Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples
Abstract
:1. Introduction
1.1. Thermal Monitoring in L-PBF
1.2. Theoretical Background about Emissivity or Real Metallic Surfaces
1.3. Calibration Attempts for Thermography in Additive Manufacturing
1.4. Oxidation and Its Influence on Emissivity
1.5. Calibration Approach of This Study
2. Materials and Methods
2.1. Thermographic Measurement Setup and L-PBF System
- 60–200: valid for black body temperature of 60 °C–200 °C (integration time: 89 µs),
- 200–400: valid for black body temperature of 200 °C–400 °C (integration time: 193 µs; internal attenuation filter A within the camera),
- 300–600: valid for black body calibration temperature 300 °C–600 °C (integration time: 45 µs; internal attenuation filter B within the camera).
2.2. Heated Reference Device
2.3. Examination Methodology
2.4. Experimental Measurment Variations
- 316L L-PBF surface at temperatures between 100 °C and 700 °C,
- 316L powder layer at temperatures between 100 °C and 650 °C,
- IN718 powder layer at temperatures between 100 °C and 650 °C, and
- 316L oxidized L-PBF surface at three different positions.
2.4.1. Temperature Variations at a Non-Oxidized L-PBF Surface (316L)
2.4.2. Temperature Variations at Powder Surface (316L and IN718)
2.4.3. Positioning
2.5. Determination of Emissivity Values
2.5.1. Determination of Apparent Emissivity Values
2.5.2. Determination of Corrected Emissivity Values
3. Results and Discussion
3.1. Selection of Thermocouples
3.2. Apparent Emissivity
3.2.1. Apparent Emissivity of the 316L L-PBF Surface
3.2.2. Oxidation Effects on the Apparent Emissivity of the 316L L-PBF Surface
3.2.3. Apparent Emissivity of the 316L Powder Layer
3.2.4. Apparent Emissivity of the IN718 Powder Layer
3.3. Determination of Corrected Emissivity
3.3.1. Corrected Emissivity of 316L L-PBF Surface
3.3.2. Corrected Emissivity of Powder Layers
3.4. Influence of Measurement Position
3.5. Measurement Uncertainty
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Grasso, M.; Colosimo, B.M. Process defects and in situ monitoring methods in metal powder bed fusion: A review. Meas. Sci. Technol. 2017, 28, 044005. [Google Scholar] [CrossRef] [Green Version]
- Colosimo, B.M.; Grasso, M. In-situ monitoring in L-PBF: Opportunities and challenges. Procedia CIRP 2020, 94, 388–391. [Google Scholar] [CrossRef]
- Ali, U.; Mahmoodkhani, Y.; Imani Shahabad, S.; Esmaeilizadeh, R.; Liravi, F.; Sheydaeian, E.; Huang, K.Y.; Marzbanrad, E.; Vlasea, M.; Toyserkani, E. On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes. Mater. Des. 2018, 155, 495–501. [Google Scholar] [CrossRef]
- Mohr, G.; Seeger, S.; Hilgenberg, K. Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring. In Proceedings of the Euro PM 2019, EPMA, Maastricht, The Netherlands, 13–16 October 2019. [Google Scholar]
- Alberts, D.; Schwarze, D.; Witt, G. High speed melt pool & laser power monitoring for selective laser melting (SLM®). In Proceedings of the 9th International Conference on Photonic Technologies LANE, Fürth, Germany, 19–22 September 2016. [Google Scholar]
- Krauss, H.; Zeugner, T.; Zaeh, M.F. Layerwise Monitoring of the Selective Laser Melting Process by Thermography. Phys. Procedia 2014, 56, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Merklein, M.; Bourell, D.; Dimitrov, D.; Hausotte, T.; Wegener, K.; Overmeyer, L.; Vollertsen, F.; Levy, G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017, 66, 561–583. [Google Scholar] [CrossRef]
- Lane, B.; Moylan, S.; Whitenton, E.; Ma, L. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST. Rapid Prototyp. J. 2016, 22, 778–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heigel, J.C.; Lane, B.M. Measurement of the Melt Pool Length during Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process. J. Manuf. Sci. Eng. 2018, 140, 051012. [Google Scholar] [CrossRef]
- Bartlett, J.L.; Heim, F.M.; Murty, Y.V.; Li, X. In situ defect detection in selective laser melting via full-field infrared thermography. Addit. Manuf. 2018, 24, 595–605. [Google Scholar] [CrossRef]
- Mohr, G.; Altenburg, S.J.; Ulbricht, A.; Heinrich, P.; Baum, D.; Maierhofer, C.; Hilgenberg, K. In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography. Metals 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Mohr, G.; Altenburg, S.J.; Hilgenberg, K. Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion. Addit. Manuf. 2020, 32, 101080. [Google Scholar] [CrossRef]
- Williams, R.J.; Piglione, A.; Rønneberg, T.; Jones, C.; Pham, M.S.; Davies, C.M.; Hooper, P.A. In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties. Addit. Manuf. 2019, 30, 100880. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lough, C.S.; Wang, X.; Smith, C.C.; Adeniji, O.; Landers, R.G.; Bristow, D.A.; Kinzel, E.C. Use of SWIR Imaging to Monitor Layer-to-Layer Part Quality during SLM of 304L Stainless Steel. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018. [Google Scholar]
- Mohr, G.; Scheuschner, N.; Hilgenberg, K. In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel. CIRP Proceedia 2020, 94, 155–160. [Google Scholar] [CrossRef]
- Khan, K.; Mohr, G.; Hilgenberg, K.; De, A. Probing a novel heat source model and adaptive remeshing technique to simulate laser powder bed fusion with experimental validation. Comput. Mater. Sci. 2020, 181, 109752. [Google Scholar] [CrossRef]
- Schuster, N.; Kolobrodov, V.G. Infrarotthermographie; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Vollmer, M.; Möllmann, K.P. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Siegel, R.; Howell, J.R.; Lohrengel, J. Wärme- und Stoffübertragung. Teil 1: Grundlagen und Materialeigenschaften; Springer: Berlin, Germany, 1988. [Google Scholar]
- Glückert, U. Erfassung und Messung von Wärmestrahlung. Eine Praktische Einführung in die Pyrometrie und Thermographie; Franzis: Munich, Germany, 1992. [Google Scholar]
- Doubenskaia, M.; Pavlov, M.; Grigoriev, S.; Smurov, I. Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 2013, 220, 244–247. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution. J. Alloys Compd. 2014, 583, 404–409. [Google Scholar] [CrossRef]
- Heigel, J.C.; Whitenton, E. Measurement of thermal processing variability in powder bed fusion. In Proceedings of the 2018 ASPE and Euspen Summer Topical Meeting-Advancing Precision in Additive Manufacturing, Berkeley, CA, USA, 22–25 July 2018. [Google Scholar]
- Heigel, J.; Lane, B.; Moylan, S. Variation of Emittivity with Powder Bed Fusion Build Parameters. In Proceedings of the 2016 Annual International SFF Symposium, Austin, TX, USA, 8–10 August 2016. [Google Scholar]
- Hakiki, N.; Montemor, M.; Ferreira, M.; da Cunha Belo, M. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corros. Sci. 2000, 42, 687–702. [Google Scholar] [CrossRef]
- Kämmerer, B. Abhängigkeit der Korrosionsbeständigkeit von der Chemischen Oberflächenzusammensetzung von Chromstählen; Universität Augsburg: Augsburg, Germany, 2012. [Google Scholar]
- Joachim, J. Untersuchung von Oxidationsprozessen an Oberflächen von FeCr-Legierungen und Austenitstahl mittels Röntgenabsorptionsspektroskopie unter Streifendem Einfall; Rheinische Friedrich-Wilhelms-Universität Bonn: Bonn, Germany, 2003. [Google Scholar]
- Iuchi, T.; Furukawa, T.; Wada, S. Emissivity modeling of metals during the growth of oxide film and comparison of the model with experimental results. Appl. Opt. 2003, 42, 2317–2326. [Google Scholar] [CrossRef]
- Zauner, G.; Mayrhofer, F.; Hendorfer, G. Optical characterization of growing thin films at high temperatures by analysis of near infrared emissivity variations using CCD thermal imaging. In Proceedings of the 2010 International Conference on Quantitative InfraRed Thermography, Quebec, QC, Canada, 24–29 June 2010. [Google Scholar]
- Del Campo, L.; Pérez-Sáez, R.B.; Tello, M.J. Iron oxidation kinetics study by using infrared spectral emissivity measurements below 570 °C. Corros. Sci. 2008, 50, 194–199. [Google Scholar] [CrossRef]
- Krauss, H.; Eschey, C.; Zaeh, M.F. Thermography for Monitoring the Selective Laser Metling Process. In Proceedings of the Solid Freeform Fabrication Symposium; University of Texas: Austin, TX, USA, 2012; pp. 999–1014. [Google Scholar]
- Altenburg, S.J.; Straße, A.; Gumenyuk, A.; Maierhofer, C. In-situ monitoring of a laser metal deposition (LMD) process: Comparison of MWIR, SWIR and high-speed NIR thermography. Quant. InfraRed Thermogr. J. 2020, 1–18. [Google Scholar] [CrossRef]
- Del Campo, L.; Pérez-Sáez, R.B.; González-Fernández, L.; Esquisabel, X.; Fernández, I.; González-Martín, P.; Tello, M.J. Emissivity measurements on aeronautical alloys. J. Alloys Compd. 2010, 489, 482–487. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Deutsches Institut für Normung (DIN). DIN EN 60584-1: Thermocouples—Part 1: EMF Specifications and Tolerances; DIN: Berlin, Germany, 2014. [Google Scholar]
- Soldan, S. Sensordatenfusionsansätze in der Thermografie zur Verbesserung der Messergebnisse; Universität Kassel: Kassel, Germany, 2014. [Google Scholar]
Powder Properties | Powder 1 AISI 316L (1.4404) | Powder 2 Inconel 718 |
---|---|---|
D10 in µm | 18.22 | 25.50 |
D50 in µm | 30.50 | 37.60 |
D90 in µm | 55.87 | 57.07 |
Mean diameter in µm | 34.69 | 39.49 |
Apparent density in g/cm3 | 4.58 | 4.56 |
Target Object Temperature in °C | Deviations of TC Values | Standard Deviation of the Apparent Temperature Over the Target Surface |
---|---|---|
130–300 | +/−2.5 °C | calibration 60–200: +/−7.9% |
300–470 | +/−1.1% | calibration 60–200: +/−7.9% |
calibration 200–400: +/−4.2% | ||
470–700 | +/−0.75% | calibration 200–400: +/−4.2% |
calibration 300–600: +/−6.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohr, G.; Nowakowski, S.; Altenburg, S.J.; Maierhofer, C.; Hilgenberg, K. Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples. Metals 2020, 10, 1546. https://doi.org/10.3390/met10111546
Mohr G, Nowakowski S, Altenburg SJ, Maierhofer C, Hilgenberg K. Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples. Metals. 2020; 10(11):1546. https://doi.org/10.3390/met10111546
Chicago/Turabian StyleMohr, Gunther, Susanna Nowakowski, Simon J. Altenburg, Christiane Maierhofer, and Kai Hilgenberg. 2020. "Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples" Metals 10, no. 11: 1546. https://doi.org/10.3390/met10111546
APA StyleMohr, G., Nowakowski, S., Altenburg, S. J., Maierhofer, C., & Hilgenberg, K. (2020). Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples. Metals, 10(11), 1546. https://doi.org/10.3390/met10111546