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Abstract: In an effort to produce non-toxic and economically viable “green” protocols for waste water
treatment, researchers are actively involved to develop versatile and effective silver nanoparticles
(SNPs) as nano-catalyst from bio-based techniques. Since, p-nitrophenol (PNP) is one of the
anthropogenic contaminants, considerable attention has been focused in catalytic degradability of
PNP in wastewater treatment by curtailing serious effect on aquatic fauna. Ingestion of contaminants
by aquatic organisms will not only affect the aquatic species but is also a potential threat to human
health, especially if the toxic contaminants are involved in food chain. In this short report, we provided
a comprehensive insight on few remarkable nanocatalysts especially based on SNPs and its biopolymer
composites synthesized via ecofriendly “green” route. The beneficiality and catalytic performance of
these silver nanocatalysts are concisely documented on standard model degradation reduction of PNP
to p-aminophenol (PAP) in the presence of aqueous sodium borohydride. The catalytic degradation
of PNP to PAP using SNPs follows pseudo first order kinetics involving six-electrons with lower
activation energy. Furthermore, we provided a list of highly effective, recoverable, and economically
viable SNPs, which demonstrated its potential as nanocatalysts by focusing its technical impact in the
area of water remediation.

Keywords: anthropogenic; bioreductant; environmental remediation; heterogeneous catalysis;
plant extract; p-nitrophenol; silver nanoparticles

1. Introduction

Organic pollutants from industries are the major source for water pollution; these synthetic toxins
are extremely harmful to the environment and influences health risks to human [1,2]. Knowledge of the
health effects of organic contaminants at the low levels found in industrial wastewater supplies are very
limited [3]. However, the water source is known to contain significant amounts of industrial effluent and
toxic impurities, this has given rise to concern before releasing to the aquatic stream. As anthropogenic
contaminants removal from water is essential before domestic use, the cost effectiveness for the water
treatment is also to be considered. There is an imperative need to improve the technical knowledge
and methods/protocols that should be environmental friendly and anticipated its impact on marine
pollution [4–6].

Apart from its immense thermal and electrical conduction, silver metal plays a vital role in
catalysis of organic reactions. In recent years, organic reactions in aqueous medium were paid much
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attention, so that toxic contaminants can be easily converted into non-hazardous compounds under
milder reaction conditions [7–10]. The green synthesized SNPs are effective and have high activity
due to large specific surface to volume ratios. In addition, the collective oscillations of delocalized
electrons at a metallic surface made the SNPs as efficient catalyst than its bulk counterparts. Since the
environmental impact of SNPs on various aquatic organisms are still principally unfamiliar, and
the toxic effects of SNPs to organisms is mainly depend on the physicochemical characteristics of
nanoparticles [11–13]. It is always beneficial if the SNPs were synthesized via non-hazardous ecofriendly
routes rather than using toxic chemicals. In that concern, the various plant extracts were utilized
as ecofriendly bioreductants to produce biogenic SNPs. Since the plant extracts possess antiviral,
antibacterial, antioxidant, anti-mutagenic, antifungal, and anti-inflammatory properties, they can
serve as surface modifiers with unique additional properties for multifunctional performances [14–17].
We can also notice plentiful research reports on the biodegradable polymer and silver nanocomposites,
wherein SNPs were prepared in situ on biodegradable polymers and served as heterogeneous catalytic
template interfaces for PNP degradation [18–22].

The therapeutic potential of SNPs is mainly dependent on the phytochemicals of the plant
extract used in the synthesis. Recently, the chemical stability, biocompatibility, and catalytic
activity of SNPs are actively studied along with cytotoxic activities toward cancerous cells with
optimal therapeutic concentration [23–25]. The bioreductant from plant origin, especially from the
extracts of leaf, gum, root, stem, seed, flower, etc., were used to reduce metal salts. The plant
extract containing active phytochemicals such as polyphenols, flavonoids, polysaccharides, catechins,
tannic acid, epicatechin gallate, and anthraquinones including rhein and emodin, etc., are responsible for
bioreduction of silver salts to achieve stable, controlled size, colloidal polydisperse SNPs. These biogenic
SNPs are beneficial due to their reduced regular sizes and possessing practically enhanced antimicrobial
properties as well as cytotoxic responses on cancerous cells, which endorse their impact in the field of
nanomedicine and nanocatalysis [26–31].

The important factor to consider in pollution remediation process is that employed material
should not be another pollutant. In this concern, biodegradable polymers are an exceptional ideal
choice for this kind of application [32–34], where metal nanocatalysts based on SNPs produced from
plant-mediated ecofriendly routes with/without biopolymers as template materials can effectively
serve the purpose. Heretofore, a variety of metal nanoparticles were prepared phyto-chemically
and utilized in biomedical and catalytic applications. To the best of our knowledge, there is no
concise reports dealing with silver metal based nanocatalysts in combination with unhazardous
biopolymer composites for catalytic reduction of PNP [35]. The main objective of this short colloquy is
to provide a general overview on the phyto-synthesis of some remarkable functional SNP catalysts
and its biopolymer nanocomposites used especially in environmental remediation, for the catalytic
degradation of industrial pollutant PNP.

2. Phyto-Synthesis of Silver Nanoparticles and Its Biopolymer Nanocomposites

Besides commensurable to the environmental safety research, development of new nano-technological
“green” protocols for the synthesis of metal nanoparticles imparts implementing solution to technical
challenges in the field of nanocatalysis [36–39]. The researchers for the reduction of nitroarenes
explore varieties of reducing agent, while Fe–HCl is one of the most common reducing agents for
nitro compounds reduction. The environmental hazard caused by this Fe–HCl reagent is the massive
production of hazardous Fe–FeO sludge with unsatisfactory reaction yields [40–44]. Even though many
researchers study SNPs supported variety of templates, plant-mediated green synthesis of SNPs is
always a prime choice in environmental remediation. The main advantages of designed nanocatalysts
from the plant-mediated “green” route are being inexpensive and specifically providing a controlled
size and surface morphology. Another key consideration of plant-mediated SNPs are potent antioxidant,
antimicrobial, and cytotoxic activity on cancerous cells in biological systems [45–48]. A systematic
study of plant extract mediated synthesis of SNPs with comparative parameters are reported in Table 1.
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Recently, a comprehensive review by Iravani [49] highlights the sustainable and eco-friendly synthesis of
various nanoparticles along with SNPs of different dimensions using plant gum (an adhesive substance
usually obtained as exudate from the tree bark). Since the metal nanoparticles are successfully applied
in close proximity of biomedical fields such as pharmaceuticals, tissue engineering, and drug delivery,
hazardous toxic substances should be avoided. Concerning this, plant gum polysaccharides plays
a vital role with appealing cost effectiveness and biodegradability advantages [50,51]. Thakur et al.
and Velusamy et al. reported effective antibacterial SNPs against Bacillus subtilis, Bacillus cereus,
Salmonella enteritidis, and Pseudomonas aeruginosa from gums of Acacia Arabica with particle sizes in the
range 30.0–35.0 nm [52].

From the aqueous extracts of plant leaves, fruit peels, roots, rhizomes, etc., plentiful research has
been undertaken from several decades for the bio-green synthesis of SNPs. The biosynthesized SNPs
with sizes 4.0–35.0 nm from Albizia adianthifolia leaves were reportedly effective against A549 lung
cell line with viability data of 21% (10 µg/mL) [53]. In contrast, the leaf extract of Alternanthera sessilis
Linn. (Amaranthaceae) acts as remarkable capping and reducing agent for silver ions; which shows
superior stabilizing behavior with potent antioxidant activities including antimicrobial properties [54].
The SNPs reported by Vivek et al. from Annona squamosa leaf extract were found to be in the range of
20.0 to 100.0 nm and exhibited a dose-dependent cytotoxic effect on human breast cancer cell (MCF-7)
with inhibitory concentration (IC50) of 30 µg/mL at 48 h incubation period [55]. The outer peel extract
of Ananas comosus (L.) was effective to synthesize antioxidant, antibacterial, and antidiabetic SNPs with
cytotoxicity potential towards HepG2 cells [56]. A very fine size of SNPs < 25 nm were reported by
Azadirachta indica and Boerhaavia diffusa extracts, which show characteristic surface plasmon resonance
of SNPs at around 420.0 nm, and detailed antibacterial assay reveals that these biosynthesized SNPs
are active against Gram-positive bacteria Bacillus subtilus and demonstrated highest sensitivity toward
Flavobacterium branchiophilum [58,59]. The environmentally amenable SNPs produced from leaf extracts
of Brassica oleracea, Caesalpinia pulcherrima, and Cassia auriculata shows potential cytotoxic efficacy
towards MCF-7, HeLa, and PC-3 cells, respectively, proves advantageous in biomedical techniques,
especially in cancer therapy [60–62]. Balashanmugam et al. reported phytogenically synthesized
SNPs from Cassia roxburghii aqueous leaf extract at ambient conditions, showing noteworthy in vitro
antifungal activity against human and plant pathogens [63]. Roasted Coffea arabica seed extract
facilitated SNPs shows diminished bacterial growth of E. coli and S. aureus [64]. The various cancer cell
lines, such as SW480, J-774, MCF-7, MDA-MB-231, HepG2, A549, MCF7, HeLa, SiHa, B16F10, PC3,
COLO205, HEp-2, U-87, LoVo, RKO, MDA- MB-231, and HT-29, etc. were studied in detail with varieties
of SNPs using phyto-synthetic green routes [65–99]. In combination with biopolymers, these biogenic
SNPs are immobilized in the polymer matrix and show greater stability (see Figure 1, for the graphical
representation of phyto-synthesis and stability of SNPs in combination with biopolymers); we can also
notice superior mechanical and physical properties of biopolymers such as chitosan, agar, and pectin
silver nanocomposites [66,77]. The reported biopolymer based silver nanocomposite films shows
potential applications in food packaging [77,90–92].
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Table 1. Partial list of comparative parameters reported for plant extract mediated synthesis of SNPs.

Name of Plant Source

Size of Silver
Nanoparticles (SNPs)

Ultraviolet-Visible
Spectroscopy (UV-Vis) RANGE Antimicrobial

Activity
Cytotoxicity
Effective on

References
(nm) (nm)

Acacia arabica Gum 35.0 435.0 Effective NR [52]
Albizia adianthifolia Leaves 4.0–35.0 448.0 NR A549 cells [53]

Alternanthera sessilis Linn. Leaves 20.0–30.0 435.0 Effective NR [54]
Ananas comosus L. Peels NR 485.0 Effective HepG2 cells [55]
Annona squamosa Leaves 20.0–100.0 444.0 NR MCF-7 cells [56]

Azadirachta indica L. Gum <35.0 418.0 Effective NR [57]
Azadirachta indica Leaves 11.5 421.0 Effective NR [58]
Boerhaavia diffusa Plant 25.0 418.0 Effective NR [59]
Brassica oleracea Leaves 20.0 415.0 Effective MCF-7 cell [60]

Caesalpinia pulcherrima Leaves 410.0 410.0 Effective HeLa cell [61]
Cassia auriculata Leaves 30.0–50.0 423.0 Effective PC-3 cell [62]
Cassia roxburghii Leaves 10.0–30.0 435.0 Effective NR [63]

Coffea arabica Seeds 20.0–30.0 445.0–459.0 Effective NR [64]
Commiphora myrrha Plant 0.5–25.0 445.0 Effective SW480 cells [65]

Coptis Chinensis + Chitosan Rhizome 15.0–20.0 428.0 Effective J-774 cell [66]

Cucumis prophetarum Leaves 30.0−50.0 420.0 Effective MCF-7, MDA-MB-231,
HepG2, & A549 [67]

Datura inoxia Leaves 13.0–60.0 420.0 NR MCF-7 cells [68]
Delphinium denudatum Roots <85.0 416.0 Effective Aedes aegypti [69]

Diospyros lotus Leaves 20.0 409.0 Effective NR [70]
Emblica officinalis Fruits 10.0–70.0 432.0–436.0 Effective NR [71]

Erythrina indica lam Roots 20.0–118.0 438.0 Effective MCF-7 &
HEPG2 cell [72]

Ginkgo biloba Leaves 8.0–21.0 400.0–413.0 Effective NR [73]
Ginkgo biloba Leaves 20.0–90.0 448.0 NR HeLa, and SiHa [74]

Grewia flaviscences Leaves 60.0 380.0–460.0 Effective NR [75]
Indigofera hirsuta L. Leaves 5.0–10.0 436.0 Effective B16F10, PC3 & COLO205 [76]

Lagerstroemia speciose + Agar Fruits 32.0–62.0 412.0 Effective NR [77]
Limonia acidissima Leaves <30.0 425.0 Effective NR [78]
Malus domestica Apples 20.0 420.0 Effective MCF-7 [79]

Manilkara zapota Leaves 70.0–140.0 421.0 NR Anopheles
subpictus [80]

Melia azedarach Leaves 78.0 436.0 NR HeLa [81]
Morinda citrifolia Roots 32.0–55.0 413.0 NR HeLa [82]
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Table 1. Cont.

Name of Plant Source

Size of Silver
Nanoparticles (SNPs)

Ultraviolet-Visible
Spectroscopy (UV-Vis) RANGE Antimicrobial

Activity
Cytotoxicity
Effective on

References
(nm) (nm)

Origanum vulgare Leaves 136.0 440.0 NR A549 cell [83]
Phoenix dactylifera, Ferula asafetida,

Acacia nilotica Fruits 67.0–156.0 420.0–440.0 Effective LoVo [84]

Piper longum Leaves 17.6–41.0 420.0 NR HEp-2 cell [85]
Plectranthus amboinicus Leaves 18.0 428.0 Effective NR [86]

Potentilla fulgens Roots 10.0–15.0 400.0–450.0 Effective MCF-7 & U-87 [87]
Prosopis juliflora Leaves 11.0–19.0 420.0 Effective NR [88]
Punica granatum Peels 20.0–40.0 378.0 Effective RKO cells [89]

Rheum rhabarbarum Stems 60.0–80.0 420.0–460.0 Effective HeLa [90]
Rheum rhabarbarum + Chitosan Stems 50.0 433.0 Effective HeLa [91]
Rheum rhabarbarum + Chitosan Stems 5.0–50.0 430.0–450.0 Effective HeLa [92]

Ribes nigrum Fruits 5.0–10.0 450.0 Effective A549 cells [93]
Rosmarinus officinalis Leaves 12.0–22.0 400.0 Effective MDA MB 231 [94]
Sapindus mukorossi Extract 35.0 420.0 Effective NR [95]

Sargassum polycystum 28.0 405.0 NR HT-29 cells [96]
Solanum trilobatum Fruits 12.0–41.0 432.0 Effective MCF 7 [97]

Syzygium aromaticum Cloves 5.0–40.0 441.0 NR MCF 7 & A549 [98]
Terminaliachebula Leaves 10.0–30.0 421.0 Effective NR [99]

NR = Not reported.
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The presence of the various functional entities such as amine, hydroxyl, carbonyl and carboxyl
groups with carbohydrate polymer frameworks are responsible for the synthesis of SNPs by bioreduction
process [100,101]. Some researchers synthesized SNPs successfully using cyanobacterium algae [102].
Additionally, the synthesized SNPs are stabilized by functional groups of phytochemicals present
in the plant extract. We can notice plentiful research on phyto-synthesis of various nanomaterials,
such as gold, platinum, copper, gold, titanium, and zinc, etc., but SNPs have proved their efficiency as
a potent antimicrobial agent with unique optical, electrical, thermal, and catalytic properties [103,104].
The increasing popularity of phyto-synthesis, the so-called “green route” for SNPs offer many
advantages over routine chemical synthesis. Plant extracts (from leaf, gum, roots, stems, rhizomes,
seeds, flowers etc.) have a rich source of active phytochemicals such as catechins, anthraquinones,
phenolics, terpenoids, flavonoids, tannins, enzymes, proteins, polysaccharides, and organic acids, etc.
These biomolecules took active part in the complex mechanism of reduction and stabilization of SNPs
from silver ions [105,106]. (See Figure 1 for phyto-synthesis and stability of SNPs).

3. Catalytic Degradation of p-Nitrophenol Using Silver Nanoparticles

The extent of toxic compounds impact on the environment leads to a significant effect on exposed
organisms. We can encounter the aggregation of the toxic components in the natural environment
especially to air, soil, and water. The environmental pollution is a serious problem and has a
devastating effect on nature because of the chain of events that ensue the toxic contaminants and
eventually enter into the natural environment [107,108]. In spite of other sources of pollution, industries
are the worst generators of toxic contaminants. The contaminants finally enters the environment
and sequentially contaminate water by degrading the water quality, rendering toxicity to aquatic
life and humans [109–111]. The major effluent from pesticides, explosives, and dye industries are
nitrophenols; these toxic organic anthropogenic pollutants can easily enter into the aquatic stream
if the appropriate precautionary measures are not implemented on effluent treatment. Due to the
remarkable demonstration and significant catalytic activity of SNPs, many researchers documented
the efficient catalytic degradation of nitroarenes from industrial wastewater [112–118]. The main
criteria of the developed nanocatalyst are environmentally friendly, economically viable, biodegradable,
and non-toxic with multifunctional behavior such as high adsorption, removal ability, and reusability.

We can find plentiful applications of sodium borohydride in various catalytic reactions. The use of
sodium borohydride as a reducing agent is reported in various organic and inorganic reactions [119–121].
In contrast, the reduction of PNP is not possible by sodium borohydride alone. The ratio of potential
difference for PNP to PAN is −0.76 V and H3BO3/ BH4¯ is −1.33 V at ambient temperature. Even though
the reaction of PNP to PAP is thermodynamically favorable, the conversion reaction is kinetically too
slow [122]. This is due to the presence of kinetic barrier and potential difference between borohydride
(donor) to p-nitrophenolate ions (acceptor). The SNPs overcome this kinetic barrier by catalyzing the
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reaction and facilitating the relay of electrons from the donor to acceptor molecules. The interaction of
aqueous sodium borohydride with SNPs, quickly generates hydrogen gas and adsorb on the SNPs
surface, which further enables the reduction process by interactive adsorption of p-nitrophenolate ions
on the SNPs surface [123]. The reaction involves various organic intermediates and finally desorption of
p-aminophenolate ions from the SNPs surface (for graphical representations, see Figure 2). In accordance
with the catalyst, the analyte PNP in presence of sodium borohydride follows pseudo-first-order
kinetics [124,125]. The electron transfer reaction from borohydride ions to p- nitrophenolate ions will
transpire after the adsorption of donor-acceptor molecules on SNPs surface. The reaction proceeds
by diminishing the activation energy and SNPs catalyst play a vital role in the catalytic reaction
(For graphical representations, see Figure 3). It is believed that the conversion of PNP to PAP is a
six-electron transfer reaction in the presence of sodium borohydride; the conviction was also supported
by the reaction intermediates isolated and studied via mass-spectrometric techniques [126,127]
(see Figure 4).Metals 2020, 10, x FOR PEER REVIEW 8 of 22 
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For brief understanding, the reduction of PNP is not possible by using sodium borohydride
alone. After adding SNPs catalyst to PNP in presence of aqueous sodium borohydride, the formed
p-nitrophenolate shows the maximum absorption (λmax) in UV–vis spectrum in the range of 400–410 nm.
The time dependent UV–vis spectrum is to be recorded to check the progress of the catalytic reaction.
The diminishing peak of λmax = 400–410 nm was observed with the appearance of new λmax peak at
around 300–320 nm, which is due to the formation of p-aminophenolate ions in the reaction mixture.
Further, decrease in the pH of the solution was observed due to the addition of sodium borohydride,
which enables the conversion of PNP to PAP [127,129]. The use of sodium borohydride concentration is
significantly higher than the concentration of PAP, and the reduction rates are independent of the sodium
borohydride concentration, accordingly the reaction follows the pseudo-first order reaction [130,131],
the equation can be written as follows:

− k1S = −kapp t = ln
Ct

C0

where kapp (k1S = according to Langmuir–Hinshelwood mechanism) is the apparent rate constant; t is
the reaction time; C0 is the relative concentration of PNP at time zero (initial concentration); Ct is the
concentration of the PNP at time ‘t’ (different interval of time during the catalytic reaction). From this
equation, it is obvious that the higher the value of apparent rate constant (kapp) for the catalytic reaction,
the more efficient is the used catalyst [132,133].

Various researchers investigated the catalytic efficacy of ecofriendly SNPs prepared from several
plants of different source. The comprehensive list was reported in Table 2. These effective SNPs catalysts
show remarkable catalytic degradation efficiency against PNP, one of the main mutagenic organic
pollutants. Researchers successfully carried out catalytic reactions by removing PNP in aqueous media
using biogenic SNPs. The obtained SNPs are spectro-chemically characterized using different advanced
analytical techniques such as Ultraviolet-Visible spectroscopy (UV-Vis), Fourier-transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron
microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX),
dynamic light scattering (DLS), and X-ray photoelectron microscopy (XPS), etc.

Previously, we reported the biosynthesis of SNPs from Rhubarb stem extract (RS extract) as
bioreductant. In brief, the chopped Rhubarb stems were suspended in hot double distilled water for
about 1 h and filtrate was collected and stored under <5 ◦C for further use. The RS extract was mixed
stoichiometrically with silver nitrate solution at different interval of time to get ecofriendly SNPs
[designated here as RS-AgNPs (Rhubarb stem extract—Silver nanoparticles)] within 15 min. The RS
extract was lyophilized to get in powder form to compare the morphology with RS-AgNPs [91].
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Table 2. Partial list of catalytic reduction reaction parameters of PNP to PAP reported for ecofriendly SNPs in the literature.

Prepared SNPs Catalyst
from Plant Source SNPs Size (nm) Catalyst Loading Conversion Time

(min)
PNP

(mM)
BH4−

(mM)
Rate Constant

(kapp) References

Acacia nilotica (Gum) 10.0–40.0 a 1.5 mg 12.0 4.3 100.0 0.3606 min−1 [134]
Acacia nilotica (Stem) <50.0 5.0 mg 10.0 0.1 0.1 0.0806 min−1 [135]

Actinodaphne madraspatana (Leaves) <60.0 5.0 mg 1.5 0.1 5.0 13.25 × 10−3 s−1 [127]
Aglaia elaeagnoidea (Flowers) 17.0 NR 15.0 1.0 10.0 22.5 × 10−2 min−1 [136]

Aglaia elaeagnoidea (Leaves) + Alginate 12.0 144.8 mg 5.0 1.0 10.0 0.5054 min−1 [137]
Allium ampeloprasum L. (Leaves) 2.0–43.0 NR 12.0 20.0 500.0 0.2596 min−1 [138]

Arctium lappa (Roots) 21.3 1.0 mg 12.0 0.1 1000.0 6.77 × 10−3 s−1 [139]
Bryonia alba (Leaves) <20.0 5.0 mg ≈30.0 b 2.5 250.0 NR [140]

Caulerpa serrulata (Green Algae) 10.0 0.1 mL 5.0 NR 1.74 0.580 min−1 [141]
Centella asiatica (Aerial Parts) 20.0–25.0 NR NR 21.5 21.5 3.9 × 10−3 s−1 [142]

Cicer arietinum (Leaves) 88.8 30.0 µg 40.0 2.0 30.0 NR [143]
Cichorium intybus L. (Leaves) + Pistachio shell 10.0–15.0 5.0 mg 0.51 2.5 250.0 NR [144]

Coleus forskohlii (Roots) 35.0–55.0 25.0 µL 24.0 10 50.0 0.10118 min−1 [145]
Colocasia esculenta (Rhizome) 68.0 3.3 mg 6.0 1.0 500 5.27 × 10−3 s−1 [128]
Cyperus Rotundus (Rhizome) 10.0–40.0 100.0 µL 10.0 5.0 100.0 0.293 min−1 [146]

Dalbergia spinosa (Leaves) 18.0 200.0 µL 40.0 0.1 0.1 NR [147]
Ginger (Rhizome) 25.0 2.8 mg 14.0 1.0 1.0 2.38 × 10−3 s−1 [148]

Ginkgo biloba (Leaves) 20.0–40.0 0.2 mg 100.0 2.5 250.0 0.0452 min−1 [149]
Hamamelis virginiana (Leaves) 8.0–25.0 0.24 mg 4.0 2.5 250.0 NR [150]

Lawsonia Inermis (Leaves) 18.0 20.0 µL 15.0 1.0 1.0 NR [151]
Phaseolus vulgaris (Beans) 10.0–20.0 1590.0 nM 15.0 50.0 200.0 1.59 mM/g/h [152]
Punica granatum (Peels) 30.0 10.0 µL NR 1.0 1.0 mg c NR [153]
Punica granatum (Seeds) 10.0–35.0 50.0 µL 7.0 5.0 1000.0 0.1424 min−1 [154]

Rheum rhabarbarum (Stems) + Guar gum <10.0 100.0 mg 14.0 0.6 100.0 0.1218 min−1 [155]
Rubus crataegifolius (Bge Fruits) 13.0 100.0 µL 30.0 0.1 5.0 NR [156]

Simarouba glauca (Leaves) 7.0 0.01 mg 6.0 0.1 10.0 18.424 × 10−3 s−1 [157]
Stachys Lavandulifolia + MWCNT 3.15 0.06 mg 4.0 0.2 150.0 1.92 × 10−2 s−1 [158]

Syzygium aromaticum (Cloves) 9.0 5.0 mg 30.0 NR 100.0 0.07494 min−1 [159]
Terminalia bellerica kernel (Fruits) 29.6 0.4 mg 60.0 0.001 500.0 0.03 min−1 [160]

Thymbra spicata (Leaves) 7.0 0.35 mg 1.0 0.002 250.0 0.0645 s−1 [161]
Tulsi (Leaves) 5.0–10.0 10.0 µL 30.0 5.0 200.0 2.048 min−1 [162]

Ziziphus spina-christi (Leaves) 15.0 50.0 µL 15.0 10.0 100.0 4.4 × 10−3 s−1 [163]

NR = Not reported, a 1.5 mg mL−1 of SNPs, b Not completely converted, c 1 mg of sodium borohydride in 1.5 mL of 1 mM SNPs solution.
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It is evident from the Figure 5 that, we can easily distinguish RS extract powder with RS-AgNPs,
the adopted synthetic process does not involve any harmful chemicals. The morphology of RS-AgNPs
demonstrate SNPs capped with various phytochemical groups of RS extract. Recently, by varying the
amount of guar gum biopolymer, we formulated biopolymer silver nanocomposites (designated here
as AgNC@PAAG1). The developed silver nanocomposites demonstrate its efficacy as nanocatalysts
against model reduction reaction of PNP to PAP by aqueous sodium borohydride with apparent rate
constant of 121.8 × 10−3 min−1 at ambient temperature. In addition, silver nanocomposite hydrogels
prepared from RS extract showed potent antimicrobial activity against B. subtilis and E. coli. We also
proposed drug delivery application of these silver nanocomposite hydrogels [155]. The morphology of
developed guar gum based silver nanocomposite hydrogels are portrayed in Figure 6, which signpost
uniform distribution of SNPs throughout the hydrogel networks.
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Gavade et al. synthesized biogenic SNPs catalyst from Acacia nilotica gums and its catalytic
efficiency towards PNP was reported with different catalytic quantities, the catalytic loading of
15.0 mg·mL−1 of SNPs shows better performances in converting PNP to PAP within 12.0 min with kapp

value 0.03651 min−1 [134]. In contrast, SNPs synthesized form stem extracts of Acacia nilotica shows
comparatively higher catalytic efficiency, if we consider the concentration of sodium borohydride
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used in the reaction [135]. Using Actinodaphne madraspatana bedd leaves, Priya et al. synthesized and
reported the size dependent catalytic activity of SNPs. The SNPs of different sizes (60, 35, and 20 nm)
were prepared at different pH (6.0, 9.0, and 12.0), respectively. The authors noticed the catalytic activity,
it was found to increase with decrease in SNPs size. For the SNPs size of ≈ 20.0 nm, authors testified
significant kapp value of 13.25 × 10−3 s−1 with conversion time within 1.5 min [127]. Manjari et al.
documented the facile synthesis of SNPs using Aglaia elaeagnoidea flower extract. The authors mentioned
the conversion time of PNP to PAP is around 15.0 with kapp value 22.5 × 10−2 min−1 [136]. IN contrast,
the leaf extract of Aglaia elaeagnoidea produce average 12.0 nm size SNPs inside the sodium alginate gel
network and shows extraordinary conversion efficiency. The prepared SNPs incorporated alginate
gel beads shows superior catalytic recyclability up to 10.0 consecutive cycles with ≈80% conversion
efficacy. The authors claim that the minimum loss of catalyst (<4%) was observed during the course of
catalytic reaction throughout 10 successive cycles [137].

The SNPs prepared form different sources (leaves, roots, rhizome, peels, seeds, cloves,
fruits, beans) plants with were reported in Table 2 with various parameters including
kapp values [138–154,156–161,163]. Recently, we reported guar gum-silver nanocomposite hydrogels
using rhubarb stem-extract as bioreductant. These SNPs gels shows remarkable kapp value 0.1218 min−1

with higher recyclable efficiency [154]. The comprehensive list reported in Table 2 also includes SNPs
prepared from medicinal plants like Ginger rhizomes and Tulsi leaves, which shows kapp values of
2.38 × 10−3 s−1 and 2.048 min−1, respectively [148,162].

4. Conclusive Remarks

Currently, our ecosystem is becoming extremely unpleasant due to the release of anthropogenic
pollutants from different industries to the environment. Due to this, pollutants are contaminating our
natural water resources across the world. To interpret the experimental kinetic data of an organic
pollutant, PNP from industrial wastewater, it is reasonable to utilize these phytochemical-induced,
unhazardous SNPs and its biopolymer conjugates in catalytic processes. These biogenic SNPs
demonstrate advantageous surface chemistry, because these SNPs are stabilized by phytochemical
functional groups. It was noticed that, they exhibit remarkable antimicrobial properties and potent
cytotoxic responses on cancerous cells.

In line with several benefits of “green” SNPs and its biopolymer composites, various functional
parameters—particularly surface area and porosities of SNPs incorporated gel networks—are also to be
expected for the favorable catalytic activity, which can enhance the interaction between the supported
biopolymer templates and SNPs, and predict apparent rate constant (kapp) of the nanocatalysts.
Despite this, the nature of phyto-synthesized SNPs and its biopolymer composite materials have been
extensively studied along with some congruent reports. A number of advantageous points have been
agreed upon as follows:

• A series of well-stabilized SNPs can be achieved with tunable size distribution using
plant-mediated protocols.

• Biodegradable and non-toxic polymers in combination with ecofriendly SNPs always play an
important role in medicinal and food-based industries.

• Chemical synthesis of SNPs involve the usage of toxic reducing agents and are the subject of
environmental concern, so it should be avoided.

• Dynamic tunability of antimicrobial activity of plant-mediated SNPs toward various bacterial
strains and several human viral pathogens were observed.

• Ecofriendly SNPs demonstrate extraordinary and unique optical, thermal, and electrical properties
of SNPs attracted researchers to utilize in diverse technical fields from photovoltaics to
chemical sensors.
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• Fabrication of ecofriendly SNPs and its non-toxic biopolymer composites with multi-functional
properties are owing to superior catalytic degradability of PNP and wide range of applications
in nanocatalysis.
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