Recovery of Cobalt from the Residues of an Industrial Zinc Refinery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Reagents
2.2. Provenance of the Zinc Residue
2.3. Characterization of the Zinc Plant Residue (ZPR)
2.3.1. Specific Gravity
2.3.2. Size Distribution
2.3.3. Chemical Composition
2.3.4. X-ray Diffraction (XRD)
3. Results
3.1. Washing of the ZPR
3.2. Preparation of ZPR Samples for the Co Extraction Tests
3.3. Leaching of the Washed ZPR
3.4. Selective Precipitation of the Cobalt from the Pregnant Liquor Solution
3.4.1. Precipitation of Fe-Mn
3.4.2. Precipitation of Co
3.4.3. Washing and Composition of the Cobalt Precipitate
3.5. Overall Process Performance and Quality of the Product
3.6. Economics of the Process
3.7. Residues of the ZPR-Co Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Zhang, Z.; Cao, Y.; Han, G.; Peng, W.; Zhu, X.; Zhang, T.-A.; Dou, Z. Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue-a review. Hydrometallurgy 2020, 193, 3–12. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C. Hydrometallurgical process for recovery of cobalt from zinc plant residue. Hydrometallurgy 2002, 63, 225–234. [Google Scholar] [CrossRef]
- Fattahi, A.; Rashchi, F.; Abkhoshk, E. Reductive leaching of zinc, cobalt and manganese from zinc plant residue. Hydrometallurgy 2016, 161, 185–192. [Google Scholar] [CrossRef]
- Anonymous. Critical Materials Rare Earths Supply Chain: A Situational White Paper; U.S. Department of energy, Office of Energy Efficiency & Renewable Energy: Washington, DC, USA, 2020.
- Golmohammadzadeh, R.; Faraji, F.; Rashchi, F. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resour. Conserv. Recycl. 2018, 136, 418–435. [Google Scholar] [CrossRef]
- Frankel, T.C. The Cobalt Pipeline: Tracing the Path from Deadly Hand-Dug Mines in Congo to Consumer’s Phones and Laptops. The Washington Post. 1 October 2016. Available online: https://longform.org/posts/the-cobalt-pipeline (accessed on 3 November 2020).
- Ashtari, P.; Pourghahramani, P. Hydrometallurgical recycling of cobalt from zinc plants residue. J. Mater. Cycles Waste Manag. 2018, 20, 155–166. [Google Scholar] [CrossRef]
- Güler, E.; Seyrankaya, A. Precipitation of impurity ions from zinc leach solutions with high iron contents—A special emphasis on cobalt precipitation. Hydrometallurgy 2016, 164, 118–124. [Google Scholar] [CrossRef]
- Bøckman, O.; Østvold, T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes. Hydrometallurgy 2000, 54, 65–78. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, B.; Min, X.-B.; Shen, W.-Q. Acid leaching kinetics of zinc plant purification residue. Trans. Nonferrous Met. Soc. China 2013, 23, 2786–2791. [Google Scholar]
- CEzince Company. Available online: https://www.cezinc.com/fr/Pages/home.aspx (accessed on 5 August 2020).
- Gy, P.M. Sampling of Particulate Materials, Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Bazin, C.; Hodouin, D.; Zouadi, M. Data reconciliation and equilibrium constant estimation: Application to copper solvent extraction. Hydrometallurgy 2005, 80, 43–53. [Google Scholar] [CrossRef]
- Hodouin, D.; Everell, M. A hierarchical procedure for adjustment and material balancing of mineral processes data. Int. J. Miner. Process. 1980, 7, 91–116. [Google Scholar] [CrossRef]
- Hodouin, D.; Flament, F.; Bazin, C. Reliability of material balance calculations a sensitivity approach. Miner. Eng. 1989, 2, 157–169. [Google Scholar] [CrossRef]
- Turgeon, K.; Bazin, C.; Boulanger, J.-F.; Whitty-Léveillé, L.; Larivière, D. Material balancing and estimation of equilibrium constants: Application to solvent extraction tests of rare earth elements. In Proceedings of the International Mineral Processing Congress, Quebec, QC, Canada, 11–15 September 2016. [Google Scholar]
- Bazin, C.; Hodouin, D.; Blondin, R.M. Estimation of the variance of the fundamental error associated to the sampling of low grade ores. Int. J. Miner. Process. 2013, 124, 117–123. [Google Scholar] [CrossRef]
- Zhan, D.; Marquez, J. First Cobalt Corporation: 2019 First Cobalt Refinery Restart. 103870-RPT-0001. Available online: https://www.firstcobalt.com/_resources/reports/20190627-Ausenco-ConceptualStudy_Rev-E.pdf (accessed on 20 November 2020).
- Box, G.E.; Draper, N.R. Evolutionary Operation: A Statistical Method for Process Improvement; Wiley: New York, NY, USA, 1969; Volume 25. [Google Scholar]
- Conard, B. History of electrolytic cobalt refining at Vale Canada (Inco). CIM J. 2015, 6, 51–58. [Google Scholar] [CrossRef]
Reagent | Composition | Brand and Purity |
---|---|---|
Sulfuric acid | H2SO4 | Fisher, 98% purity |
Sodium hydroxide | NaOH | Fisher, 98.8% purity |
Ammonium persulfate | (NH4)2S2O8 | Alfa Aesar, 98% purity |
Elements | CEZ Typical Composition | Sample Composition * | ||
---|---|---|---|---|
% | % | |||
Zn | 20–25 | 16.0 | ± | 0.5 |
Cd | 2–6 | 3.5 | ± | 0.2 |
S | - | 5.7 | ± | 0.8 |
Cu | 15–25 | 11.9 | ± | 0.4 |
Ca | - | 0.76 | ± | 0.04 |
Co | 2–4 | 1.7 | ± | 0.1 |
Ni | 0–2 | 0.44 | ± | 0.04 |
Fe | 0–1 | 0.34 | ± | 0.02 |
Mn | - | 0.22 | ± | 0.01 |
Pb | 9–12 | 4.0 | ± | 0.1 |
Metal | % Dissolved * | ||
---|---|---|---|
Zn | 20 | ± | 3 |
Cd | 43 | ± | 2 |
Cu | 0.03 | ± | 0.02 |
Ca | 16 | ± | 1 |
Co | 4 | ± | 1 |
Ni | 2 | ± | 1 |
Fe | 0.4 | ± | 0.2 |
Mn | 84 | ± | 3 |
Pb | 0.1 | ± | 0.2 |
Elements | Smp #1 | Smp #2 | Smp #3 | Avg | Std-Dev | RSD (%) |
---|---|---|---|---|---|---|
Zn | 16.4 | 16.2 | 15.5 | 16.0 | 0.5 | 3 |
Cd | 3.7 | 3.5 | 3.3 | 3.5 | 0.2 | 6 |
Cu | 11.5 | 12.1 | 12.2 | 11.9 | 0.4 | 3 |
Ca | 0.80 | 0.77 | 0.72 | 0.76 | 0.04 | 5 |
Co | 1.68 | 1.80 | 1.63 | 1.71 | 0.09 | 5 |
Ni | 0.47 | 0.47 | 0.40 | 0.44 | 0.04 | 9 |
Fe | 0.36 | 0.34 | 0.31 | 0.34 | 0.02 | 6 |
Mn | 0.23 | 0.21 | 0.23 | 0.22 | 0.01 | 5 |
Pb | 3.8 | 4.1 | 4.0 | 4.0 | 0.1 | 3 |
Species | % Dissolved | Liquor Concentration (mg/L) | ||
---|---|---|---|---|
Solids | 65 | ± | 1 | |
Zn | 97.1 | ± | 0.4 | 11,800 |
Cd | 91 | ± | 2 | 370 |
Cu | 37 | ± | 3 | 3600 |
Ca | 88 | ± | 3 | 252 |
Co | 97 | ± | 1 | 1170 |
Ni | 97 | ± | 1 | 345 |
Fe | 98 | ± | 2 | 270 |
Mn | 91 | ± | 16 | 26 |
Pb | 0.2 | ± | 0.3 | 6 |
Species | % Precipitated | ||
---|---|---|---|
Zn | 0.3 | ± | 0.2 |
Cd | 0.6 | ± | 0.2 |
Cu | 1.1 | ± | 0.4 |
Ca | 1.1 | ± | 0.6 |
Co | 17 | ± | 8 |
Ni | 0.6 | ± | 0.3 |
Fe | 80 | ± | 20 |
Mn | 90 | ± | 10 |
All Concentrations in mg/L | |||||||
---|---|---|---|---|---|---|---|
Solution | Volume (mL) | Zn | Cd | Cu | Co | Fe | Mn |
Leach solution | 841 | 11,800 | 370 | 3600 | 1170 | 270 | 26 |
After Fe-Mn ppt | 944 | 10,511 | 327 | 3200 | 860 | 46 | 1.3 |
After Co ppt | 975 | 10,111 | 318 | 3000 | 84 | 16 | 0.4 |
Species | % Precipitated | ||
---|---|---|---|
Zn | 0.4 | ± | 0.1 |
Cd | 1 | ± | 0.3 |
Cu | 2 | ± | 1 |
Ca | 1 | ± | 0.4 |
Co | 89 | ± | 3 |
Material | Co | Cd | Cu | Zn | Fe | Mn | Ni | Pb |
---|---|---|---|---|---|---|---|---|
Produced Co hydroxide * | 45 ± 4 | 0.120 ± 0.004 | 4.4 ± 0.7 | 0.8 ± 0.2 | 2 ± 1 | <0.1 | <0.1 | 0.3 ± 0.1 |
Custom refinery Co hydroxide feed [19] | 23.2 | n.a. | 1.61 | 0.19 | 2.39 | 3.27 | 0.39 | n.a. |
Process Stream | Stream Number as in Figure 10 | Avg. | Std-Dev |
---|---|---|---|
ZPR | 1 | 100 | 100 |
Washed solids ZPR | 2 | 86 | 3 |
Leach solution | 3 | 84 | 4 |
Co ppt feed solution | 4 | 70 | 10 |
Spent solution from Co ppt | 5 | 7 | 1 |
Cobalt hydroxide | 6 | 62 | 14 |
Reagent | Consumption (kg/kg of ZPR) | Price CAD$/kg | CAD$/kg ZPR |
---|---|---|---|
H2SO4 | 1.9 | 0.170 | 0.032 |
NaOH | 0.07 | 0.80 | 0.056 |
APS | 0.25 | 0.85 | 0.22 |
Total costs | - | - | 0.30 |
Gross revenues | - | - | 0.20 |
Benefits (losses) | - | - | (0.10) |
Residues from the ZPR-Co Process | Content (mg/L or %) | ||
---|---|---|---|
Zn | Cd | Cu | |
Soln from washing (mg/L) | 1202 | 3067 | 3.6 |
Soln from Co ppt (mg/L) | 1111 | 317 | 3028 |
Leach solid residue (%) | 2.06 | 0.22 | 36.4 |
Fe-Mn solid residue (%) | 2.09 | 0.13 | 1.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boisvert, L.; Turgeon, K.; Boulanger, J.-F.; Bazin, C.; Houlachi, G. Recovery of Cobalt from the Residues of an Industrial Zinc Refinery. Metals 2020, 10, 1553. https://doi.org/10.3390/met10111553
Boisvert L, Turgeon K, Boulanger J-F, Bazin C, Houlachi G. Recovery of Cobalt from the Residues of an Industrial Zinc Refinery. Metals. 2020; 10(11):1553. https://doi.org/10.3390/met10111553
Chicago/Turabian StyleBoisvert, Laurence, Keven Turgeon, Jean-François Boulanger, Claude Bazin, and Georges Houlachi. 2020. "Recovery of Cobalt from the Residues of an Industrial Zinc Refinery" Metals 10, no. 11: 1553. https://doi.org/10.3390/met10111553
APA StyleBoisvert, L., Turgeon, K., Boulanger, J. -F., Bazin, C., & Houlachi, G. (2020). Recovery of Cobalt from the Residues of an Industrial Zinc Refinery. Metals, 10(11), 1553. https://doi.org/10.3390/met10111553