Prediction of Surface Wrinkle Defect of Welding Wire Steel ER70S-6 in Hot Bar Rolling Process Using Finite Element Method and Experiments
Abstract
:1. Introduction
2. Finite Element Model of the Hot Bar Rolling Process
2.1. Constitutive Equations
2.2. Numerical Integration Algorithm of the Strain Dependent Arrhenius-Type Constitutive Equation
2.3. Finite Element Modeling
2.4. Experimental Verification
3. Results and Discussion
3.1. Analysis of Hot Bar Rolling Deformation
3.2. A New Criterion for Predicting Surface Wrinkle Defect
3.3. Determination of Surface Wrinkle Defect Location and Its Evolution
3.4. Effect of Rolling Process Parameters on the Surface Wrinkle Defect
3.5. Industrial Testing Verification
4. Conclusions
- (1)
- The deformation behavior of welding wire steel ER70S-6 under different deformation conditions was obtained by hot compression tests. The true stress decreased with the increase of deformation temperature when the strain rate was fixed. The true stress increased with the increase of strain rate when the deformation temperature was fixed. A strain dependent Arrhenius-type constitutive function was determined by fitting the flow stress–strain curves.
- (2)
- The thermal–mechanical finite element modeling of the six-pass continuous rolling process was established in Abaqus/Explicit. Based on radial return mapping algorithm, the elastoplastic constitutive model was implemented with the help of user subroutine VUMAT. The simulation results agreed well with the experiments in terms of billet dimensions at the exit of each pass of the continuous rolling process.
- (3)
- The combination effects of different process parameters on the surface wrinkle defect were investigated through the orthogonal test, including groove size, friction coefficient and rolling temperature. The impact sequence of the process parameters for the surface wrinkle defect was groove radius > groove width > friction coefficient > rolling temperature. The industrial testing result agreed well with the simulation. The change of groove size was an effective way to suppress surface wrinkle defect, especially decreasing the groove radius and the groove width.
Author Contributions
Funding
Conflicts of Interest
References
- Spuzic, S.; Narayanan, R.; Kovacic, Z.; Arachchige, D.H.; Abhary, K. Roll pass design optimisation. Int. J. Adv. Manuf. Technol. 2017, 91, 999–1005. [Google Scholar] [CrossRef]
- Oduguwa, V.; Roy, R. A review of rolling system design optimisation. Int. J. Mach. Tool. Manuf. 2006, 46, 912–928. [Google Scholar] [CrossRef] [Green Version]
- Hanoglu, U.; Šarler, B. Hot Rolling Simulation System for Steel Based on Advanced Meshless Solution. Metals 2019, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Son, I.H.; Lee, J.D.; Choi, S.; Lee, D.L.; Im, Y.T. Deformation behavior of the surface defects of low carbon steel in wire rod rolling. J. Mater. Process. Technol. 2008, 201, 91–96. [Google Scholar] [CrossRef]
- Agarwal, K.; Shivpuri, R. On line prediction of surface defects in hot bar rolling based on Bayesian hierarchical modeling. J. Intell. Manuf. 2015, 26, 785–800. [Google Scholar] [CrossRef]
- Shinokura, T.; Takai, K. A new method for calculating spread in rod rolling. J. Appl. Metalwork. 1982, 2, 94–99. [Google Scholar] [CrossRef]
- Kim, S.Y.; Im, Y.T. Three-dimensional finite element analysis of non-isothermal shape rolling. J. Mater. Process. Technol. 2002, 127, 57–63. [Google Scholar] [CrossRef]
- Milenin, A.A.; Dyja, H.; Mróz, S. Simulation of metal forming during multi-pass rolling of shape bars. J. Mater. Process. Technol. 2004, 153, 108–114. [Google Scholar] [CrossRef]
- Kwon, H.C.; Lee, H.W.; Kim, H.Y.; Im, Y.T.; Park, H.D.; Lee, D.L. Surface wrinkle defect of carbon steel in the hot bar rolling process. J. Mater. Process. Technol. 2009, 209, 4476–4483. [Google Scholar] [CrossRef]
- Na, D.H.; Lee, Y. A study to predict the creation of surface defects on material and suppress them in caliber rolling process. Int. J. Precis. Eng. Manuf. 2013, 14, 1727–1734. [Google Scholar] [CrossRef]
- Kawano, M.; Isogawa, S.; Kawanishi, K. Evaluation of roll pass designs by thermal mechanical FEM simulation. Electr. Furn. Steel 1999, 70, 255–260. [Google Scholar]
- Awais, M.; Lee, H.W.; Im, Y.T.; Kwon, H.C.; Byon, S.M.; Park, H.D. Plastic work approach for surface defect prediction in the hot bar rolling process. J. Mater. Process. Technol. 2008, 201, 73–78. [Google Scholar] [CrossRef]
- Zhang, J.; Kwon, H.C.; Kim, H.Y.; Byon, S.M.; Park, H.D.; Im, Y.T. Micro-cracking of low carbon steel in hot-forming processes. J. Mater. Process. Technol. 2005, 162, 447–453. [Google Scholar] [CrossRef]
- Lee, H.W.; Kwon, H.C.; Awais, M.; Im, Y.T. Instability map based on specific plastic work criterion for hot deformation. J. Mech. Sci. Technol. 2007, 21, 1534–1540. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Bhaduri, A.K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comp. Mater. Sci. 2009, 47, 568–576. [Google Scholar] [CrossRef]
- Kang, S.H.; Im, Y.T. Three-dimensional thermo-elastic–plastic finite element modeling of quenching process of plain-carbon steel in couple with phase transformation. Int. J. Mech. Sci. 2007, 49, 423–439. [Google Scholar] [CrossRef]
- Miehe, C. On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity. Int. J. Plast. 1994, 10, 609–621. [Google Scholar] [CrossRef]
- Liu, Q.; Han, J.T.; Tian, Y.Q.; Zheng, X.P.; Song, J.Y.; Chen, L.S. Analysis of sheared edge quality in rotary blanking process based on Lemaitre damage model. Chinese J. Eng. 2017, 39, 1198–1206. [Google Scholar]
- Ertürk, S.; Brocks, W.; Bohlen, J.; Letzig, D.; Steglich, D. A constitutive law for the thermo-mechanical modelling of magnesium alloy extrusion. Int. J. Mater. Form. 2012, 5, 325–339. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, D.T.; Zang, Y.; Guan, B. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate. Adv. Mech. Eng. 2015, 7, 1687814015594313. [Google Scholar] [CrossRef] [Green Version]
- Byon, S.M.; Na, D.H.; Lee, Y. Effect of roll gap adjustment on exit cross sectional shape in groove rolling—Experimental and FE analysis. J. Mater. Process. Technol. 2009, 209, 4465–4470. [Google Scholar] [CrossRef]
- Said, A.; Lenard, J.G.; Ragab, A.R.; Elkhier, M.A. The temperature, roll force and roll torque during hot bar rolling. J. Mater. Process. Technol. 1999, 88, 147–153. [Google Scholar] [CrossRef]
- Lee, Y. Rod and Bar Rolling: Theory and Applications; CRC Press: New York, NY, USA, 2004; pp. 9–28. [Google Scholar]
- Filipović, M.; Eriksson, C.; Överstam, H. Behaviour of surface defects in wire rod rolling. Steel Res. Int. 2006, 77, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Nordén, K.; Jonsson, S. A study of surface deformation during wire-rod rolling of high speed steels using experimental and computational techniques. Steel Res. Int. 2007, 78, 876–883. [Google Scholar] [CrossRef]
- Topno, R.; Gupta, D.S.; Singh, U.P.; Roy, B.; Jha, S. Improvement in the surface quality of ball bearing steel rounds at Bar Mill. Scand. J. Metal. 2002, 31, 20–24. [Google Scholar] [CrossRef]
- Xia, S.; Lin, R.; Cui, X.; Shan, J. The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition. Int. J. Hydrogen Energy 2016, 41, 11380–11390. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, H.; Yan, H.; Jiang, Z.; Zheng, J.; Gan, Z. Influencing factors of GaN growth uniformity through orthogonal test analysis. Appl. Therm. Eng. 2015, 91, 53–61. [Google Scholar] [CrossRef]
Elements | C | Si | Mn | P | S | Cr | Ni | Cu |
---|---|---|---|---|---|---|---|---|
wt % | 0.068 | 0.89 | 1.52 | 0.012 | 0.011 | 0.03 | 0.01 | 0.02 |
n | α (MPa−1) | Q (kJ/mol) | lnA (s−1) |
---|---|---|---|
M1 = 8.6719 | N1 = 0.0205 | X1 = 409.4463 | Y1 = 35.2856 |
M2 = −32.1982 | N2 = −0.0609 | X2 = −448.1335 | Y2 = −62.8739 |
M3 = 92.1619 | N3 = 0.2430 | X3 = 811.1758 | Y3 = 200.3972 |
M4 = −118.7672 | N4 = −0.5835 | X4 = −729.4218 | Y4 = −332.5019 |
M5 = 69.5087 | N5 = 0.6817 | X5 = 467.9818 | Y5 = 295.7253 |
M6 = −13.5810 | N6 = −0.2986 | X6 = −167.2209 | Y6 = −107.3682 |
Pass | Groove | Roll Diameter/mm | Elongation Coefficient | Angular Velocity/rad·s−1 |
---|---|---|---|---|
H1 | flat | 600 | 1.233 | 0.415 |
V2 | flat | 600 | 1.231 | 0.526 |
H3 | oval | 600 | 1.439 | 0.678 |
V4 | round | 480 | 1.310 | 1.188 |
H5 | oval | 480 | 1.406 | 1.531 |
V6 | round | 480 | 1.304 | 2.117 |
Factors | Groove Radius/mm | Groove Width/mm | Friction Coefficient | Rolling Temperature/°C | |
---|---|---|---|---|---|
Levels | |||||
Level 1 | 25 | 160 | 0.26 | 1090 | |
Level 2 | 30 | 162 | 0.28 | 1120 | |
Level 3 | 35 | 164 | 0.3 | 1150 |
Case | Groove Radius/mm | Groove Width/mm | Friction Coefficient | Rolling Temperature/°C | The Number of the Damage Elements |
---|---|---|---|---|---|
1 | 25 | 160 | 0.26 | 1090 | 1962 |
2 | 25 | 162 | 0.28 | 1120 | 2350 |
3 | 25 | 164 | 0.3 | 1150 | 2769 |
4 | 30 | 160 | 0.28 | 1150 | 2615 |
5 | 30 | 162 | 0.3 | 1090 | 2996 |
6 | 30 | 164 | 0.26 | 1120 | 3327 |
7 | 35 | 160 | 0.3 | 1120 | 3692 |
8 | 35 | 162 | 0.26 | 1150 | 4030 |
9 | 35 | 164 | 0.28 | 1090 | 3831 |
Parameters | Groove Radius/mm | Groove Width/mm | Friction Coefficient | Rolling Temperature/°C |
---|---|---|---|---|
K1 | 7081 | 8269 | 9319 | 8789 |
K2 | 8938 | 9376 | 8796 | 9369 |
K3 | 11,553 | 9927 | 9457 | 9414 |
k1 | 2360.33 | 2756.33 | 3106.33 | 2929.67 |
k2 | 2979.33 | 3125.33 | 2932 | 3123 |
k3 | 3851 | 3309 | 3152.33 | 3138 |
R | 1490.67 | 552.67 | 220.33 | 208.33 |
Order | groove radius > groove width > friction coefficient > rolling temperature | |||
Optimal combination | groove radius1-groove width1-friction coefficient2-rolling temperature1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Tian, Y.; Zhai, J.; Tian, L.; Chen, L.; Chen, L. Prediction of Surface Wrinkle Defect of Welding Wire Steel ER70S-6 in Hot Bar Rolling Process Using Finite Element Method and Experiments. Metals 2020, 10, 1559. https://doi.org/10.3390/met10111559
Liu Q, Tian Y, Zhai J, Tian L, Chen L, Chen L. Prediction of Surface Wrinkle Defect of Welding Wire Steel ER70S-6 in Hot Bar Rolling Process Using Finite Element Method and Experiments. Metals. 2020; 10(11):1559. https://doi.org/10.3390/met10111559
Chicago/Turabian StyleLiu, Qian, Yaqiang Tian, Jinpo Zhai, Lu Tian, Liansheng Chen, and Liqing Chen. 2020. "Prediction of Surface Wrinkle Defect of Welding Wire Steel ER70S-6 in Hot Bar Rolling Process Using Finite Element Method and Experiments" Metals 10, no. 11: 1559. https://doi.org/10.3390/met10111559
APA StyleLiu, Q., Tian, Y., Zhai, J., Tian, L., Chen, L., & Chen, L. (2020). Prediction of Surface Wrinkle Defect of Welding Wire Steel ER70S-6 in Hot Bar Rolling Process Using Finite Element Method and Experiments. Metals, 10(11), 1559. https://doi.org/10.3390/met10111559