–294. [Google Scholar] [CrossRef]
- Chamanfar, A.; Sarrat, L.; Jahazi, M.; Asadi, M.; Weck, A.; Koul, A.K. Microstructural characteristics of forged and heat treated Inconel-718 disks. Mater. Design. 2013, 52, 791–800. [Google Scholar] [CrossRef]
Laser Power | Scanning Velocity | Layer Thickness | Hatching Space | Idle Time | Preheat Temperature |
---|---|---|---|---|---|
230 W | 760 mm/s | 40 μm | 110 μm | 10 s | 80 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.-R.; Hung, F.-Y.; Lui, T.-S. Erosion Resistance and Particle Erosion-Induced Tensile Embrittlement of 3D-Selective Laser Melting Inconel 718 Superalloy. Metals 2020, 10, 21. https://doi.org/10.3390/met10010021
Zhao J-R, Hung F-Y, Lui T-S. Erosion Resistance and Particle Erosion-Induced Tensile Embrittlement of 3D-Selective Laser Melting Inconel 718 Superalloy. Metals. 2020; 10(1):21. https://doi.org/10.3390/met10010021
Chicago/Turabian StyleZhao, Jun-Ren, Fei-Yi Hung, and Truan-Sheng Lui. 2020. "Erosion Resistance and Particle Erosion-Induced Tensile Embrittlement of 3D-Selective Laser Melting Inconel 718 Superalloy" Metals 10, no. 1: 21. https://doi.org/10.3390/met10010021
APA StyleZhao, J. -R., Hung, F. -Y., & Lui, T. -S. (2020). Erosion Resistance and Particle Erosion-Induced Tensile Embrittlement of 3D-Selective Laser Melting Inconel 718 Superalloy. Metals, 10(1), 21. https://doi.org/10.3390/met10010021