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Abstract: Furnace brazing of Ti-15Mo-5Zr-3Al (Ti-15-5-3, β-Ti) alloy using clad Ti-15Cu-15Ni foil as
the filler in a high vacuum has been carried out. In the brazed joints, the chemical compositions of
distinct phases were quantified by electron probe micro-analyzer (EPMA), and the phase structures
were identified by electron backscatter diffraction (EBSD). The as-brazed joint composed of α-Ti,
retained β-Ti, Ti2Ni, and Ti2Cu. The embrittlement of the brazed joint was correlated mainly with
the formation of intermetallics, especially cellular Ti2Ni dendrites in the brazed zone. It was noticed
that the molten filler liquated the β-Ti grain boundaries and assisted the eutectic reaction therein,
resulting in forming grain boundary Ti2Ni surrounded by the retained β-Ti. The results indicated
that proper brazing conditions were able to eliminate all the harmful phases effectively, and increased
the shear strength of the Ti-15Mo-5Zr-3Al brazed joint.
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1. Introduction

Titanium alloys with excellent specific strength and corrosion resistance are attractive as structural
materials used in the aerospace industry [1–4]. Nowadays, titanium alloys are also applied in many
other fields, including the automobile, sport and chemical industries [5,6]. Beta titanium (β-Ti) alloys
are known to possess higher cold formability and age-hardening ability than those of alpha + beta
(α + β) Ti alloys [7]. It is reported that Ti-15V-3Cr-3Al-3Sn (β-Ti) can be cold-rolled to an 80% reduction
in thickness during strip-forming [8]. Ti-15Mo-5Zr-3Al (Ti-15-5-3, β-Ti) alloy with the beta-transus
temperature of approximately 1058 K (785 ◦C) was developed by Kobe Steel [9]. With appropriate
thermo- and thermo-mechanical treatments, great changes in the mechanical properties of Ti-15-5-3
alloy can be obtained for different applications [10,11]. Precipitation of the α phase in the β matrix is
responsible for the age-hardening of Ti-15-5-3 alloy [10]. Ti-15-5-3 alloy has higher fatigue strength
when solution-treated below the beta-transus temperature than when solution-treated above the
beta-transus temperature [9]. Excellent fatigue strength of Ti-15-5-3 alloy solution-treated in the
alpha/beta region results from higher crack initiation resistance, due to the microstructure, which is
composed of primary α phase and a fine β matrix [9]. In addition, Ti-15Mo-5Zr-3Al is reported to be
one of the most important biomaterials for orthopaedic implant applications, such as dental implants
and artificial hip joints [12–17].
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The joining of titanium alloys is an important issue for the assembly of different components into
devices, and the various joining methods include arc welding, high energy density beam welding,
solid state welding and brazing. Traditionally, titanium alloys can be welded by tungsten inert gas
arc, laser beam, and electron beam welding processes [18–21]. Joining the components by brazing is
advantageous because it introduces very low distortion into the components when furnace-heating
is applied [22,23]. Moreover, brazing is extensively used for joining dissimilar alloys, especially
in cases of metallurgical heterogeneity in dissimilar fusion welds, which may cause premature
cracking. In the open literature, titanium alloys have been successfully brazed for different applications.
For examples, commercially available titanium alloys (Ti2, Ti4, Ti64, Ti6242) are brazed using Ag28Cu
as a filler for aeronautic components [24]. Medical titanium and alumina are joined with Au foil for
implantable devices [25]. Cu-based amorphous filler is used for brazing TiAl alloy for high temperature
applications [26].

The use of Ti-based fillers to braze Ti alloys has become an important issue nowadays, because
the brazed joint features with better corrosion resistance and mechanical properties [27]. Ti-Cu-Ni-(Zr)
and Ti-Ni-Nb brazed joints have been widely evaluated in previous studies [28–30]. It is reported that
the formation of Ti-Cu/Ti-Ni intermetallic compounds deteriorates joint strength [28–30]. Additionally,
these harmful compounds present in the brazed joint is strongly affected by the types of base metals.
Because the β-Ti demonstrates higher solubility in dissolving Cu and Ni than α-Ti does, Ti-Cu/Ti-Ni
compounds are prone to be dissolved in the β-Ti matrix with increasing the brazing temperature and/or
time [28–30]. However, the coarse-grained structure of the Ti substrate will exhibit poor mechanical
properties of the brazing temperature exceeds 1273 K (1000 ◦C) [30]. To achieve a reliable brazed joint
for industrial application, the brazed temperature is considered to be kept below 1273 K (1000 ◦C) with
a minimum brazing time period

In this study, Ti-15-5-3 alloy was brazed using clad Ti-15Cu-15Ni foil as the filler in a high vacuum
furnace (5 × 10−5 Pa) to avoid contamination by the external atmosphere. In an attempt to achieve
a high-strength joint, the impact of brazing time periods was investigated under a fixed brazing
temperature of 1243 K (970 ◦C) in this work. The evolution of the microstructures, particularly the
elimination of detrimental intermetallic compounds in the brazed joint, was investigated by using
a scanning electron microscope (SEM) and an electron-probe microanalyzer (EPMA). The different
phases in the joint were identified by electron backscatter diffraction (EBSD) and high-power X-ray
diffractometer (XRD). The fracture features of the shear-fractured samples were examined with an SEM,
and the causes of shear fracture were further related to the inherent microstructures of the brazed joint.

2. Materials and Experimental Procedures

The base metal (BM) with dimensions of 10 mm (L), 10 mm (W), and 3 mm (T) used in this study
was wire-cut from a Ti-15-5-3 rod with a diameter of 17 mm. The measured composition in wt.% of
Ti-15-5-3 was 15.0 Mo, 5.3 Zr, 3.0 Al and Ti balance, or 8.1 Mo, 3.0 Zr, and 5.6 Al in at%. Before the
brazing experiments, all brazed surfaces were ground by SiC papers up to grit 600. The brazing filler
was clad Ti-15Cu-15Ni (in wt.%) foil with a thickness of 50 µm. All samples were ultrasonically cleaned
by ethanol before brazing. The Ti-15Cu-15Ni filler was pre-placed between two Ti-15-5-3 substrates
and assembled into a sandwich structure. The liquidus temperature of the Ti-15Cu-15Ni foil is 1233 K
(960 ◦C) [31–33]. The brazing temperature of 1243 K (970 ◦C) was selected with 10 K above its liquidus
temperature in order to ensure complete melting of the clad filler during the initial stage of brazing.
The brazed joint was placed into the furnace and pre-vacuumed to 5 × 10−5 Pa. The heating rate was
about 20 ◦C/min, and holding the temperature at 1073 K (800 ◦C) for 600 s to maintain a uniform
sample temperature. A thermocouple was in contact with the graphite fixture during brazing. Brazing
was performed under high vacuum at 1243 K (970 ◦C) for 180 s (3 min), 600 s (10 min), and 1800 s
(30 min), respectively. Based on the brazing time, the samples were designated as B3, B10 and B30,
accordingly. The purpose of increasing the brazing time period from 180 s to 1800 s was to study the
microstructural evolution of brazed joints, and the impact of brazing time was unveiled.
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The brazed samples were taken out of the furnace after cooling to ambient temperature.
For metallographic examinations, the brazed samples were sliced by a diamond saw, and subjected
to a standard metallographic preparation. Microstructures of brazed joints were inspected by using
a Hitachi 3400 scanning electron microscope (SEM, Hitachi Ltd., Tokyo, Japan) in backscatter electron
(BSE) image mode. The chemical compositions of various phases in brazed joints at selected sites
were determined by using the JEOL JXA-8200 superprobe electron probe micro-analyzer (JEOL Ltd.,
Tokyo, Japan). The minimum spot size is about 1 µm, and it operates at 15 kV. The reaction products
in the brazed joint were identified by using an X-ray diffractometer (Panalytical X’Pert Pro MPD,
PANalytical, Malvern, UK) with Cu Kα radiation. Selected brazed joints were examined by an SEM
(JSM-7100F, JEOL, Tokyo, Japan), which was equipped with the NordlysMax2 electron backscatter
diffraction (Oxford Instruments, Abingdon, UK) detector to identify various phases in the brazed
joint. The sample for the shear test was in the configuration of a double lap joint, which was held by
a graphite fixture during brazing as illustrated in Figure 1a. A light force was applied to clamp the
brazed specimen, which could maintain the specimen configuration until the filler metal was solidified.
To keep the substrate and filler in tight contact during brazing, low stress approximately below 0.1 MPa
at room temperature between the components was applied, which was exerted by a pair of screws.
Too high clamping stress would squeeze out a large amount of molten filler out of the brazed zone.
Shear tests of brazed joints were performed by using a universal tensile test machine (AG-IS, Shimadzu
Crop., Kyoto, Japan) under a compressive crosshead speed of 0.017 mm/s. Figure 1b displayed the
schematic diagram of the shear test. Shear strength was obtained from the maximum applied force
divided by the total brazed area (two red lines in Figure 1b). Shear strength of a specific sample was
the average of at least three tests, and standard deviation of three data was calculated. The fractured
surface appearance and cross-sections of the shear test specimens were examined by using the Hitachi
3400 SEM and JEOL JXA-8200 EPMA (JEOL, Tokyo, Japan).
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Figure 1. Schematic diagram of (a) assembled sample by using graphite fixture; (b) shear test experiment.

3. Results and Discussion

3.1. Microstructural Observations and Chemical Composition Determinations

Figure 2a shows the sandwich structure of the brazed joint in a cross-section view. There are two
different regions, center and edge, in the joint. An optical micrograph displaying the whole joint cross
section after brazing is included in Figure 2b. Figure 3a displays the schematic diagram of the clad
filler used in this work. The clad filler foil was manufactured by thin cladding layers of Cu and Ni
foils on Ti substrate. Figure 3b, c are BSE-SEM micrographs of the clad filler and the corresponding
element line-scans, respectively. As shown in Figure 3b, the clad Ti-15Cu-15Ni filler had a sandwich
structure (Ni-Cu-Ni) with the cladding of approximately 9 µm in thickness on both sides of the Ti foil.
This structure was confirmed by the compositional line scans, shown in Figure 3c.

The brazed sample was sectioned normal to the brazed joint and subjected to metallographic
preparations. To highlight the contrast of distinct phases present in the brazed joint, the microstructures
were imaged by BSE-SEM. Figure 4 reveals the variation in cross-sectional microstructures around the
brazed zone brazed at 1243 K for various time periods. The brazed zone microstructures of distinct
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samples in the center portion of the brazed joints (as indicated in Figure 2) are shown in Figure 4a–c.
The results indicated that increasing the brazing time caused great changes in microstructure in the
brazed zone. The bright phase was found to reduce in size and even vanish when the brazing time
was increased to 30 min (1800 s). Moreover, the needle-like precipitates in the B3 sample (Figure 4a)
became very indistinct in the B10 sample (Figure 4b), and they were difficult to observe in the B30
sample (Figure 4c). It was deduced that increasing the brazing time assisted the uniform distribution
of alloying elements in the brazed zone and caused the formation of a homogeneous microstructure in
the Ti-15-5-3 brazed joint.
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The molten filler foil assisted the dissolution of Ti-15-5-3 substrate into the brazed zone, resulting
in causing the dilution of Cu and Ni in the melted braze. As shown in Figure 4a, the cross-sectional
thickness of a brazed zone, including the central white phase and the needle-like precipitate region
was less than 25 µm. It seemed that the width of the brazed zone was narrower than the thickness of
the filler foil. In fact, the brazed zone also contained the region of Ti-rich phase alloyed with Cu, Ni, Al,
Mo and Zr. It is noted that the Ti-rich phase lacked a sharp interface between the brazed zone and
Ti-15-5-3 substrate. Besides, a certain volume fraction of molten braze was pressed to flow out to the
external surface of the joint during brazing. Such event also accounted for the width of the brazed
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zone was narrower than the thickness of the filler foil. The complex phases present in the narrow
brazed zone were hard to be identified by XRD in cross-sectional view. Therefore, the B3 sample was
cut parallel and close to the brazed interface. The cut samples were ground gradually to remove the
materials and then polished for further XRD structural analysis. Figure 5 displays the XRD pattern of
the brazed zone in the B3 sample. The brazed zone consisted of predominantly Ti2Ni mixed with Ti2Cu
and β-Ti, along with a little α-Ti. It was deduced that the formation of Ti-Ni and Ti-Cu intermetallic
compounds was harmful to the structural reliability of a Ti-15-5-3 joint brazed with the Ti-15Cu-15Ni
filler if the detrimental phases were not removed under the proper brazing conditions.
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Figure 6 displays the cross-sectional microstructures around the brazed zone in BSE images of
the B3 sample; the associated compositions determined by using EPMA at specific sites in Figure 6
are listed in Table 1. The brazed zone, as confirmed by the XRD pattern in Figure 5, composed of
several different phases. The bright phase (marked 1) with 26.4 at% Ni was expected to be Ti2Ni
intermetallic compound. The dark area marked 2, alloyed with Mo, Zr and Al from the BM, was
expected to be retained β-Ti, as later confirmed by EBSD structural analysis. The chemical composition
of the weave-like structure (marked 3) contained moderate amounts of Ni (6.2 at%), Cu (7.2 at%) and
Mo (3.0 at%). This structure was associated with the eutectoid decomposition of β-Ti into α-Ti and
Ti2Cu. The chemical composition of the Ti-15Cu-15Ni in at% was 12.1Cu, 13.1Ni and the balance Ti.
The composition of Ti-15Mo-5Zr-3Al in at% was 8.1Mo, 3.0Zr, 5.6Al and the balance Ti. At location 4,
approximately 35 µm from the centerline of the brazed zone, the material consisted of slightly lower
concentrations of Al, Mo and Zr as compared with the Ti-15-5-3 base metal, but it was alloyed with
minor Ni and Cu ingredients from the braze alloy. Moreover, Ni and Cu were not detected at distances
greater than 40 µm from the fusion boundary of the brazed joint.
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Figure 6. BSE-SEM micrographs of cross-sectional view of the B3 sample: (a) the center of the brazed
zone, (b) the edge of the brazed zone as displayed in Figure 2.

Table 1. Chemical compositions in at% of marked sites in Figure 6.

Location
Element

Phase/Structure
Al Mo Ni Zr Cu Ti

1 0.4 0.1 26.4 2.1 4.9 66.1 Ti2Ni
2 3.1 3.9 4.0 1.6 3.5 83.9 β-Ti
3 2.2 3.0 6.2 1.5 7.2 79.9 Eutectoid
4 4.3 7.5 3.2 2.3 1.5 81.2 β-Ti
5 0.3 0.2 11.9 0.7 19.1 67.8 Ti2Cu
6 0.6 0.1 26.2 0.8 6.4 65.9 Ti2Ni

It was noticed that the brazed zone microstructure near the edge (as illustrated in Figure 2) of the
B3 sample was different from that in the center portion of the joint. Distinct intermetallic compounds
were found at different positions of the brazed zone. In addition to the white phase, there was a grey
phase formed in the edges of the brazed zone, as shown in Figure 6b. The chemical composition of the
coarse grey phase (marked 5) contained a high Cu concentration. It was identified as Ti2Cu as well be
demonstrated below. By contrast, the white phase with 26.2 at% Ni (marked 6) was associated with the
Ti2Ni. According to the Cu-Ni-Ti ternary alloy phase diagram, Ti2Cu dissolves more Ni than Ti2Ni
dissolves Cu [34]. This is consistent with the experimental result.

Figure 7 shows BSE-SEM micrographs of the brazed zone at different locations in the B3 sample
cut parallel to the brazed interface. Table 2 lists the EPMA quantitative analysis of the selected positions
indicated in Figure 7. As shown in Figure 7a, many cellular dendrites were observed in the central
brazed zone. Its composition (marked 1) was rich in Ni at 27 at% and expected to be Ti2Ni. The gray
phase (marked 2) adjacent to the Ti2Ni was alloyed with a low Ni concentration but a high Mo content
as compared with the Ti2Ni intermetallic compound (marked 1). It was deduced that the gray phase
adjacent to the cellular Ti2Ni dendrites was the retained β-Ti.

A change in microstructure was observed between the center and edge of the brazed zone.
As shown in Figure 7b, columnar dendrites mixed with white patches were found mainly at the edge
of the brazed zone. According to Table 2, the gray phase (marked 4) could be the solidified Ti2Cu, and
the white phase (marked 3) could be the solidified Ti2Ni. Those fine pores, shown in Figure 7b, were
likely solidification shrinkage voids. Next to the central brazed zone, the solidified microstructures
were coarse patches of white zones mixed with minor patches of gray zones in between, as well as the
weave-like structure in Figure 7c. The white zones were confirmed to be rich in Ni (marked 5) and
are expected to be Ti2Ni. Meanwhile, the gray zones (marked 6) embedded in Ti2Ni were enriched in
Cu and Ni but lean in Mo, Al and Zr. The gray zones were associated with the formation of Ti2Cu.
The chemical composition of the weave-like structure (marked 7), consisting of moderate Ni, Cu and
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Mo, was similar to that of location 3 in Figure 6a. The weave-like structure was related to the eutectoid
transformation of β-Ti, as will be proven in the following EBSD structural analyses.Metals 2020, 10, x FOR PEER REVIEW 7 of 12 
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Table 2. Chemical compositions in at% of marked sites in Figure 7.

Location
Element

Phase/Structure
Al Mo Ni Zr Cu Ti

1 1.1 0.1 27.0 2.0 4.1 65.7 Ti2Ni
2 3.6 4.2 4.1 1.5 4.2 82.4 β-Ti
3 0.5 0.1 27.2 0.4 4.3 67.5 Ti2Ni
4 0.1 0.1 13.5 0.3 18.4 67.6 Ti2Cu
5 0.4 0.1 26.4 0.5 5.0 67.6 Ti2Ni
6 0.3 0.1 12.0 0.6 19.8 67.2 Ti2Cu
7 3.2 2.6 4.1 1.0 3.7 85.4 Eutectoid
8 1.0 0.5 24.8 1.8 5.1 66.8 Ti2Ni
9 3.5 4.3 4.2 1.7 4.4 81.9 β-Ti
10 3.2 3.6 4.8 1.8 4.8 81.8 Eutectoid

As shown in Figure 7d, chain-island coarse white precipitates were found along all the grain
boundaries. The grain boundary precipitate (marked 8) had high Ni content, whereas, the position
adjacent to the grain boundary possessed a relatively low Ni concentration. It was deduced that the
grain boundary Ti2Ni was surrounded by a thin layer of β-Ti (marked 9). The presence of eutectoid
(marked 10) inside the grain likely resulted from eutectoid transformation of β-Ti in the cooling cycle
of the brazing.
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3.2. EBSD Phase Identifications

Figure 8 shows the EBSD phase maps of brazed zones brazed at 1243 K for different time periods.
The bright phase aligned in the center portion of the brazed zone in Figure 6a was identified to be
the Ti2Ni compound (yellow phase in Figure 8a). A thin layer of a precipitate-free zone adjacent to
the central Ti2Ni (marked 2 in Figure 6a) was confirmed to be the β-Ti (white phase in Figure 8a).
The EBSD phase map also revealed that the eutectoid of Ti2Cu and α-Ti in the transformation zone
(approximately 10 µm in width) adjacent to the Ti2Ni compound exhibited the weave-like structure,
shown in Figure 6a. Moreover, some retained β-Ti in the transformation zone was mixed with the
eutectoid. As compared with the B3 sample, the amount of Ti2Ni and the eutectoid of α-Ti and Ti2Cu
in the B10 sample decreased greatly when the brazing time was increased. For the B30 sample in
Figure 8c, the grain boundary Ti2Ni and eutectoid within the grain almost disappeared from the brazed
zone, and the β-Ti dominated the entire brazed joint. It was deduced that the Ti2Ni compound and
eutectoid were too fine to be resolved by Kikuchi lines in the EBSD analysis. The eutectoid Ti2Cu (blue
phase in Figure 8a) changed into dense but isolated fine precipitates (Figure 8b). Further increasing the
brazing time caused most of the Ti2Ni to dissolve into the β-Ti matrix (Figure 8c). This dissolution
implied that the rapid diffusion of Ni and Cu in the brazed zone into the Ti-15-5-3 substrate caused the
removal of intermetallics when the brazing time was prolonged.
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3.3. Shear Strength Measurements and Fracture Feature Observations

Table 3 lists the shear strengths of different samples. It was clear that the shear strength of the
brazed joint increased when the brazing time was prolonged. The difference in shear strength values
between the B3 (310 MPa) and B30 (427 MPa) samples could be up to 117 MPa, almost 40% of the lowest
shear strength. Therefore, proper brazing conditions were able to effectively improve the reliability
of the Ti-15-5-3 joint using clad Ti-15Cu-15Ni filler. Yield strength of Ti-15-5-3 was between 870 and
968 MPa [35]. According to maximum-distortion-energy theory [36], shear strength of 427 MPa is
equivalent to tensile yield strength of 740 MPa, which is a little lower than that of forged Ti-15-5-3 alloy.
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Table 3. Average shear strengths of distinct brazed samples.

Specimen Brazing Temperature Brazing Time Average Shear Strength

B3
1243 K

180 s 310 ± 40 MPa
B10 600 s 381 ± 21 MPa
B30 1800 s 427 ± 20 MPa

Figure 9a–c present BSE-SEM micrographs showing the microstructures of the fracture zone.
Figure 9d–f displays the fracture appearance of various samples in a secondary electron image (SE
image). The chemical compositions of selected areas in Figure 9 are listed in Table 4. As shown in
Figure 9a, the cracks tended to mainly propagate along the Ti2Ni intermetallics in the brazed zone of
the B3 sample. According to the image contrast, the brittle fracture was expected to be associated with
the fracture of Ti2Ni in the B3 sample. The fracture surface of the B3 sample displayed predominantly
small facets mixed with a flat fracture feature, indicating transgranular fracture, due to intra- and
inter-granular Ti2Ni compounds. The facets (zone 1 in Figure 9d) had a high Ni content, which was
related to the solidified Ti2Ni. Grain boundary precipitates having a high Ni concentration (zone 2 in
Figure 9d) were also expected to be Ti2Ni.

With increased brazing time, the reduced amounts of intermetallics in the B10 sample decreased
the possibility of crack growth along the coarse intermetallics, as shown in Figure 9b. It was noticed
that thin intermetallic layers were more likely to be found along the β-Ti grain boundaries. The fracture
surfaces showed mainly intergranular fracture (Figure 9e), which was related to the presence of
grain boundary intermetallics. At zone 3 in Figure 9e, the high Ni concentration at the surface
of the intergranular cracks was associated with the precipitation of Ti2Ni along grain boundaries.
As mentioned above, all the brittle phases in the B30 sample were nearly dissolved into the β-Ti matrix,
as displayed in Figures 4c and 8c. Fracture of the brittle intermetallics was difficult to observe on the
fracture surface (Figure 9c). Ductile dimple fracture was noted after shear fracture of the B30 sample
(Figure 9f). The chemical composition of the fracture surface (zone 4 in Figure 9f) was consistent with
the nominal composition of the Ti-15-5-3 substrate.
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Table 4. Electron probe micro-analyzer (EPMA) chemical compositions in at% of marked sites in
Figure 9.

Location
Element

Al Mo Ni Zr Cu Ti

1 0.4 0.2 25.0 1.3 5.1 68.0
2 1.0 0.7 21.9 0.9 5.0 70.5
3 0.8 0.8 23.0 1.0 4.6 69.8
4 5.1 7.3 0.0 1.5 0.1 86.0

3.4. Formation and Dissolution of Ti2Cu/Ti2Ni Intermetallics in the Brazed Joint

The XRD pattern showed that a mixture of predominant Ti2Ni with Ti2Cu and β-Ti and a little
α-Ti formed in the brazed zone of the B3 sample, which accounted for its low average shear strength.
BSE-SEM micrographs of the microstructures of the brazed zones of the B3 samples revealed the
solidification of Ti2Ni cellular dendrites embedded in β-Ti matrix in the center portion of the brazed
zone (Figure 7a). By contrast, primary Ti2Cu dendrites, as well as interdendritic Ti2Ni, were more
likely to be observed at the edges of a brazed zone (Figure 7b). It was deduced that Ti2Ni intermetallics
formed in the early stage of solidification in the brazed zone. After that, higher amounts of Cu and
few Ni segregated to the edges of the brazed zone, which led to the formation of greater amounts of
dendritic Ti2Cu therein. A few solidification shrinkage voids, as seen in Figure 7b, confirmed the late
solidification at the edges relative to the center of the brazed zone.

As shown in Figure 7d, continuous Ti2Ni compounds were observed along the β-Ti grain
boundaries. The lowest eutectic temperature in the Ti-Ni binary alloy phase diagram is 1215 K, and the
melting point of Ti2Ni is 1257 K [37]. In the sample brazed at 1243 K, the melted braze enriched in
Ni preferentially liquated the grain boundaries of the Ti-15-5-3 substrate, resulting in forming Ti2Ni
precipitates at the grain boundaries, as shown in Figure 7d. Those Ti2Ni precipitates at the grain
boundaries were responsible for the inferior shear strength of the B10 sample relative to that of the
B30 one. In this study, the complete dissolution of brittle Ti2Cu/Ti2Ni compounds into the Ti-15-5-3
substrate effectively increased the shear strength of the Ti-15-5-3 joint brazed with clad Ti-15Cu-15Ni
foil as the filler.

Evaluation of a Ti-brazed joint cannot simply count on the results of the shear test. The average
shear strength of a brazed β-Ti (Ti-15-3), using the clad 40Ti-35Ni-25Nb (wt.%) foil brazed at 1473 K
for 600 s, was 575 MPa. It was noticed that the average grain size of Ti-15-3 substrate was greatly
coarsening to approximately 250 µm [30]. The brazing temperature should be confined to below 1273 K
to avoid excessive grain growth of the base metal. The average grain size of Ti-15-5-3 after brazing at
1243 K for 1800 s was approximately 100 µm, which was much smaller than that of Ti-15-3 in a study.
On the other hand, the presence of the intermetallic phase(s) was fatal to the brazed joint under fatigue
application in brazing the titanium alloy. Therefore, a longer brazing time is needed to dissolve all the
harmful Ti-Ni/Ti-Cu intermetallics into the substrate. However, increasing the brazing temperature
and/or time may cause excessive grain growth in the base metal. Therefore, the combinations of proper
brazing filler and optimal brazing parameters can make a Ti-brazed joint of reliable quality.

4. Conclusions

Vacuum-brazing of Ti-15Mo-5Zr-3Al alloy with clad Ti-15Cu-15Ni foil as the filler has been
performed. Important conclusions are summarized below:

(1) The two major phases found in the brazed zone of the sample brazed at 1243 K for 180 s were
Ti2Ni and Ti2Cu intermetallic compounds. The XRD pattern revealed that Ti2Ni mixed with
Ti2Cu, β-Ti and scarce α-Ti formed in the brazed zone. Central blocky intermetallics in the brazed
zone of the B3 sample were replaced by grain boundary intermetallics when the brazing time
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was extended to 600 s. The results indicated that there were no intermetallic phases present in the
sample brazed at 1243 K for 1800 s.

(2) The specimens brazed at 1243 K for 180 s had the lowest shear strength of 310 MPa among the
tested samples and predominantly showed cleavage fracture after shear tests. Increasing the
brazing time to 600 s changed the failure mechanism of the joint into grain boundary separations
of Ti2Ni. The sample brazed at 1243 K for 1800 s had the highest shear strength of 427 MPa and
exhibited ductile dimple fracture.

(3) During brazing at 1243 K, the dissolution of brittle Ti2Cu/Ti2Ni compounds in the brazed
zone resulted from the rapid diffusion of Ni and Cu into the Ti-15-5-3 substrate. With proper
combinations of brazing time and temperature, the harmful phases in the brazed zone can be
eliminated thoroughly.
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