
metals

Article

On the Zener–Hollomon Parameter, Multi-Layer
Perceptron and Multivariate Polynomials in the
Struggle for the Peak and Steady-State Description
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Abstract: Description of flow stress evolution, specifically an approximation of a set of flow curves
acquired under a wide range of thermomechanical conditions, of various materials is often solved via
so-called flow stress models. Some of these models are associated with a description of significant
flow-curve coordinates. It is clear, the more accurate the coordinates description, the more accurate the
assembled model. In the presented research, Zener–Hollomon-based relations, multi-layer perceptron
networks and multivariate polynomials are employed to describe the peak and steady-state coordinates
of an Invar 36 flow curve dataset. Comparison of the utilized methods in the case of the studied
alloy has showed that the suitable description is given by the multivariate polynomials although the
Zener–Hollomon and perceptron networks also offer valuable results.

Keywords: flow stress description; peak and steady-state description; regression analysis;
Zener–Hollomon parameter; artificial neural networks; multivariate polynomials

1. Introduction

Since the beginning of the 20th century, so-called flow stress models have been being utilized for the
mathematical description of experimentally gained cold and hot flow-curve datasets of various steels
and other intended-to-forming materials [1]. As a consequence of softening phenomena accompanying
hot deformation (i.e., a dynamic recovery and especially a dynamic recrystallization), the description
of hot flow stress evolution under different thermomechanical conditions (i.e., strain, strain rate, and
temperature levels) is associated with an issue of different flow curve shapes which can be at the same
time presented in the frame of a single experimental dataset [1,2]—see Figure 1 for illustration. In an
effort to cope with this issue, numerous models with a various mathematical structure have been
proposed and tested on the hot flow curve datasets of countless materials—see e.g., [3–20]. Based on
the previously published works, the Cingara and McQueen’s relationship [5] and JMAK-theory-based
model [9] belong among the easy-to-assembly and often-used ones, and by-strain compensated
Garofalo’s hyperbolic-sine equation (SCG) [7] can be then considered as the most frequently utilized
one. Further, it is also possible to encounter on, e.g., Ebrahimi’s relation [6], Fields–Backofen [3],
Johnson–Cook [4], and Hensel–Spittel [21] models or a series of Solhjoo’s equations [22–27], etc.
From time to time, efforts to modify the proposed models and thus enhance their approximation
accuracy are also noticed—see e.g., a modification of the Hensel–Spittel model [28], modifications
in the Fields–Backofen model [29,30], Johnson–Cook modification [18,31], an enhancement of the
SCG model [32,33], or improvements in the Cingara and McQueen’s relationship [34]. In addition,
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so-called visco-plastic constitutive models are also object of interest—see e.g., Anand’s relation [35,36]
or Kozlowski’s model [36,37]. In the last years, it is also possible to come across with a so-called
artificial-neural-network (ANN) approach of flow curve approximation—either as a pure ANN
methodology [38–45] or in combination with the proposed flow stress models (hybrid methods) [46,47].
These ANN approaches are mainly based either on using of multi-layer perceptron architecture with
the classic back-propagation learning algorithm (see e.g., [38–40,42]) or on employing of deep learning
techniques (see e.g., [41,44,45]). Moreover, improving of flow stress modeling via so-called metamodels
in the form of Kriging approximation and artificial neural network have also been studied—see [48,49].
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However, all above introduced methods encounter at the pursuit on flow stress description on 
various difficulties. For instance, the mentioned ANN approach requires sufficiently large dataset 
because of overtraining issue. Note, in order to overcome the overtraining issue and thus perform a 
successful and meaningful prediction via the ANN approach, a flow curve dataset have to be divided 
into the training part (to learn the network) and testing part (to verify the prediction capability out of 
the experimental conditions) [38–43]. Accuracy of the SCG model is strongly influenced by the 
complicated dependency of the parameters of the Garofalo’s relationship on the strain level 
[7,8,10,12]. An accuracy of numerous models (e.g., Cingara-McQueen, JMAK, Ebrahimi or Solhjoo) is 
then highly influenced by an accuracy of a peak and steady-state description—see the coordinates of 
the significant flow-curve points in Figure 1, especially εp (-), σp (MPa) and σss (MPa). This description 
is most frequently performed via the power-law and/or inverse hyperbolic sine dependency on the 
Zener–Hollomon parameter [50], see e.g., [6,11,12,15,22,23,51]—however, this can be insufficient if 
the experimentally acquired coordinates don’t fit into these trends. Nevertheless, alternatives can be 
found in order to describe the peak point coordinates and steady-state stress coordinate more 
precisely—see, e.g., interpolation and closed-form functions in [52] or an ANN approach in [47]. 

From a practical point of view, the assembled flow stress models are sometimes implemented 
into the FEM (Finite Element Methods) simulation software in order to model a course of real hot 
forming processes [1]. An accurate FEM simulation requires large number of flow stress data in a 
wide range of thermomechanical conditions [39]. Flow stress prediction techniques are usually 
utilized for this purpose (see FEM simulations, e.g., in [38,39]) since an experimental acquiring of 
large dataset is time-consuming and costs-increasing issue [39]. It is clear that an accuracy of the 
utilized flow stress description has a significant impact on the FEM simulation results—techniques 
of accuracy improving are thus of high interest [1,39]. Moreover, as previously published, an accuracy 

Figure 1. Influence of thermomechanical conditions on the flow stress course and position of the
significant flow-curve points. The coordinates of the significant points, specifically the peak strain,
peak stress, steady-state strain, and steady-state stress are labelled as εp (-), σp (MPa), εss (-) and
σss (MPa), respectively.

However, all above introduced methods encounter at the pursuit on flow stress description on
various difficulties. For instance, the mentioned ANN approach requires sufficiently large dataset
because of overtraining issue. Note, in order to overcome the overtraining issue and thus perform a
successful and meaningful prediction via the ANN approach, a flow curve dataset have to be divided
into the training part (to learn the network) and testing part (to verify the prediction capability out of the
experimental conditions) [38–43]. Accuracy of the SCG model is strongly influenced by the complicated
dependency of the parameters of the Garofalo’s relationship on the strain level [7,8,10,12]. An accuracy
of numerous models (e.g., Cingara-McQueen, JMAK, Ebrahimi or Solhjoo) is then highly influenced by
an accuracy of a peak and steady-state description—see the coordinates of the significant flow-curve
points in Figure 1, especially εp (-), σp (MPa) and σss (MPa). This description is most frequently
performed via the power-law and/or inverse hyperbolic sine dependency on the Zener–Hollomon
parameter [50], see e.g., [6,11,12,15,22,23,51]—however, this can be insufficient if the experimentally
acquired coordinates don’t fit into these trends. Nevertheless, alternatives can be found in order
to describe the peak point coordinates and steady-state stress coordinate more precisely—see, e.g.,
interpolation and closed-form functions in [52] or an ANN approach in [47].

From a practical point of view, the assembled flow stress models are sometimes implemented
into the FEM (Finite Element Methods) simulation software in order to model a course of real hot
forming processes [1]. An accurate FEM simulation requires large number of flow stress data in a wide
range of thermomechanical conditions [39]. Flow stress prediction techniques are usually utilized for
this purpose (see FEM simulations, e.g., in [38,39]) since an experimental acquiring of large dataset is
time-consuming and costs-increasing issue [39]. It is clear that an accuracy of the utilized flow stress
description has a significant impact on the FEM simulation results—techniques of accuracy improving
are thus of high interest [1,39]. Moreover, as previously published, an accuracy of flow stress models
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can find its practical application also in the case of an assembling of so-called processing maps—see
e.g., [38,42].

In frame of the submitted research, experimentally obtained coordinates of the peak point and
steady-state stress of an Invar 36 (FeNi36) alloy (also known as Dilaton 36) are approximated via
three different approaches (based on the Zener–Hollomon parameter, ANN approach and bivariate
polynomials) and inserted into the Cingara-McQueen and JMAK-theory-based models. The aims are
to assembly an as accurate as possible description of the experimental hot flow curve dataset of the
Invar 36 alloy and in the same time demonstrate and compare various approaches for the peak point
and steady-state stress description.

2. Materials and Methods

2.1. Acquiring of Experimental Hot Flow Curve Dataset

The cylindrical samples of the Invar 36 (FeNi36) alloy with a diameter of 10 mm and a
length of 15 mm were subjected to uniaxial hot compression testing by means of the Gleeble 3800
Thermal-Mechanical Simulator with its Hydrawedge II Mobile Conversion Unit (Dynamic Systems
Inc., Poestenkill, NY, USA) [53]. The testing has been performed for a combination of four deformation
temperatures (1173, 1273, 1393, and 1523 K) with three strain rates (0.01, 0.3, and 10 s−1). Each tested
sample was preheated to a specific deformation temperature by a heating rate of 5 K·s−1 (mediated
via a direct electric resistance heating), subsequently held on this temperature for a dwell time of
120 s and then immediately compressed to a true strain of 1.0. The temperature was measured by a
pair of thermocouple wires of K-type, i.e., Ni-Cr (+) and Ni-Al (−), which were fixed by a welding
in the middle length of a tested sample. Tantalum foils and nickel-based grease were applied in
order to protect the anvils and reduce a friction on the anvils–sample interface. In addition, in order
to inhibit oxidation processes, the testing chamber was during the test course held under vacuum.
The experimental process resulted in a set of twelve flow curves of the investigated alloy.

2.2. Flow Curve Description

In frame of this research, the well-known Cingara and McQueen’s relationship [5] has been
utilized in order to describe the experimentally obtained flow curve dataset in the before-the-peak
strain range, i.e., ε ≤ εp (see the first part of Equation (1)). The description has been thereafter completed
via the Kolmogorov’s relation [54] (studied also by Johnson, Mehl, and Avrami—known as JMAK [55])
modified to describe the beyond-the-peak region, i.e., ε ≥ εp [9] (the second part of Equation (1)):

σ =


σp ·

[
ε
εp
· exp

(
1− ε

εp

)]c
, ε ≤ εp

σss +
(
σp − σss

)
· exp

[
−k ·

(
ε
εp
− 1

)n]
, ε ≥ εp

. (1)

In Equation (1), σ (MPa) and ε (-) represent the values of true stress and true strain, respectively.
The p and s subscripts then correspond with the peak and steady-state coordinates, respectively. Taking
the experimental values of σ and ε, including the peak and steady state coordinates, the experimental
values of the c-parameter (-) were calculated on the basis of the least squares method (LSM) [56] as
the slope of the line of ln(σ/σp) vs. ln(ε/εp) + 1 − ε/εp, always at a constant temperature and strain
rate. The experimental values of the n (-) and k (-) parameters were obtained from the slope of the line
and intercept of ln{ln[(σp − σss)/(σ − σss)]} vs. ln(ε/εp − 1), also for a constant temperature and strain
rate. The approximation of these curve-shape-control parameters has been realized via the following
formula [57]:

[c, n, k] = a1 ·
.
ε
(a2−

a3
T )
· exp(−a4 · T), (2)

where T (K) and
.
ε (s−1) are a deformation temperature and strain rate, respectively. The material

constants a1 (-), a2 (-), a3 (K), and a4 (K−1) have been estimated individually for each parameter
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by nonlinear least squares method (NLSM) via the Levenberg–Marquardt (LM) optimization
algorithm [58–60].

2.2.1. Peak and Steady-State Description via Zener–Hollomon Parameter

The experimental values of the peak point coordinates (the peak strain εp and peak stress σp) and
the steady-state stress σss (i.e., three vectors, each with twelve datapoints) have been described with
respect to the change in a temperature and strain rate level via three approaches. The first one is based
on a utilizing of the well-known Zener–Hollomon parameter, Z (s−1) [50]:

Z =
.
ε · exp

( Q
R · T

)
, (3)

where Q (J·mol−1) and R (8.314 J·K−1
·mol−1) represent an apparent activation energy and universal

gas constant, respectively. Considering the Z-parameter, the above-mentioned flow-curve coordinates
have been described as follows [20,51]:

εp = a ·Zb, (4)[
σp, σss

]
=

1
α
· arcsinh

n

√
Z
A

. (5)

The values of the activation energy, Q, and other material constants in Equation (5), i.e., A (s−1),
n (-) and α (MPa−1), were obtained on the basis of regression analysis of the Garofalo’s relation [61]:

.
ε = A · exp

(
−

Q
R · T

)
· [sinh(α · σ)]n, (6)

where σ (MPa) represents the values of σp or σss. A rough estimate of the material constants of
the Equation (6) have been obtained as described in [20,51] and subsequently refined via the LM
optimization algorithm [58–60]. The material constants a (s) and b (-) were then calculated on the basis
of LSM method [56] from the slope of the line and intercept of ln(εp) vs. ln(Z).

2.2.2. Peak and Steady-State Description via Multi-Layer Perceptron Network

The second approach [47] deals with a utilizing of three individually-customized Multi-Layer
Perceptron (MLP) networks, i.e., ANN methodology [62,63]. The general scheme of the utilized MPL
networks is given in Figure 2.
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Input information (vectors of independent variables) is inside the MLP architecture processed by
individual computational units (perceptrons), clustered into the layers communicating via synaptic
weights, and corresponding output information (vector of dependent variable) is subsequently
returned. Each perceptron of the hidden or summary layer is in accordance with the scheme in Figure 2
mathematically formulated as follows [64]:

p jl = ϕ
[∑I

i=1

(
pil−1 ·wil−1, jl

)
+ b jl

]
. (7)

In Equation (7), pil−1 is the vector of i-th perceptron of l−1-th layer, pjl and bjl are the vector and
bias of j-th perceptron of l-th layer, wil−1,jl is a synaptic weight connecting the perceptrons pil−1 and pjl,
ϕ is then the perceptron activation function. Note, i = [1, I] ⊂ N, j = [1, J] ⊂ N, and l = [2, L] ⊂ N, where
I and J are number of perceptrons in the l−1-th and l-th layer, respectively and L is then overall number
of layers. Perceptrons of the input layer are equal to the normalized vectors of temperature, Tn (-), and
strain rate,

.
εn (-). Normalization procedure has been performed via method described in [42].

The specific architectures of the MLP network suitable for the description of the individual
flow curve coordinates have been established on the basis of an adaptation and learning procedures
(analogical procedures were described previously in [42]).

As mentioned in the introduction, a learning procedure can be done via various methods. Based on
the previous experiences [42,47] and some other published papers [38–40], the learning procedure was
performed by a minimization of a mean squared error [65] (performance function) via a combination
of the LM algorithm [58–60] with the Bayesian regularization [66,67] under the back-propagation of
error signal [68]. The experimental dataset contains twelve flow curves—i.e., twelve experimental
data-rows for each described parameter (εp, σp and σss). Note, 1/6 (i.e., two data-rows: 1523 K/10 s−1

and 1173 K/0.3 s−1) were always used for the cross validation during the learning course, 1/3 (four
data-rows: 1393 K/0.01 s−1, 1393 K/0.3 s−1, 1273 K/0.01 s−1, and 1273 K/10 s−1) were chosen for an
evaluation of prediction capability (a testing of possible overtraining issue) after the learning procedure
and the rest of the dataset (1/2, i.e., six data-rows) was directly subjected to the minimization algorithm.

Detailed course of the adaptation procedure, i.e., finding of an appropriate network architecture,
is graphically expressed in Figure 3. As above-mentioned, a Mean Squared Error, MSE (-, MPa) [65],
has been employed as a performance function:

MSE =
1
n
·

∑n

i=1
(Ti −Ai)

2. (8)

In this equation, the Ti (-, MPa) and Ai (-, MPa) embody the values of the target (i.e., experimental)
and approximated vectors of the specific flow curve coordinate, respectively. The i = [1, n] ⊂ N, where
the n is the number of elements in the training, validation or testing dataset. The charts in Figure 3 clearly
demonstrate an influence of number of hidden layers and perceptrons on a MSE-value. With respect to
the εp-description under 1 hidden layer (Figure 3a), it can be seen that the MSE-values of the training
and testing set remain practically unchanged (constant) until a number of hidden perceptrons is equal
to seven. After a small change under eight perceptrons, the MSE-values are constant again. Note, the
MSE-value of the validation set remains unchanged despite of number of hidden perceptrons. As can
be seen, the MSE-values of the testing set are always the highest—the network is under one hidden
layer overtrained and thus not appropriate. Two hidden layers (Figure 3b) show more complicated
trends—especially with respect to the training and validation set. It can be seen, the network is not
overtrained only under 7, 9, and 10 hidden perceptrons. However, the MSE-values of the training and
validation set are in these cases higher than under others number of perceptrons. The network is then
highly overtrained and thus unusable under 3–6 and 8 perceptrons. The overtraining under 1 and 2
perceptrons can be considered as negligible and the MSE-values of the training and validation set are
satisfying. Finally, based on these results, an architecture with two hidden layers and two perceptrons
inside has been selected as the appropriate one. The MSE-values of the σp and σss description share
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practically almost the same trend (see Figure 3c–f). A compromise between an overtraining and the
enormously high MSE-values had to be done—so an architecture with one hidden layer and one
hidden perceptron has been selected in the case of description of these stress parameters. A clear
overview of all selected network architectures is demonstrated in Table 1.Metals 2020, 10, 1413 6 of 19 
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Table 1. Architecture features of adapted Multi-Layer Perceptron (MLP) networks.

MLP Architecture Feature εp σp σss

Overall number of layers 4 3 3
Number of perceptrons in layers 2—2—2—1 2—1—1 2—1—1

Hidden layers activation function tansig 1 tansig 1 tansig 1

Summary layer activation function purelin 2 purelin 2 purelin 2

1 Hyperbolic tangent sigmoid activation (transfer) function [69]. 2 Pure linear activation (transfer) function [69].
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The above described MLP networks were assembled and applied in the MATLAB® 9.3
environment [70] utilizing the Neural Network Toolbox™ 11.0 [71] (MathWorks®, Natick, MA, USA).

2.2.3. Peak and Steady-State Description via Multivariate Polynomials

The third approach is based on a utilizing of multivariate (specifically bivariate) polynomials [72].
The general form of the utilized polynomials is represented by the following formula:[

εp, σp, σss
]
=

∑n

i=0

∑m

j=0
ai j · Ti

· ln j .
ε. (9)

The aij (-) are material constants, where the i = [0, n] ⊂ N0 and j = [0, m] ⊂ N0. It was found out
that the appropriate approximation of the studied flow curve coordinates is given when the n = m = 3.
The optimal values of the material constants, aij, have been for each coordinate obtained via the LM
optimization algorithm [58–60].

3. Results and Discussion

3.1. Experimental Dataset

Figure 4 offers a graphical expression of the experimentally acquired data in the form of volumetric
and surface charts as stated for an evolution of the flow stress and significant-flow-curve points,
respectively. With respect to Figure 4a–c, the x, y, and z axes have been utilized to spatially express
an interaction of the vectors of the independent variables, i.e., temperature, strain rate and strain,
respectively. Their spatial intersections are then rendered as a 3D-color-space matrix representing the
flow stress evolution. In order to visualize an influence of temperature and strain rate in more detail,
the assembled volumetric expression is also offered in a form of sliced panels along the temperature
and strain rate axes. As expected, a typical flow stress behavior can be observed—a flow stress level is
moving downward as a temperature level increases and a strain rate level decreases. With respect to
an increasing strain level, a flow stress firstly increases up to a peak point (a global maximum)—i.e.,
work hardening phase. After that, the flow stress either gently decreases (i.e., softening phase) with
a subsequent transition to a steady-state phase or staying steady immediately. Figure 4d–f then
expresses a characteristic impact of a mutual effect of temperature and strain rate on the position of the
employed flow-curve coordinates (i.e., peak strain, peak stress, and steady-state stress). Predictably,
all these coordinates decline with an increasing temperature level and decreasing strain rate level. It is
noticeable, dependence of the peak and steady-state stress coordinates on the temperature and strain
rate is in both cases expressed as a surface with a relatively simple curvature. A surface curvature of
the peak strain dependence is then slightly complicated as regard to lower temperature levels—see
the distinct breaks in the trend, i.e., a mathematical description can be in this case a little bit difficult.
Figures 4a–c and 4d–f have been constructed by means of the MATLAB® 9.3 software (MathWorks®,
Natick, MA, USA) [70] and the Gnuplot 5.2 graphing utility Patchlevel 7 [73], respectively.
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Figure 4. Volumetric and surface expression of the experimental dataset of the studied alloy. (a) Flow
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stress evolution.

3.2. Evaluation of the Peak and Steady-State Description

The material constants of the above described peak and steady-state description approaches are
shown in Tables 2–5.
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Table 2. Material constants of the Zener–Hollomon based approach.

Coordinate A (s−1) a (s) b (-) n (-) Q (kJ·mol−1) α (MPa−1)

σp 1.565 × 1013 4.012 × 100 3.735 × 102 1.267 × 10−2

σss 3.145 × 1012 3.856 × 100 3.433 × 102 1.181 × 10−2

εp 8.410 × 10−3 1.078 × 10−1

Table 3. Material constants (weights and biases) of the MLP approach for the εp description.

wil−1,jl εp wil−1,jl εp bjl εp

w11,12 −6.229 × 10−1 w12,23 −1.059 × 10−3 b12 −5.415 × 10−1

w11,22 4.530 × 10−3 w22,13 −4.050 × 10−1 b22 −1.695 × 10−1

w21,12 2.927 × 10−1 w22,23 1.450 × 10−3 b13 2.561 × 10−3

w21,22 −4.224 × 10−1 w13,14 5.994 × 10−1 b23 −9.288 × 10−4

w12,13 5.390 × 10−1 w23,14 −2.022 × 10−3 b14 4.047 × 10−1

Table 4. Material constants (weights and biases) of the MLP approach for the σp and σss description.

wil−1,jl σp σss bjl σp σss

w11,12 −5.530 × 10−1
−6.036 × 10−1 b12 −4.199 × 10−1

−5.019 × 10−1

w21,12 4.144 × 10−1 4.923 × 10−1 b13 1.644 × 102 1.588 × 102

w12,13 1.571 × 102 1.490 × 102

Table 5. Material constants of the multivariate-polynomial based approach.

aij εp σp σss aij εp σp σss

a00 6.968 × 106
−1.884 × 107

−7.455 × 106 a20 −6.375 × 100
−7.559 × 100

−2.078 × 100

a01 4.275 × 106
−1.156 × 107

−4.572 × 106 a21 −3.910 × 100
−4.635 × 100

−1.271 × 100

a02 −1.914 × 106 5.174 × 106 2.048 × 106 a22 1.751 × 100 2.076 × 100 5.703 × 10−1

a03 −5.458 × 105 1.476 × 106 5.838 × 105 a23 4.993 × 10−1 5.918 × 10−1 1.624 × 10−1

a10 1.566 × 100
−1.354 × 101

−1.363 × 101 a30 −3.964 × 100
−5.850 × 100

−7.003 × 100

a11 1.040 × 100
−1.072 × 101

−1.258 × 101 a31 −2.432 × 100
−3.589 × 100

−4.296 × 100

a12 −4.671 × 10−1 4.483 × 100 3.880 × 100 a32 1.089 × 100 1.607 × 100 1.924 × 100

a13 −1.342 × 10−1 1.434 × 100 1.404 × 100 a33 3.105 × 10−1 4.583 × 10−1 5.486 × 10−1

In order to compare the introduced approaches, residues, ∆ (-, MPa) (Equation (10)), Root
Mean Squared Error, RMSE (-, MPa) [65] (Equation (11)), and determination coefficient, R2 (-) [74]
(Equation (12)), have been employed—see Figure 5:

∆ = Ti −Ai, (10)

RMSE =

√
1
n
·

∑n

i=1
(Ti −Ai)

2, (11)

R2 = 1−

∑n
i=1(Ti −Ai)

2∑n
i=1

(
Ti − T

)2 . (12)
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Figure 5. Residues after the peak and steady-state approximation. (a) Peak strain approximation;
(b) peak stress approximation; (c) steady-state stress approximation. The red circles—Zener–Hollomon
approach; The blue triangles—multivariate polynomial approach; The green diamonds—multi-layer
perceptron approach.

In these equations, the Ti (-, MPa) and Ai (-, MPa) embody the values of the target (i.e., experimental)
and approximated vectors of the specific flow curve coordinate, respectively. The i = [1, n] ⊂ N, where
the n is the number of elements in these vectors (number of T-

.
ε combinations, i.e., 12). The T (-, MPa)

then represents the mean values [75] of the target vectors.
It is obvious, the multivariate-polynomial approach (Equation (9)) offers the high-performance

description of the studied flow curve coordinates—see the zero-close (blue) ∆-values in Figure 5.
This fact is further confirmed by very favorable (blue) values of RMSE (practically equal to zero) and
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R2 (practically equal to one). It is noticeable, the statistical indicators (RMSE and R2) of the other
approaches also show the favorable values. Nevertheless, in comparison with the blue ∆-values, the red
and green ones show more apparent data-scatter. With respect to the εp-description, the ∆-values
of the MLP and Zener–Hollomon (ZH) based approaches are practically located in a range of ±0.1.
The ∆-values of both approaches are then located in a range of ±6 MPa and ±10 MPa as for the σp

and σss description, respectively. It can be said, a span of these ranges is not extremely wide and can
be considered as acceptable. In the case of the MLP approach, however, an exception for the 9th T-

.
ε

combination was occurred. In all MLP cases, the ∆-value of the 9th combination is always the highest
one and in the same time out of the above-mentioned ranges. This phenomenon is probably caused by
a partition of the experimental dataset for the purposes of the MLP assembling. (see the Section 2.2.2).
Note, the 9th combination is a part of the testing set which is not directly participated in the learning
course. This set serves only for the revelation of potential network overtraining. The 4th, 5th, and 7th
combination are also part of this testing set. However, the ∆-values of these testing combinations are on
the contrary more favorable, i.e., indicating that the network is not overtrained. Unfortunately, better
results have not been obtained despite of a using of various MLP architectures (see the Section 2.2.2).

It should be noted, number of datapoints in the experimental peak or steady-state dataset is
not high (only twelve datapoints). As above-mentioned, this dataset had to be divided onto three
parts for the MLP assembling and only six datapoints were directly subjected to the minimization
algorithm—other six datapoints were reserved for the cross-validation and testing purposes. It seems
that in this case the experimental matrix should be denser to provide sufficient number of data for
learning purposes. With respect to the restricted number of samples of studied material, another
possibility lies in a different data distribution. Nevertheless, the reduction of datapoints, e.g., in the
testing part would lead to the insufficient number of datapoints for the credible evaluation of the
MLP-overtraining issue.

In order to compare the prediction possibilities of all applied approaches, Figures 6 and 7
offer a prediction under non-experimentally tested conditions (inside and also outside of the tested
temperature range). It is apparent that the biggest differences among the applied approaches have
been obtained in the case of the εp-prediction. The ZH-based approach is evidently not suitable for
the prediction under lower strain rates—Figure 6a. Predicted values (the red ones) are in this case
overestimated—εp-values predicted under specific temperatures (e.g., 1573, 1458, 1333, and 1223 K) are
illogically higher than those that were experimentally obtained under the nearest lower temperatures
(the black ones). An opposite situation is then visible in the case of the 1458 K/10 s−1 (Figure 6c).
In some cases (specifically at the 1573, 1458, 1333, and 1123 K under the 0.3 s−1) it seems that the
predicted εp-values are also underestimated (almost the same level like in the case of the adjacent
experimental εp-values). The MLP approach (green columns) then in the case of the εp-prediction
struggles with similar issues like the ZH-based one—see e.g., overestimation under the 1333 K/10 s−1

or underestimated values at the 1458 and 1333 K under the 0.01 s−1.
It seems that the polynomial approach (blue columns) offers in comparison with the previous

ones much more reliable prediction—almost each predicted value perfectly fits into the experimentally
given trend (see the black dashed lines). However, polynomial prediction gained under the 0.3 and
10 s−1 at lower temperatures (1123 and 1073 K) seems to be unduly overestimated—this can be caused
by the purely polynomial character of the proposed approach, which can always bring a trend breach
beyond the described data range. Nevertheless, despite of this issue, the polynomial approach is for the
prediction purposes probably more suitable than the other ones—at least inside of the experimental data
range. With respect to the σp and σss parameters, all approaches offer meaningful prediction—almost
all predicted values of all approaches fit into the experimentally given trend (see the black dashed lines
in Figure 7).
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Table 6 displays the material constants for the description of the curve-shape-control 
parameters, i.e., c, n and k (Equation (2)). In addition, this table contains corresponding values of 
determination coefficient, R2 (-) [74] (Equation (12)). In this equation, with respect to the c, n, and k 
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The T (-) then represents the mean values [75] of the target vectors. At a first glance it seems that the gained
R2-values are not ideal—especially in the case of the n and k description. Nevertheless, the subsequent utilizing
of the calculated parameters has showed that the shapes of the approximated flow curves are in accordance with
the experimental ones—see the flow curve comparison in Figure 8.
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Figure 7. Peak and steady-state stress prediction inside and outside of the experimental conditions.
(a,d) A strain rate of 0.01 s−1; (b,e) a strain rate of 0.3 s−1; (c,f) a strain rate of 10 s−1. Black
columns—experimental values; red columns—values predicted via the Zener–Hollomon approach;
blue columns—values predicted via the multivariate polynomial approach; and green columns—values
predicted via the multi-layer perceptron approach.

3.3. Evaluation of the Flow Curve Description

Table 6 displays the material constants for the description of the curve-shape-control parameters,
i.e., c, n and k (Equation (2)). In addition, this table contains corresponding values of determination
coefficient, R2 (-) [74] (Equation (12)). In this equation, with respect to the c, n, and k description,
the Ti (-) and Ai (-) embody the values of the target (i.e., experimental) and approximated vectors of
the specific parameter, respectively. The i = [1, n] ⊂ N, where the n is the number of elements in these
vectors (number of T-

.
ε combinations, i.e., 12). The T (-) then represents the mean values [75] of the

target vectors. At a first glance it seems that the gained R2-values are not ideal—especially in the case
of the n and k description. Nevertheless, the subsequent utilizing of the calculated parameters has
showed that the shapes of the approximated flow curves are in accordance with the experimental
ones—see the flow curve comparison in Figure 8.

Table 6. Material constants for the description of c, n, and k parameters.

Parameter a1 (-) a2 (-) a3 (K) a4 (K−1) R2 (-)

c 7.183 × 10−2
−4.964 × 10−1

−5.720 × 102
−1.090 × 10−3 0.8647

n 3.109 × 100 3.701 × 10−1 4.623 × 102 4.558 × 10−4 0.4757
k 1.205 × 100 3.227 × 10−1 3.311 × 102

−2.369 × 10−4 0.4375

It is clear that a position of the calculated peak point coordinates plays a substantial role in accuracy
of the flow curve description. This fact should be highly noticeable especially under higher deformation
temperatures and lower strain rates—where the difference between the peak point and steady-state
flow is usually more distinct (assumption of a more intensive course of softening processes, e.g.,
dynamic recrystallization). As demonstrated above, the best peak point and steady-state description
has been obtained with the use of the multivariate polynomial approximation. As can be seen, Figure 8
practically confirms this result—the blue solid curves are almost identical with the experimental one.
The calculated flow curves incorporating the coordinates approximated via other approaches offer in
some cases distinctly lower accuracy—see namely the 1523 K, 1393 K, and 1273 K under the 10 s−1 and
1173 K/0.01 s−1. Although the shape of these curves is in accordance with the shape of the experimental
ones, the inaccurately calculated peak and steady-state coordinates caused inconvenient shift out of
the required position.

The statistical point of view on the discussed flow curve description is offered in Figure 9.
The assembled histograms capture the distribution of the relative percentage error, η (%) [76]:

ηi =
Ti −Ai

Ti
· 100. (13)
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The gainedη-vectors have been subsequently evaluated via the mean value,µ (%) [75], and standard
deviation, δ (%) [77]:

µ =
1
n
·

∑n

i=1
ηi, (14)

δ =

√
1
n
·

∑n

i=1
(ηi − µ)

2. (15)

The Ti (MPa) and Ai (MPa) embody the values of the target (i.e., experimental) and approximated
flow stress vectors, respectively. The i = [1, n] ⊂ N, where the n is the number of elements in these
vectors. It is apparent that the η-values associated with an application of the polynomial approach
take narrower range (from −14% to 10%) in comparison with the ZH-based approach (from −18% to
26%) and MLP approach (from −22% to 12%). In addition, as regards to the polynomial approach,
majority of the η-values (ca 84%) are ranging only between the −2% and 2%, which cannot be said
about the others applied approaches. Neither the ZH-based approach nor the MLP approach achieves
so favorable µ and δ values as the polynomial one. Moreover, the η-layout of the MLP approach
does not correspond entirely with the normal (Gaussian [78]) distribution—which can be probably
attributed to the neural-network nature of the performed calculations. So, the performed statistical
evaluation clearly demonstrates predominance of the polynomial approach and practically confirms
the conclusions of the above-performed flow curve comparison.
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Figure 8. Comparison between the experimental and via Equation (1) approximated flow curves.
(a) A temperature of 1523 K; (b) a temperature of 1393 K; (c) a temperature of 1273 K; and (d) a temperature
of 1173 K. Black boxes—experimental flow curves; red dash lines—approximated flow curves (peak
and steady-state calculated via the Zener–Hollomon approach); blue solid lines—approximated flow
curves (peak and steady-state calculated via the multivariate polynomial approach); and green dash-dot
lines—approximated flow curves (peak and steady-state calculated via the multi-layer perceptron
approach).
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Figure 9. Distribution of the relative percentage error achieved after the flow curve description via
Equation (1). (a) Peak and steady-state calculated via the Zener–Hollomon approach; (b) peak and
steady-state calculated via the multivariate polynomial approach; (c) peak and steady-state calculated
via the multi-layer perceptron approach.

4. Conclusions

In the submitted research, the standardly used Zener–Hollomon (ZH) based equations, multi-layer
perceptron (MLP) networks and multivariate polynomials have been evaluated with respect to the
possibilities of the flow-curve characteristic coordinates (i.e., peak strain, peak and steady-state stress)
description. The investigation has been realized on an experimentally gained flow curve dataset of an
Invar 36 alloy acquired in a temperature range of 1173–1523 K, strain rate range of 0.01–10 s−1 and
under true strain values reaching up to 1.0.
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A statistical comparison between the target and approximated coordinates has showed that the
highest approximation accuracy is provided by the multivariate polynomial approach. The ZH-based
equations and the MLP networks were still able to offer a satisfactory approximation. However, both
approaches and especially the MLP one show in the case of some coordinates excessively large errors.

Prediction ability of the applied approaches has been examined inside and also outside of the
experimental dataset. Results of this evaluation have showed that both ZH-based and MLP approaches
have a tendency either to overestimate or to underestimate the predicted peak strain coordinates.
On the other hand, the prediction of the peak and steady-state stress values is appeared to be fine.
The polynomial approach then provides a meaningful prediction for all studied coordinates.

The calculated coordinates have been subsequently inserted into the flow stress models to
describe the experimentally achieved flow curves in their whole strain range. As expected,
by-the-polynomial-approach calculated coordinates have a positive influence on the accuracy of
the utilized flow stress models. On the other hand, incorporation of the ZH and MLP coordinates leads
to the displacement of the calculated flow curves beyond the experimental data.

Based on the obtained results, it can be stated that the approximation accuracy and prediction
possibilities of the multivariate-polynomial approach are higher in comparison to the ZH-based and
MLP ones. Despite of this fact, the approximation accuracy of both ZH and MLP approaches can be
still considered as sufficient. Either way, neither the ZH approach nor the MLP approach can be in this
case recommended for the practical usage—they encounter on the obstacles when trying to predict the
peak strain coordinates outside and also inside of the experimental conditions.
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20. Schindler, I.; Kawulok, P.; Očenášek, V.; Opěla, P.; Kawulok, R.; Rusz, S. Flow Stress and Hot Deformation
Activation Energy of 6082 Aluminium Alloy Influenced by Initial Structural State. Metals 2019, 9, 1248.
[CrossRef]

21. Hensel, A.; Spittel, T. Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, 1st ed.; Deutscher Verlag für
Grundstoffindustrie: Leipzig, Germany, 1978.

22. Solhjoo, S. Analysis of Flow Stress up to the Peak at Hot Deformation. Mater. Des. 2009, 30, 3036–3040.
[CrossRef]

23. Solhjoo, S. Determination of Critical Strain for Initiation of Dynamic Recrystallization. Mater. Des. 2010, 31,
1360–1364. [CrossRef]

24. Solhjoo, S. Determination of Flow Stress under Hot Deformation Conditions. Mater. Sci. Eng. A 2012, 552,
566–568. [CrossRef]

25. Solhjoo, S. Determination of Flow Stress and the Critical Strain for the Onset of Dynamic Recrystallization
Using a Hyperbolic Tangent Function. Mater. Des. 2014, 54, 390–393. [CrossRef]

26. Solhjoo, S. Determination of Flow Stress and the Critical Strain for the Onset of Dynamic Recrystallization
Using a Sine Function. Available online: https://arxiv.org/ftp/arxiv/papers/1405/1405.0196.pdf (accessed on
19 May 2020).

27. Solhjoo, S.; Vakis, A.I.; Pei, Y.T. Two Phenomenological Models to Predict the Single Peak Flow Stress Curves
up to the Peak during Hot Deformation. Mech. Mater. 2017, 105, 61–66. [CrossRef]

28. Spigarelli, S.; El Mehtedi, M. A New Constitutive Model for the Plastic Flow of Metals at Elevated
Temperatures. J. Mater. Eng. Perform. 2014, 23, 658–665. [CrossRef]

29. Quan, G.; Tong, Y.; Luo, G.; Zhou, J. A Characterization for the Flow Behavior of 42CrMo Steel. Comput.
Mater. Sci. 2010, 50, 167–171. [CrossRef]

30. Shen, J.; Hu, L.; Sun, Y.; Wan, Z.; Feng, X.; Ning, Y. A Comparative Study on Artificial Neural Network,
Phenomenological-Based Constitutive and Modified Fields–Backofen Models to Predict Flow Stress in
Ti-4Al-3V-2Mo-2Fe Alloy. J. Mater. Eng. Perform. 2019, 28, 4302–4315. [CrossRef]

http://dx.doi.org/10.1016/j.msea.2008.09.019
http://dx.doi.org/10.1007/s11661-010-0350-z
http://dx.doi.org/10.1016/j.msea.2009.09.060
http://dx.doi.org/10.1016/j.msea.2009.11.013
http://dx.doi.org/10.1016/j.matdes.2011.06.048
http://dx.doi.org/10.1007/s11771-011-0655-0
http://dx.doi.org/10.1016/j.msea.2011.12.023
http://dx.doi.org/10.1016/j.matdes.2011.08.036
http://dx.doi.org/10.1016/j.matdes.2012.02.049
http://dx.doi.org/10.1016/j.commatsci.2011.08.031
http://dx.doi.org/10.1007/s11665-019-04277-8
http://dx.doi.org/10.1007/s11665-019-04355-x
http://dx.doi.org/10.3390/met9121248
http://dx.doi.org/10.1016/j.matdes.2008.12.014
http://dx.doi.org/10.1016/j.matdes.2009.09.001
http://dx.doi.org/10.1016/j.msea.2012.05.057
http://dx.doi.org/10.1016/j.matdes.2013.08.055
https://arxiv.org/ftp/arxiv/papers/1405/1405.0196.pdf
http://dx.doi.org/10.1016/j.mechmat.2016.12.001
http://dx.doi.org/10.1007/s11665-013-0779-5
http://dx.doi.org/10.1016/j.commatsci.2010.07.021
http://dx.doi.org/10.1007/s11665-019-04174-0


Metals 2020, 10, 1413 18 of 20

31. Akbari, Z.; Mirzadeh, H.; Cabrera, J.-M. A Simple Constitutive Model for Predicting Flow Stress of Medium
Carbon Microalloyed Steel during Hot Deformation. Mater. Des. 2015, 77, 126–131. [CrossRef]

32. Mohamadizadeh, A.; Zarei-Hanzaki, A.; Abedi, H.R. Modified Constitutive Analysis and Activation Energy
Evolution of a Low-Density Steel Considering the Effects of Deformation Parameters. Mech. Mater. 2016, 95,
60–70. [CrossRef]

33. Liu, L.; Wu, Y.-X.; Gong, H.; Wang, K. Modification of Constitutive Model and Evolution of Activation
Energy on 2219 Aluminum Alloy during Warm Deformation Process. Trans. Nonferrous Met. Soc. China 2019,
29, 448–459. [CrossRef]

34. Wang, F.; Shen, J.; Zhang, Y.; Ning, Y. A Modified Constitutive Model for the Description of the Flow Behavior
of the Ti-10V-2Fe-3Al Alloy during Hot Plastic Deformation. Metals 2019, 9, 844. [CrossRef]

35. Anand, L. Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures.
J. Eng. Mater. Technol. 1982, 104, 12–17. [CrossRef]

36. Koric, S.; Thomas, B.G. Thermo-Mechanical Models of Steel Solidification Based on Two Elastic Visco-Plastic
Constitutive Laws. J. Mater. Process. Technol. 2008, 197, 408–418. [CrossRef]

37. Kozlowski, P.F.; Thomas, B.G.; Azzi, J.A.; Wang, H. Simple Constitutive Equations for Steel at High
Temperature. Metall. Mater. Trans. A 1992, 23, 903–918. [CrossRef]

38. Quan, G.-Z.; Zou, Z.-Y.; Wang, T.; Liu, B.; Li, J.-C. Modeling the Hot Deformation Behaviors of As-Extruded
7075 Aluminum Alloy by an Artificial Neural Network with Back-Propagation Algorithm. High. Temp.
Mater. Process. 2017, 36, 1–13. [CrossRef]

39. Lv, J.; Ren, H.; Gao, K. Artificial Neural Network-Based Constitutive Relationship of Inconel 718 Superalloy
Construction and its Application in Accuracy Improvement of Numerical Simulation. Appl. Sci. 2017, 7, 124.
[CrossRef]

40. Yan, J.; Pan, Q.L.; Li, A.D.; Song, W.B. Flow Behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr Alloy During Hot
Compressive Deformation Based on Arrhenius and ANN Models. Trans. Nonferrous Met. Soc. China 2017, 27,
638–647. [CrossRef]

41. Lin, Y.C.; Liang, Y.J.; Chen, M.S.; Chen, X.M. A Comparative Study on Phenomenon and Deep Belief Network
Models for Hot Deformation Behavior of an Al–Zn–Mg–Cu Alloy. Appl. Phys. A Mater. Sci. Process. 2017,
123, 68. [CrossRef]
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