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Abstract: Cold forged parts are mainly employed in automotive and aerospace assemblies,
and strength plays an essential role in such applications. Backward extrusion is one such process
in cold forging for the production of axisymmetrical cup-like parts, which is affected by a number
of variables that influence the quality of the products. The study on the influencing parameters
becomes necessary as the complexity of the part increases. The present paper focuses on the
use of a multi-layered feed forward artificial neural network (ANN) model for determining the
effects of process parameters such as billet size, reduction ratio, punch angle, and land height on
forming behavior, namely, effective stress, strain, strain rate, and punch force in a cold forging
backward extrusion process for AISI 1010 steel. Full factorial design (FFD) has been employed to
plan the finite element (FE) simulations and accordingly, the input variables and response patterns
are obtained for training from these FE simulations. This ANN model-based analysis reveals that the
forming behavior of the cold forging backward extrusion process tends to increase with the billet
size as well as the reduction ratios. However, decreases in punch angle and land height lead to the
reduction of punch forces, which in turn enhances the punch life. FE simulation along with the
developed ANN model scheme would benefit the cold forging industry in minimizing the process
development effort in terms of cost and time.

Keywords: cold forging backward extrusion; AISI 1010; FE simulation; ANN modeling;
forming behavior

1. Introduction

In the cold forging process, the billet is deformed plastically into the desired shape and confined
by the dies with the application of force. There is no scope for flash to occur in closed die cold forging,
and hence, the process yields for the manufacture of precise parts. The cold forging process has
the advantage of producing near net shape parts for better strength with minimal waste over hot
forging [1]. The cold forged parts possess good strength and accuracy; they are principally employed
for the automotive and aerospace domain. Cold forging backward extrusion is one such process that
has been primarily adopted to produce hollow parts having closed end, cupped parts with holes that
are cylindrical, conical, or of other shapes [2].

The cold forging process enables the production of net or near net shape components with very
good quality in terms of dimensional accuracy and structural integrity. Complex shape parts such as
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steering spiders have been produced by the cold forging process with a proper process design and
process validation using finite element (FE) simulations [3]. On the contrary, the process calls for
higher working forces to deform the billet through the dies and hence leads to higher stress. However,
proving the cold forging process design for each particular component for reducing forces is very
crucial, and some investigations have been previously carried out with trial and error methods [4].

Liewald et al. [5] performed some studies on the backward cup extrusion cold forging process
with an additional controllable tool axis to bring robustness to the process. The cup bottom thickness
accuracy was primarily affected by speed differences between the punch and counterpunch, and finally,
they concluded that the force-dependent elastic losses could be improved using a controllable additional
tool axis. Matsumoto et al. investigated the forming limit and fracture mechanism of magnesium
alloy [6] in an upsetting and backward extrusion cold forging process. They suggested that the fracture
criterion derived from the viewpoint of strain localization could be effectively applied.

The cold forging process in producing parts for the automotive and aerospace domain has been
greatly influenced over the past two decades by advancement in the technology with modern finite
element method (FEM) simulation tools. Walters et al. [7] outlined the path of the process simulation
developments and implementation in industries to improve the quality of the parts at a reduced process
development cost in context with cold heading and heat treatment simulation processes. Modern FE
simulation tools are found to be efficient when compared to orthodox methods for part and process
developments with reduced development time and cost [8]. The complex cold forging process to the
extent of having a floating die could be analyzed with the FE technique, and numerical characterization
of the process was achieved [9]. Min and Kim [10] suggested a novel technique for manufacturing
a united steering yoke by a precision cold forging process using rigid-plastic FEM to improve the
productivity and mechanical properties in a cost-effective way. FE simulation tools have also been
utilized to predict the geometrical aspects for forgings. A rigid-thermoplastic FE method was used for
simulating the process assuming rigid dies. The strength of the die and work part spring-back analysis
was also carried out using the forging simulation results [11]. The process modeling of high-grade
aluminum alloy (AA1100) using finite element analysis (FEA) was carried out by Tiernan et al. [12] for
cold forging forward extrusion. The factors identified were based on the geometrical attributes such as
the reduction ratio, die angle, and land height on the force. The process modeling using FE simulation
tools helps with estimating the contribution of influencing factors and understanding the process in a
better way.

Researchers have strived enthusiastically to increase the process robustness in cold forging forward
extrusion by modeling and optimization to study the deformation behavior of different materials as
well as the interactions between the process, tool, and machine in order to improve workpiece accuracy.
Novel processes and procedures were also presented in this regard [13–15]. The tribological behavior of
a cold forging process combining both forward and backward extrusion was investigated for increased
part complexity, and the influence of surface integrity, friction factors and lubricants were analyzed as
well [16–18].

In the recent past, researchers used artificial neural network (ANN) for studying the complex and
nonlinear input–output relationships of various processes [19–23]. The work presented by Singh [24]
explored the benefits of the ANN approach to model and optimize the process and reported that it
could also be possible to forecast agricultural yields using this approach. In the field of manufacturing,
De Filippis et al. [25] showed that the ANN approach allows predicting mechanical properties based
on the input variables of particular products and thereby benefitting the manufacturing industries
by saving development cost and time. The ANN approach is also found to be flexible and efficiently
integrated into the functions of process. Some researchers applied ANN models for friction stir welding
butt joint to monitor, control, and optimize the process and also to predict the Vickers microhardness
and the ultimate tensile strength of aluminum alloy. Casalino et al. [26] analyzed the quality of a laser
welding process of an aluminum alloy sheet by implementing codes that were built for ANN models
with neural tools (excel ad-in). Karnik and Gaitonde [27] developed ANN models to examine the effect
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of drilling variables on the burr size of a stainless steel work material. They reported that the nonlinear
behavior of the process variables and responses could be reasonably captured using ANN and well
depicted with drilling.

The research on a cold forging backward extrusion process is limited in terms of the consideration
of induced factors, and hence, the intent of the current study is to explore the important geometrical
factors influencing the process and their contribution to the forming behavior. These factors may be
related to the configurations of the part, design, and manufacturing of the dies and forming process
settings on equipment such as deformation rates, press stiffness, ram velocity, etc. The challenge in the
present cold forging industries is to survive in the face of intense competition, especially for small
and medium-scale industries, which lack design-simulation resources and most of the time rely upon
intuition gained over period of time and experts. In the current research, the ANN model is combined
with FE simulation that would help engineers decide upon the geometrical attributes of the punch
and billet by following the forming behavior patterns of various combinations. The proposed model
and the subsequent analysis gives a competitive edge among cold forging industries by responding
quickly to customer inquiries by generating a backward extrusion process plan, which in turn reduces
the cost and lead time. Therefore, the existing work is aimed at identifying geometrical attributes and
analyzing the forming behavior of a cold forging backward extrusion process using an ANN approach.
The forming behavior includes the effective stress, strain, strain rate, and the punch force, and the
identified geometrical attributes are the billet size, reduction ratio, punch angle and land height.

2. Experimental Details

2.1. Work Material and Process Variables

The cold forging process imparts strength to the material through the strain-hardening effect,
and this process is particularly used in power transmission assemblies. In addition, the process also
enables a good control over dimensional accuracy. The work focuses on the cold forging backward
extrusion of AISI 1010 steel, which is extensively used in automobile industries, sometimes in carburized
and heat-treated conditions [28]. AISI 1010 steel is a low-carbon alloy containing iron as a base with
0.08–0.13% carbon; 0.30–0.60% manganese; phosphorus 0.04% (max); sulfur 0.05% (max); and silicon
0.10% (max). This steel has good deformation characteristics and is ideal for the parts processes
through cold working.

Cold forging is a process carried out at room temperature, where a bar stock usually called a billet
is deformed into the dies with the application of compressive forces to get the desired shape and
size [2,29]. In the cold forging backward extrusion process, the material flows past the punch in
the direction opposite and thus producing axisymmetrical cup-like shaped parts, as represented in
Figure 1.

The factors contributing the cold forging backward extrusion process are numerous, such as
configuration of the part, material of the billet and dies, deformation rates, etc. The present work
focuses on the important process variables, namely, billet size, reduction ratio, punch angle (a), and land
height (h). The billet size ratio (z) is the ratio of the length (L0) to diameter (D0) of the billet, and in
the present study, the diameter is confined to 30 mm due to the practical implications. Only the billet
length is adjusted to get the varying ratio levels as per the planning of experiments. The reduction
ratio (r) is a ratio of the difference in the cross-sectional area of the billet (A0) and punch (A1) to the
cross-sectional area of the billet, as mentioned by Equations (1) and (2):

Billet size ratio (z) =
L0

D0
(1)

Reduction ratio (r) =
A0 − A1

A1
. (2)
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Figure 1. Cold forging backward extrusion process with punch, die, and billet details.

2.2. Experimental Design for FE Simulation

The identified process variables and their levels have been devised based on industry practices [30].
Different metals possess different extrusion ratios; the mechanical behavior is the subject matter of
physical mechanisms that control formability [31]. The billet size ratio (z) is defined by keeping
the diameter of the billet at 30 mm, and the length is adjusted to get the ratios at four levels.
Correspondingly, for the reduction ratio, the cross-sectional area of the punch is altered, and the punch
sizes are derived as Ø25, Ø23, Ø21, and Ø19 mm with respect to reduction ratios of 0.3, 0.4, 0.5, and 0.6,
respectively. Table 1 lists the process variables and their identified levels in the present work of the
cold forging backward extrusion process. The extrusion ratio i.e., the extrusion length (Li) to extrusion
diameter (Di), is restricted to 1.6. This is due to the deformation limitations of the material and is
as per practical intuition; otherwise, the cup bottom thickness is maintained with 3 mm. The punch
would experience a lot of thrust from the counter punch and may lead to catastrophic failure if the
bottom thickness is not maintained, and this is a practical consideration in the cold forging process.

Table 1. Process variables with their levels.

Factor Process Variable Unit
Level

1 2 3 4

A Billet size ratio (z) – 0.3 0.6 0.9 1.2
B Reduction ratio (r) – 0.3 0.4 0.5 0.6
C Punch flow angle (a) deg 160 163 167 170
D Land height (h) mm 2.0 2.6 3.3 4.0

The FE simulation has been planned based on design of experiments (DOE), and a total of 256 trials
have been carried out with full factorial design (FFD) for four factors and each factor identified at
four levels [32]. Initially, three-dimensional (3D) models of the punch, billet, and die combinations
have been prepared using SOLIDWORKS (Dassault Systems, France) [33] considering the length
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of extrusion. This length of extrusion dictates the punch and die lengths, which in turn depend on the
billet size. Since, the profile is axi-symmetrical, these models are segmented to 30 degrees to reduce the
simulation time and space on memory. Appendix A lists the 256 numbers of FE simulation design
combinations and the related forming responses.

A 3D segmented assembly model and the FE simulated results obtained through AFDEX
(Metal Forming Research Corporation: Republic of Korea) [34] with load versus stroke graph are shown
in Figure 2. The forming responses such as effective stress (σeff.), effective strain (εeff.), effective strain
rate (εrate.), and punch force (F) from the FE simulations have been recorded.
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2.3. Finite Element (FE) Simulation Prerequisites

Three-dimensional model assembly combinations are being done as per the identified process
variables, and their levels are designed with an experimental design approach. The input file format
for an FE simulation package is stereo-lithographic (stl), and 3D model assembly combinations are
being imported to the FE simulation tool accordingly [35]. The FE simulations have been performed
with a rigid-plastic assumption model. The next task was to assign the material to the billet. This can
be done in to the tool with a built-in material library. FE simulation packages have the facility of
different built-in material libraries and friction models, and they need to be chosen for the assembly as
per the simulation requirements.

In practice, the billet material is usually coated with a lubrication system (zinc phosphate plus
molybdenum disulfide, zinc phosphate plus soap, etc.) and heat treated to enable the deformation of
the steel in cold forging [36,37]. Groche et al. [38] determined the friction coefficients in cold forging
with six established friction tests of a state-of-the-art industrial tribo-system, and large deviations
in between the tests with friction coefficients ranging between 0.02 and 0.07 have been observed.
While four of the investigated tests (combined forward rod backward can extrusion, backward can
extrusion, upsetting sliding, and sliding compression test) showed the identical friction coefficient
of 0.04; two tests (ring compression test with boss and backward can extrusion with simultaneous
rotation with friction coefficient value of 0.07 and 0.02, respectively) deviated significantly. Further,
in context with backward can extrusion, a maximum of 0.04 friction coefficient value was determined.
The authors also modeled the tests individually with the help of FEA with a constant friction coefficient
of 0.05 to obtain the tribological loads. Hence, in the present work simulation of the cold forging
backward process, the coefficient of friction of 0.05 has been selected (“soap-cold steel” friction model)
from the simulation software tool. The travel velocity of the punch is determined as 30 mm/s with the
shop floor practice. The punch travel stroke into the billet is restricted as per the extrusion limit.
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3. ANN Modeling

3.1. ANN Overview

Artificial neural network (ANN) may be assumed as an interconnected assembly of modest
processing constituents or nodes (neurons) [39]. The processing aptitude of ANN is stored in inter unit
correlation powers or weights gained from input variables and responses sets usually referred to as
training patterns. The capability of solving complicated problems efficiently, in particular problems
involving nonlinear behaviors, makes ANN a prominent alternative to the traditional statistical tools.
In current research, multi-layer feed forward ANN is applied to study controlling factors on the
forming behavior. The architecture of the proposed ANN is demonstrated in Figure 3; it basically
consists of neurons divided into an input layer, output layer, and hidden layers.

Figure 3. Multi-layer feed forward artificial neural network architecture.

The neurons between the layers are connected by links having synaptic weights. The error back
propagation training algorithm (EBPTA) is created on weight updating to decrease the sum of the
squared error for k number of output neurons and is given by Equation (3) as:

E =
1
2

K∑
k=1

(tk −Ok)
2
p (3)

where tk and Ok are the intended output and factual output, respectively, of the kth neuron for the
pth pattern. The weights of link-connecting neurons are updated built on a negative of gradient of error,
which is given by Equation (4) i.e.,

∆wji = −
∂E
∂wji

. (4)

Thus, the weight updating (gradient descent with momentum rule) is done based on Equation (5),
which is mentioned below:

wji(n+1) = wji(n) + α∆wji(n) + β∆wji(n−1) (5)

where n is the epoch count, α is the learning rate, and β is the momentum term used to accelerate the
convergence of the learning algorithm.
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3.2. ANN Training Performance

In this investigation, multi-layered feed forward ANN is applied for developing the intended
model. This architecture is used with an error back propagation training algorithm established on
gradient descent with momentum and variable learning rate—“traingdx” using the ‘MATLAB NN’
toolbox [40]. The set of input variable and response patterns are obtained from planned FE simulations
and are essential input for this supervised learning algorithm. The identified forming responses are
obtained through training; this primarily decides the connection weights.

There are four input variables and four output forming responses processed through ANN
architecture containing two hidden layers. Among 256 training combinations, 226 sets (88%) were
employed for training and 30 sets (12%) have been used for testing. The training parameters of the
ANN employed are mentioned in Table 2.

Table 2. ANN training parameters.

S No. ANN Training Parameter Value

1 Learning rate (α) 0.10
2 Momentum constant (β) 0.90
3 Learning rate increment 1.05
4 Maximum No. of epochs 2500

In ANN training, each epoch consists of utilizing 226 training patterns to network, and at the
termination of each epoch, the mean square error (MSE) is determined with Equation (6), which is
given as:

MSE =
1

226

226∑
p=1

4∑
k=1

(
tkp −Okp

)2
. (6)

The training is terminated when the set MSE is attained or a maximum number of epochs
is reached. As illustrated in Figure 4, the training was stopped after 2500 epochs and the MSE was
found to be below 0.009.

Figure 4. Variation between mean square error (MSE) and number of epochs of artificial neural network
(ANN) training.

3.3. Trained ANN Validation Performance

A trained ANN was primarily tested with 226 patterns of inputs in FFD, which were
engaged with training. For every input pattern, the predicted values of the effective stress (σeff.),
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effective strain (εeff.), effective strain rate (εrate.), and punch force (F) were compared with concerned
FE-simulated values, and the absolute % error is calculated with Equation (7), which is given by:

% Maximum absolute prediction error =

∣∣∣∣∣∣100 ∗ y.expt − y.pred

y.pred

∣∣∣∣∣∣ (7)

where y.expt is the FE simulated value and y.pred is the ANN predicted value.
The trained ANN was later tested with the remaining 30 patterns of FFD (not used in training).

It is observed that the FE simulated and ANN predicted values are fairly close to each other and the
percentage of absolute error for responses is mentioned in Table 3.

Table 3. Maximum percentage absolute prediction error.

Patterns
Maximum Absolute Prediction Error (%)

σeff. εeff. εrate. F

Training patterns (226) 2.22 9.98 30.15 8.53
Testing patterns (30) 3.30 13.72 29.05 5.36

3.4. Regression Plots (Post-Regression Analysis)

The trained network can be demonstrated through linear regression analysis between network
responses and equivalent target FE simulated values. Post-regression analysis with 226 pattern sets
for the responses is depicted in Figure 5 and the values of coefficient of correlation (R) are found to
be 0.9932, 0.9910, 0.9460, and 0.9981 for effective stress (σeff.) effective strain (εeff.), effective strain
rate (εrate.), and punch force (F), respectively. Similarly, the performance of the trained network is
measured with regression analysis of 30 testing pattern sets. The values of co-efficient of correlation (R)
as depicted in Figure 6 for the testing pattern sets are observed as 0.9813, 0.9775, 0.9095, and 0.9968 for
effective stress (σeff.), effective strain (εeff.), effective strain rate (εrate.), and punch force (F), respectively.
Thus, Figures 5 and 6 clearly demonstrate the reliability of the developed ANN models for the identified
forming responses.

Figure 5. Post-regression analysis with 226 training patterns for: (a) Effective stress; (b) Effective strain;
(c) Effective strain rate; and (d) Punch force.
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Figure 6. Post-regression analysis with 30 testing patterns for: (a) Effective stress; (b) Effective strain;
(c) Effective strain rate; and (d) Punch force.

4. Results and Discussion

4.1. Analysis of Effective Stress and Strain

The effective stress (σeff.) and strain (εeff.) in the billet material with varying billet size ratios
(z) for different ranges of reduction ratio (r), punch angle (a), and land height (h) combinations are
illustrated in Figures 7 and 8, respectively. As evidenced in Figure 7, for a specified value of the
reduction ratio, the effective stress increases sharply with a billet size ratio (z) in the range 0.3–0.6.
With a further increase in reduction ratio, the stress also increases. However, with an increased billet
size ratio beyond 0.6, the effective stress almost remains constant for the reduction ratios (r) of 0.3
and 0.4. While, for r = 0.5 and r = 0.6, the effective stress continues to rise until the billet size ratio
reaches 0.8, and thereafter, there is a marginal increase in the effective stress. For lower reduction ratios
of 0.3 and 0.4, the punch diameters are 25 mm and 23 mm, respectively and hence, initially, the larger
contact area and stress value increase until the ‘z’ value reaches 0.6; subsequently, the stress remains
stable until ‘z’ reaches to 1.2. Beyond a ‘z’ value of 0.6, there is more resistance to deformation for
higher reduction ratios of 0.5 and 0.6, which is largely due to the supplementary volume of metal that
undergoes deformation between the punch and die that leads to higher stress values. It is apparent
from Figure 7 that beyond point ‘C’, a reverse trend is observed for the stress behavior. The similar
occurrence is observed for all the identified combinations of punch angle (a) and land height (h) as
depicted in Figure 7. However, it is obvious from Figure 7 that the effective stress values are lesser
for lower punch angle and land height combinations. The reason might be that a lower punch angle
enables the metal flow readily and the shorter land height means reduced friction.
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Figure 7. Effect of billet size ratio on the effective stress in the billet with varying reduction ratios,
punch angle (a), and land height (h) at (a) a = 160◦, h = 2.0 mm; (b) a = 163◦, h = 2.6 mm; (c) a = 167◦,
h = 3.3 mm; and (d) a = 170◦, h = 4.0 mm.

Figure 8. Effect of billet size ratio on the effective strain in the billet with varying reduction ratios,
punch angle (a) and land height (h) at: (a) a = 160◦, h = 2.0 mm; (b) a = 163◦, h = 2.6 mm; (c) a = 167◦,
h = 3.3 mm; and (d) a = 170◦, h = 4.0 mm.
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The effective strain (εeff.) curves more or less follow the same trend as that of effective stress
(σeff.) curves with varying billet size ratios (z), as demonstrated in Figure 8. The effective strain is
predominantly affected by the reduction ratios (r), which is generally because of an increase in the
amount of deformation with the reduction ratio.

4.2. Analysis of Effective Strain Rate

The effective strain rate (εrate) is a significant parameter, as the strain rate explores the speed at
which the deformation proceeds. In the present work, the velocity of the ram in simulation software is
set as 30 mm/s based on industry practices.

As noticed from Figure 9, for the reduction ratios of 0.4, 0.5, and 0.6, initially, the effective
strain rate (εrate.) value decreases with the billet size ratio (z) up to 0.5, and thereafter, a steep rise is
witnessed until the ‘z’ value reaches 0.8. After that, the strain rate remains virtually constant until ‘z’
approaches 1.2. With the same billet diameter (Ø 30 mm), for the reduction ratios (r) of 0.4, 0.5, and 0.6,
the corresponding punch diameters are Ø 23, Ø 21, and Ø 19 mm, respectively, causing the strain
rate curve to follow the above trend. Conversely, for the reduction ratio (r) of 0.3, the trend is in the
opposed direction, which is mostly due to the fact that the punch contact area is more in case of an ‘r’
of 0.3 (Ø 25 mm punch) that enables an increase in the deformation rate. A similar tendency is also
observed for all the identified punch angle (a) and land height (h) combinations, but the effective strain
rate is smaller for smaller punch angle and land height combinations.

Figure 9. Effect of billet size ratio on the effective strain rate with varying reduction ratios, punch
angle (a), and land height (h) at (a) a = 160◦, h = 2.0 mm; (b) a = 163◦, h = 2.6 mm; (c) a = 167◦,
h = 3.3 mm; and (d) a = 170◦, h = 4.0 mm.

4.3. Analysis of Punch Force

The consequence of billet size ratio (z) in the cold forging backward extrusion process on the
punch force (F) is exhibited in Figure 10. It is noticed that the primarily punch force (F) increases
gradually with the billet size ratio (z) in the range 0.3–0.6 for a given reduction ratio (r). From then on,
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there is no substantial effect of billet size ratio on punch force for the specified reduction ratio. A similar
trend is observed for different reduction ratio, punch angle (a) and land height (h) combinations. It is
apparent from Figure 10 that the influence of reduction ratio (r) on punch force is a dominating factor.
This is obvious, because the punch diameter varies from 25 to 19 mm for the reduction ratios from 0.3
to 0.6, for a fixed billet diameter of 30 mm. This is because the deformation amount, i.e., the mean
strain increases with the reduction ratio. It is revealed from Figure 10 that the billet length has a modest
influence on the punch force, as the billet diameter is fixed to 30 mm and the length is varied to obtain
the ratio from 0.6 to 1.2 in the present investigation of the cold forging backward extrusion process.

Figure 10. Effect of billet size ratio on the punch force with varying reduction ratios, punch angle (a),
and land height (h) at (a) a = 160◦, h = 2.0 mm; (b) a = 163◦, h = 2.6 mm; (c) a = 167◦, h = 3.3 mm;
(d) a = 170◦, h = 4.0 mm.

Although Figure 10 indicates a marginal effect of punch angle (a) and land height (h) combinations
on the punch force, the punch geometry directly influences the material flow, and therefore, for lower
combinations of ‘a’ and ‘h’, the punch forces are lower when compared to higher combinations.
A higher punch angle enhances the metal volume that experiences shear deformation and hence an
increased punch force. On the other hand, a smaller land height decreases the punch friction that
minimizes the punch force for a specified reduction ratio.

4.4. Analysis of Interaction Effects on Forming Behavior

The forming behavior models developed through ANN are also exercised to examine the
interaction effects of two factors by constructing 3D surface plots by keeping the other two factors at
higher levels. 3D surface plots were created using the ‘MATLAB NN’ toolbox [40]. A surface analysis
of two-factor interaction effects gives considerable information on the forming behavior with regard to
selected process parameters.
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4.4.1. Interaction Effect of Billet Size and Reduction Ratio

The interaction effect due to the billet size and reduction ratio on the forming behavior is illustrated
in Figure 11. As witnessed in Figure 11a, b, for any reduction ratio, both the effective stress and strain
increase linearly with the billet size ratio. However, little variations are observed at smaller billet size
ratios of 0.3 and 0.6 when compared to higher billet size ratios of 0.9 and 1.2. It is also noticed that the
behavior of stress as well as strain is more impulsive with a billet size ratio in the range 0.3–0.6, which is
thereafter observed to be faltering. On the whole, for a fixed billet diameter, the variation in billet
length is practically not influencing the stress and strain values when compared to punch diameters.

Figure 11. Interaction effect of billet size and reduction ratio on forming behavior: (a) effective stress;
(b) effective strain; (c) effective strain rate; (d) punch force.

As exhibited in Figure 11c, the strain rate nonlinearly decreases with the reduction ratio for any
specified billet size ratio; conversely, for any particular reduction ratio, not much variation is evidenced
with the billet size ratio. The strain rate is more sensitive than the billet size ratio for higher reduction
ratios compared to lower reduction ratios. The punch force is found to be more sensitive to reduction
ratio than the billet size ratio, as revealed in Figure 11d. For a given billet size ratio, the forces tend to
decrease with the reduction ratio. Moreover, for a given reduction ratio, the punch force increases with
the billet size ratio until it reaches 0.6, and later, the force approximately remains stable. By and large,
we can deduce that even though the punch forces are insensitive to billet length, nevertheless, they are
majorly affected by punch diameters for fixed billet diameters.

4.4.2. Interaction Effect of Billet Size Ratio and Punch Angle

The effective stress and strain values are more sensitive to billet size ratio than punch angle,
as evident in Figure 12a, b. Although the effective stress and strain marginally increase with punch
angle for a given billet size ratio, they are less susceptible to variations in punch angle. This is due to
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the fact that a smaller punch angle facilitates metal deformation readily and hence leads to a decrease
in stress values.

Figure 12. Interaction effect of billet size ratio and punch angle on forming behavior: (a) effective stress;
(b) effective strain; (c) effective strain rate; and (d) punch force.

As depicted in Figure 12c, for a given punch angle, the strain rate increases with the billet size ratio;
however, the strain rate values are observed to be minimal for a punch angle of 165 degrees for all
the specified billet size ratios. The surface plot also reveals that the strain rates are more sensitive for
higher punch angles, i.e., the higher the punch angle, the larger the shear deformation area, and hence
the larger the deformation rate. Figure 12d depicts the variation of punch force with billet size ratio
for different punch angle values. It is observed that for a given punch angle, the force increases
nonlinearly with billet size ratio until it reaches 0.6, and beyond, it roughly remains constant. In normal
industry practices, an effort is always made to reduce the punch forces with a smaller punch angle
by aiding metal deformation, while the billet size is always dictated by part configuration and hence
difficult to alter. Moreover, the punch angle is decided not only by the strength, production quantity,
and life of the punch but it also lies with the internal cup configuration of the component.

4.4.3. Interaction Effect of Billet Size Ratio and Land Height

The interaction effect of billet size ratio and land height is presented in Figure 13. Effective stress
and strain values (Figure 13a,b) are insensitive to land height for any given billet size ratio; however,
for a specified reduction ratio, an increased trend is observed for stress and strain behavior with billet
size ratio. Consequently, effective strain rate values are more sensitive to the variations of billet size
ratio than land height; furthermore, for a given land height, the strain rate values are increasing with
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the billet size ratio, as depicted in Figure 13c. Even though the land height does not have much of an
influence on the strain rate, it does affect the punch life, mainly because a larger land height means
more contact area and friction.

Figure 13. Interaction effect of billet size ratio and land height on forming behavior: (a) effective stress;
(b) effective strain; (c) effective strain rate; and (d) punch force.

The punch force is also not very sensitive to land height for a given billet size ratio, as evidenced
from Figure 13d. The punch force is one such practical issue in the cold forging industry, and an
effort is always made to reduce the deformation force by articulating the punch angle and land height.
However, usually, there is a trade-off between the production quantity and the life of the punch.
Hence, the present work would help the cold forging industry expand the process knowledge base on
backward extrusion and shall help minimize the process development effort in terms of cost and time
by utilizing the developed ANN-based models.

5. Conclusions

The present work emphasizes exploring the influence of process variables such as billet size (z),
reduction ratio (r), punch angle (a), and land height (h) on the forming behavior of a cold forging
backward extrusion process of AISI 1010 steel. The study is intended to ascertain the avenues for
process modeling using ANN. The following are concluded based on ANN modeling for the present
investigations of cold forging backward extrusion.
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• The reduction ratio is the important factor influencing the forming behavior for the billet size
ratio in the range 0.3–0.6. This is apparent, because the effective stress and strain increase with the
reduction ratio. On the contrary, the reverse trend is observed for the strain rate and punch force.
This is due to the fact that as the punch diameter increases for the same billet size, the effective
stress as well as strain tend to increase; contrary to this, the strain rate and punch force tend
to decrease.

• Beyond a billet size ratio of 0.6, only a marginal effect on the forming behavior is noticed.
The probable reason might be that even if an increased billet length expands the billet volume,
the deformation area remains constant for any specified reduction ratio.

• The billet length has little cause on the punch force; however, the punch force increases with a
decrease in reduction ratio, which is principally due to the increased strain with an increase in
reduction ratio.

• The punch angle and land height directly affect the forming behavior. As lower combinations of
punch angle and land height influence the material flow, all the identified process parameters,
namely, effective stress, strain, strain rate, and punch force, tend to decrease. By and large,
the punch angle and land height are the decisive factors, keeping in mind the production quantity
and punch life.

• The proposed ANN model based on FE simulations not only assesses the forming behavior with
respect to the identified process variables but also assists in understanding the process design of
the backward extrusion process of AISI 1010 steel.

In the present competitive era, the current research attempted would help the cold forging industry
to expand the process knowledge base on the backward extrusion process and shall help minimize the
process development effort in terms of cost and time.
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Appendix A

Table A1. FE simulation design combinations and the forming responses.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

1 0.3 0.3 160 2.0 881.0 2.505 47.95 104.80

2 0.3 0.3 160 2.6 877.8 2.456 50.84 105.10

3 0.3 0.3 160 3.3 880.9 2.468 46.34 105.70

4 0.3 0.3 160 4.0 888.6 2.571 49.35 107.20

5 0.3 0.3 163 2.0 882.8 2.525 49.48 105.70

6 0.3 0.3 163 2.6 882.3 2.510 45.98 105.50

7 0.3 0.3 163 3.3 887.8 2.583 52.95 105.70
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

8 0.3 0.3 163 4.0 892.9 2.654 51.35 109.30

9 0.3 0.3 167 2.0 891.6 2.617 55.76 105.80

10 0.3 0.3 167 2.6 892.5 2.622 47.43 105.90

11 0.3 0.3 167 3.3 896.0 2.686 50.24 106.40

12 0.3 0.3 167 4.0 892.0 2.608 52.90 108.70

13 0.3 0.3 170 2.0 913.1 2.902 65.20 105.80

14 0.3 0.3 170 2.6 901.3 2.773 60.46 106.20

15 0.3 0.3 170 3.3 902.9 2.800 57.91 106.50

16 0.3 0.3 170 4.0 899.6 2.847 75.63 107.80

17 0.3 0.4 160 2.0 869.0 2.319 36.28 79.26

18 0.3 0.4 160 2.6 868.5 2.320 36.08 79.20

19 0.3 0.4 160 3.3 863.3 2.264 31.49 79.20

20 0.3 0.4 160 4.0 870.4 2.375 38.13 80.69

21 0.3 0.4 163 2.0 876.9 2.425 35.93 79.55

22 0.3 0.4 163 2.6 873.8 2.376 33.53 80.57

23 0.3 0.4 163 3.3 876.3 2.409 38.33 80.93

24 0.3 0.4 163 4.0 864.6 2.298 39.29 80.71

25 0.3 0.4 167 2.0 869.6 2.329 30.55 79.94

26 0.3 0.4 167 2.6 872.6 2.370 36.08 80.31

27 0.3 0.4 167 3.3 876.7 2.413 32.87 80.32

28 0.3 0.4 167 4.0 878.4 2.458 36.92 80.69

29 0.3 0.4 170 2.0 888.8 2.567 37.40 80.99

30 0.3 0.4 170 2.6 882.3 2.494 33.70 82.13

31 0.3 0.4 170 3.3 882.6 2.504 38.12 81.26

32 0.3 0.4 170 4.0 888.7 2.570 36.38 83.16

33 0.3 0.5 160 2.0 862.2 2.255 28.86 63.13

34 0.3 0.5 160 2.6 864.2 2.267 30.48 63.31

35 0.3 0.5 160 3.3 861.5 2.255 29.67 63.42

36 0.3 0.5 160 4.0 867.1 2.315 30.74 64.17

37 0.3 0.5 163 2.0 862.9 2.256 30.35 64.33

38 0.3 0.5 163 2.6 865.3 2.278 29.07 64.36

39 0.3 0.5 163 3.3 864.6 2.288 28.95 64.06

40 0.3 0.5 163 4.0 876.4 2.436 30.00 64.54

41 0.3 0.5 167 2.0 866.7 2.301 24.54 64.79

42 0.3 0.5 167 2.6 874.2 2.382 22.69 65.00

43 0.3 0.5 167 3.3 867.8 2.310 28.88 65.25

44 0.3 0.5 167 4.0 873.4 2.384 28.38 65.85

45 0.3 0.5 170 2.0 876.4 2.430 31.78 65.77

46 0.3 0.5 170 2.6 873.3 2.373 24.77 65.29
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

47 0.3 0.5 170 3.3 875.6 2.400 25.35 65.78

48 0.3 0.5 170 4.0 876.4 2.413 24.26 66.49

49 0.3 0.6 160 2.0 858.0 2.193 23.30 51.06

50 0.3 0.6 160 2.6 851.8 2.125 22.45 51.30

51 0.3 0.6 160 3.3 862.4 2.243 24.39 51.51

52 0.3 0.6 160 4.0 852.0 2.133 22.57 51.67

53 0.3 0.6 163 2.0 864.6 2.270 24.25 51.90

54 0.3 0.6 163 2.6 859.8 2.215 22.61 51.79

55 0.3 0.6 163 3.3 859.7 2.211 23.40 51.79

56 0.3 0.6 163 4.0 859.7 2.215 22.46 52.04

57 0.3 0.6 167 2.0 864.8 2.272 21.50 52.44

58 0.3 0.6 167 2.6 867.2 2.297 24.49 52.63

59 0.3 0.6 167 3.3 859.7 2.244 22.19 52.53

60 0.3 0.6 167 4.0 861.9 2.261 24.99 52.52

61 0.3 0.6 170 2.0 864.6 2.268 22.22 52.96

62 0.3 0.6 170 2.6 862.0 2.253 26.07 53.15

63 0.3 0.6 170 3.3 860.2 2.220 23.76 52.81

64 0.3 0.6 170 4.0 871.9 2.357 23.22 53.21

65 0.6 0.3 160 2.0 977.0 4.028 49.62 118.90

66 0.6 0.3 160 2.6 967.7 3.912 50.56 121.70

67 0.6 0.3 160 3.3 973.1 3.901 57.06 120.00

68 0.6 0.3 160 4.0 984.8 4.088 53.33 119.80

69 0.6 0.3 163 2.0 972.1 3.869 50.70 119.70

70 0.6 0.3 163 2.6 965.6 3.795 50.04 123.30

71 0.6 0.3 163 3.3 973.7 3.899 67.55 122.20

72 0.6 0.3 163 4.0 973.1 3.830 69.74 119.60

73 0.6 0.3 167 2.0 969.0 3.822 51.98 119.70

74 0.6 0.3 167 2.6 973.2 3.845 55.18 122.10

75 0.6 0.3 167 3.3 974.7 3.906 52.89 120.90

76 0.6 0.3 167 4.0 964.9 3.805 66.32 124.40

77 0.6 0.3 170 2.0 980.9 3.980 61.98 120.60

78 0.6 0.3 170 2.6 977.4 3.955 55.22 123.10

79 0.6 0.3 170 3.3 978.9 4.059 70.91 119.50

80 0.6 0.3 170 4.0 987.9 4.121 56.30 119.90

81 0.6 0.4 160 2.0 989.2 4.162 31.69 90.58

82 0.6 0.4 160 2.6 975.2 3.867 33.13 91.47

83 0.6 0.4 160 3.3 978.3 3.923 38.70 92.08

84 0.6 0.4 160 4.0 980.5 3.964 38.84 91.71

85 0.6 0.4 163 2.0 973.6 3.930 39.47 92.39
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

86 0.6 0.4 163 2.6 986.1 4.065 42.55 93.75

87 0.6 0.4 163 3.3 982.1 4.054 36.84 93.92

88 0.6 0.4 163 4.0 972.0 3.827 39.03 92.82

89 0.6 0.4 167 2.0 983.4 4.026 36.88 92.89

90 0.6 0.4 167 2.6 985.0 4.105 27.66 90.89

91 0.6 0.4 167 3.3 990.8 4.280 33.70 92.28

92 0.6 0.4 167 4.0 980.5 4.014 33.46 92.85

93 0.6 0.4 170 2.0 987.1 4.149 35.55 94.58

94 0.6 0.4 170 2.6 984.5 4.116 46.42 93.19

95 0.6 0.4 170 3.3 993.8 4.206 40.23 93.45

96 0.6 0.4 170 4.0 998.0 4.344 32.69 99.80

97 0.6 0.5 160 2.0 981.9 4.023 26.57 72.34

98 0.6 0.5 160 2.6 991.2 4.179 29.55 73.97

99 0.6 0.5 160 3.3 977.4 3.943 38.58 72.72

100 0.6 0.5 160 4.0 981.6 4.015 35.55 72.40

101 0.6 0.5 163 2.0 999.5 4.307 26.36 72.95

102 0.6 0.5 163 2.6 983.8 4.029 25.79 73.63

103 0.6 0.5 163 3.3 982.0 4.042 26.88 73.08

104 0.6 0.5 163 4.0 984.2 4.024 28.50 73.34

105 0.6 0.5 167 2.0 981.9 4.007 25.48 73.75

106 0.6 0.5 167 2.6 992.7 4.190 25.71 73.70

107 0.6 0.5 167 3.3 989.7 4.135 34.32 74.21

108 0.6 0.5 167 4.0 985.3 4.088 23.18 74.05

109 0.6 0.5 170 2.0 997.4 4.271 23.26 73.68

110 0.6 0.5 170 2.6 1011.0 4.536 30.81 73.76

111 0.6 0.5 170 3.3 1008.0 4.490 20.66 74.50

112 0.6 0.5 170 4.0 989.3 4.176 22.23 74.44

113 0.6 0.6 160 2.0 992.3 4.176 20.13 58.37

114 0.6 0.6 160 2.6 984.8 4.118 21.23 59.19

115 0.6 0.6 160 3.3 978.1 3.946 21.84 58.88

116 0.6 0.6 160 4.0 972.8 3.834 21.35 59.29

117 0.6 0.6 163 2.0 999.5 4.452 18.60 59.92

118 0.6 0.6 163 2.6 997.9 4.411 20.04 59.15

119 0.6 0.6 163 3.3 997.6 4.270 23.14 59.72

120 0.6 0.6 163 4.0 982.8 4.080 17.86 59.70

121 0.6 0.6 167 2.0 984.1 4.105 16.46 60.40

122 0.6 0.6 167 2.6 995.7 4.240 18.97 60.43

123 0.6 0.6 167 3.3 992.9 4.234 18.79 60.66

124 0.6 0.6 167 4.0 995.4 4.254 23.21 60.52

125 0.6 0.6 170 2.0 999.7 4.349 18.02 61.62
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

126 0.6 0.6 170 2.6 999.2 4.393 21.27 61.28

127 0.6 0.6 170 3.3 1013.0 4.563 16.73 61.21

128 0.6 0.6 170 4.0 998.0 4.306 22.06 60.60

129 0.9 0.3 160 2.0 969.5 3.816 49.13 123.10

130 0.9 0.3 160 2.6 959.4 3.680 67.08 121.60

131 0.9 0.3 160 3.3 981.0 3.984 60.22 121.10

132 0.9 0.3 160 4.0 973.1 3.827 46.59 121.60

133 0.9 0.3 163 2.0 977.3 3.902 48.46 120.00

134 0.9 0.3 163 2.6 965.1 3.723 44.03 122.30

135 0.9 0.3 163 3.3 969.9 3.861 44.98 122.60

136 0.9 0.3 163 4.0 985.1 4.040 47.33 123.20

137 0.9 0.3 167 2.0 980.7 3.965 54.43 125.00

138 0.9 0.3 167 2.6 969.1 3.779 41.71 130.50

139 0.9 0.3 167 3.3 975.5 3.923 45.21 122.80

140 0.9 0.3 167 4.0 974.8 3.865 46.96 125.00

141 0.9 0.3 170 2.0 982.4 4.097 64.72 125.60

142 0.9 0.3 170 2.6 988.3 4.219 61.68 126.50

143 0.9 0.3 170 3.3 981.6 4.019 60.07 122.20

144 0.9 0.3 170 4.0 985.9 4.095 69.63 122.80

145 0.9 0.4 160 2.0 994.8 4.264 37.18 95.68

146 0.9 0.4 160 2.6 975.8 3.958 36.47 95.57

147 0.9 0.4 160 3.3 982.8 4.002 41.65 95.48

148 0.9 0.4 160 4.0 981.7 3.980 36.56 96.02

149 0.9 0.4 163 2.0 992.1 4.187 36.84 94.64

150 0.9 0.4 163 2.6 992.9 4.248 45.63 94.87

151 0.9 0.4 163 3.3 984.6 4.089 36.11 95.78

152 0.9 0.4 163 4.0 992.6 4.199 35.25 96.77

153 0.9 0.4 167 2.0 989.9 4.194 37.80 95.55

154 0.9 0.4 167 2.6 996.3 4.268 41.48 96.95

155 0.9 0.4 167 3.3 987.9 4.086 36.15 95.97

156 0.9 0.4 167 4.0 979.5 4.094 42.97 96.95

157 0.9 0.4 170 2.0 1016.0 4.634 43.51 97.55

158 0.9 0.4 170 2.6 1001.0 4.429 47.78 98.01

159 0.9 0.4 170 3.3 992.5 4.350 46.38 98.40

160 0.9 0.4 170 4.0 1006.0 4.580 43.46 102.00

161 0.9 0.5 160 2.0 1006.0 4.514 38.86 77.24

162 0.9 0.5 160 2.6 1003.0 4.577 40.39 76.80

163 0.9 0.5 160 3.3 1007.0 4.456 33.68 76.45

164 0.9 0.5 160 4.0 1003.0 4.412 39.43 79.75
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

165 0.9 0.5 163 2.0 1008.0 4.503 37.61 77.41

166 0.9 0.5 163 2.6 1030.0 5.005 33.09 78.05

167 0.9 0.5 163 3.3 1006.0 4.466 38.13 77.31

168 0.9 0.5 163 4.0 1019.0 4.709 42.11 77.24

169 0.9 0.5 167 2.0 1021.0 4.844 35.30 77.71

170 0.9 0.5 167 2.6 1013.0 4.610 34.71 78.40

171 0.9 0.5 167 3.3 1017.0 4.727 36.97 78.30

172 0.9 0.5 167 4.0 1033.0 5.029 35.02 76.85

173 0.9 0.5 170 2.0 1039.0 5.270 37.43 77.85

174 0.9 0.5 170 2.6 1026.0 4.880 37.10 77.90

175 0.9 0.5 170 3.3 1020.0 4.747 32.58 77.61

176 0.9 0.5 170 4.0 1029.0 4.927 32.60 78.90

177 0.9 0.6 160 2.0 1025.0 4.921 27.59 62.75

178 0.9 0.6 160 2.6 1022.0 4.772 26.27 62.85

179 0.9 0.6 160 3.3 1034.0 5.037 26.55 62.07

180 0.9 0.6 160 4.0 1032.0 5.062 32.54 63.24

181 0.9 0.6 163 2.0 1033.0 5.033 27.10 62.50

182 0.9 0.6 163 2.6 1029.0 5.035 30.64 62.62

183 0.9 0.6 163 3.3 1026.0 4.948 29.41 62.16

184 0.9 0.6 163 4.0 1026.0 4.958 28.13 63.58

185 0.9 0.6 167 2.0 1044.0 5.224 26.88 62.40

186 0.9 0.6 167 2.6 1045.0 5.323 26.07 63.85

187 0.9 0.6 167 3.3 1027.0 4.867 31.55 63.01

188 0.9 0.6 167 4.0 1030.0 4.997 26.21 63.09

189 0.9 0.6 170 2.0 1045.0 5.309 25.80 62.97

190 0.9 0.6 170 2.6 1045.0 5.394 26.27 62.84

191 0.9 0.6 170 3.3 1043.0 5.336 34.62 63.36

192 0.9 0.6 170 4.0 1045.0 5.365 31.82 62.93

193 1.2 0.3 160 2.0 961.5 3.634 53.43 120.80

194 1.2 0.3 160 2.6 960.9 3.620 45.71 122.70

195 1.2 0.3 160 3.3 956.6 3.630 43.45 126.80

196 1.2 0.3 160 4.0 969.0 3.810 42.30 118.80

197 1.2 0.3 163 2.0 965.3 3.760 42.41 121.60

198 1.2 0.3 163 2.6 964.6 3.774 51.76 121.80

199 1.2 0.3 163 3.3 965.8 3.717 49.06 121.80

200 1.2 0.3 163 4.0 961.9 3.685 50.58 121.10

201 1.2 0.3 167 2.0 968.4 3.800 44.39 122.50

202 1.2 0.3 167 2.6 966.7 3.817 57.36 121.60

203 1.2 0.3 167 3.3 986.8 4.071 49.23 121.70
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

204 1.2 0.3 167 4.0 973.3 3.829 50.40 123.40

205 1.2 0.3 170 2.0 982.7 4.073 53.37 123.10

206 1.2 0.3 170 2.6 996.8 4.368 53.68 124.50

207 1.2 0.3 170 3.3 988.1 4.121 60.40 124.30

208 1.2 0.3 170 4.0 978.2 4.114 49.35 128.10

209 1.2 0.4 160 2.0 989.8 4.168 30.42 95.38

210 1.2 0.4 160 2.6 978.4 4.007 33.74 94.77

211 1.2 0.4 160 3.3 982.9 4.044 36.65 97.00

212 1.2 0.4 160 4.0 978.5 4.002 35.31 95.33

213 1.2 0.4 163 2.0 984.7 4.164 31.78 97.71

214 1.2 0.4 163 2.6 991.8 4.302 35.93 97.04

215 1.2 0.4 163 3.3 990.3 4.133 32.44 96.11

216 1.2 0.4 163 4.0 1007.0 4.487 31.40 94.56

217 1.2 0.4 167 2.0 999.7 4.339 33.53 96.57

218 1.2 0.4 167 2.6 986.1 4.122 36.12 95.92

219 1.2 0.4 167 3.3 1011.0 4.542 39.95 98.08

220 1.2 0.4 167 4.0 979.8 4.070 51.81 95.64

221 1.2 0.4 170 2.0 1006.0 4.431 45.04 96.85

222 1.2 0.4 170 2.6 1014.0 4.613 34.93 96.10

223 1.2 0.4 170 3.3 1002.0 4.399 43.03 98.07

224 1.2 0.4 170 4.0 1038.0 5.117 37.39 97.99

225 1.2 0.5 160 2.0 1014.0 4.601 34.25 77.82

226 1.2 0.5 160 2.6 1008.0 4.495 34.26 77.97

227 1.2 0.5 160 3.3 1002.0 4.381 31.81 77.98

228 1.2 0.5 160 4.0 1014.0 4.607 34.98 76.88

229 1.2 0.5 163 2.0 1010.0 4.690 29.50 77.79

230 1.2 0.5 163 2.6 1005.0 4.460 30.89 78.17

231 1.2 0.5 163 3.3 1026.0 4.896 34.24 78.05

232 1.2 0.5 163 4.0 1017.0 4.692 32.84 78.01

233 1.2 0.5 167 2.0 1019.0 4.728 32.59 79.21

234 1.2 0.5 167 2.6 1030.0 5.088 27.83 77.75

235 1.2 0.5 167 3.3 1013.0 4.590 32.93 79.37

236 1.2 0.5 167 4.0 1031.0 5.108 38.86 79.29

237 1.2 0.5 170 2.0 1024.0 4.855 28.72 79.29

238 1.2 0.5 170 2.6 1023.0 4.831 38.64 78.90

239 1.2 0.5 170 3.3 1013.0 4.639 35.49 78.52

240 1.2 0.5 170 4.0 1029.0 4.958 35.71 79.34

241 1.2 0.6 160 2.0 1030.0 4.983 30.17 62.56

242 1.2 0.6 160 2.6 1035.0 5.047 28.52 62.94

243 1.2 0.6 160 3.3 1008.0 4.497 28.55 62.52
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Table A1. Cont.

Test No.

Input Variables Forming Aspects

z r a
(deg)

h
mm

σeff.
(MPa) εeff.

εrate.
(s−1)

F
(Ton)

244 1.2 0.6 160 4.0 1023.0 4.887 26.93 62.83

245 1.2 0.6 163 2.0 1035.0 5.077 28.53 63.05

246 1.2 0.6 163 2.6 1034.0 5.067 29.34 62.23

247 1.2 0.6 163 3.3 1023.0 4.931 27.42 64.16

248 1.2 0.6 163 4.0 1025.0 4.896 34.06 64.98

249 1.2 0.6 167 2.0 1039.0 5.158 25.52 64.94

250 1.2 0.6 167 2.6 1038.0 5.115 31.06 63.74

251 1.2 0.6 167 3.3 1020.0 4.859 27.56 65.37

252 1.2 0.6 167 4.0 1038.0 5.142 30.67 64.51

253 1.2 0.6 170 2.0 1024.0 4.947 30.85 63.11

254 1.2 0.6 170 2.6 1033.0 5.033 25.10 63.88

255 1.2 0.6 170 3.3 1039.0 5.202 26.31 65.40

256 1.2 0.6 170 4.0 1036.0 5.094 31.30 63.76
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