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Abstract: The crystallography of twinning is based on the concepts of simple shear and obliquity
introduced by Mügge, Mallard and Friedel at the turn of the last century, with tensor mathematics
later developed by Bilby, Bevis and Crocker in the 1960s. We propose a synthesis of these works by
writing the three transformations (distortion, orientation and correspondence) as matrices in dyadic
product forms. We show that a “normal” Friedelian mode is implicitly assumed. We introduce
another mode called “tilted” that explains, with the simple twin index q = 1, some twins that were
previously oddly reported with q = 2. We also interpret the type II twins, which are usually presented
as the conjugate twins of type I twins, as simple shears a rational reciprocal plane, exactly as the
type I twins are simple shears a rational direct plane. Finally, we explain why the term “twin” for
variants inherited from a phase transformation is not appropriate, and we call for a generalization of
the crystallography of twinning by considering epitaxial distortions and iso-orientation shears.
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1. Introduction

The research for a general theory of twinning dates from the early days of crystallography, as
detailed in an excellent book [1]. The existence of the lattice was discovered by Haüy, but the notion
of atoms was not fully accepted, and the “motif” associated with the lattice could just be imagined
as a continuum medium filling the unit cell. Haüy and Bravais noticed that the interfaces of growth
twins in gemstones are often flat and follow low-index planes [2]. Similar observations were made
on deformation twins in calcite and other minerals. Deformation twinning was thus imagined to
result from a simple shear of lattice [3]. The shear should be special in order to “restore” the lattice of
the initial phase. In the 1880s, Mügge [4,5] found the general equations to describe the orientation
relationship between a crystal and its twin formed by deformation. He introduced the important
concepts of type I and type II twins thanks to the four geometrical elements of twinning (K1, η1,
K2, η2), with the reticular plane K1 that contains a direction η1 (not necessarily reticular), and their
conjugates, the plane K2 (not necessarily reticular) that contains the reticular direction η2 (see also [6]
for the historic details). In this paper, we will use equivalently the terms “reticular” and “rational” to
mean that a plane or a direction belongs to the lattice, i.e., their coordinates are integers for simple
lattices, and half-integers for body-centered cubic (bcc) or face-centered cubic (fcc) lattices. Type I
twins are defined by their shear plane p = K1 along the shear direction d // η1 with an amplitude s, as
shown in Figure 1a. This shear leaves both the direction η2 and the plane K2 undistorted but rotated
by an angle 2θ. The angle θ is linked to the shear amplitude by s = 2 tan(θ). Type II twins are defined
from type I twins by exchanging (K1, η1) with (K2, η2), i.e., such that the shear plane is p = K2 along
the shear direction d // η2. In other words, type I twins are defined by a rational shear plane, and type
II twins by a rational shear direction [7–10]. When the four elements are rational the twin is said to be
“compound”. All the twins in cubic crystals are compound twins. For a type I twin, K1 is a mirror
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plane for the twin edifice; it is also the interface between the two individual crystals. For type II twins,
the direction η2 is a 180◦ rotation for the edifice. Many growth twins of type II do not exhibit a clear
straight interface, or if it exists, it is the plane K2 or a rational plane closest to K2 containing η2. It is
assumed that the plane K1 for type I twins and the direction η2 for type II twins cannot be symmetry
elements of the individual crystals. After Mügge, the mathematics inherited from these concepts were
developed by Kihô [11], Jaswon and Dove [12], and later by Bilby, Bevis and Crocker [13–15].

In parallel to Mügge’s work on deformation twins, Mallard [16] introduced important concepts
for the crystallography of growth twins in the period 1876–1886: (a) “twinning by merohedry” where
the crystal and its twin share the same lattice but the orientation of the motif is different; and (b)
“twinning by pseudo merohedry” in which a reticular plane is “nearly” a mirror plane of the crystal or
a reticular direction is nearly a 180◦ rotation (see also [17,18]). A plane can become a mirror symmetry
for the twin edifice when its normal is close to a reticular direction, and a direction can become a 180◦

rotation when its normal plane is close to a reticular plane. In such cases, the lattice of the crystal and
that of its twin are “close”, which means that a slight distortion is sufficient to transform one into the
other. An example is shown in Figure 1b. The direction n normal to the plane K1 = (0, 1) is close to the
reticular direction η2 = [0, 1]; twinning can occur because the obliquity θ, i.e., the misorientation angle
between the two directions, is small. The parent and twin lattices are in mirror orientation through
their common K1 plane. We took the liberty to use here Mügge’s notations of deformation twinning K1

and η2, whereas Friedel never used them to describe the growth twins. Note that the unit cell rhombi
of the cell can be imagined as derived from an hypothetical square, and that the (0, 1) plane would
be a symmetry element of this square. Mallard believed that the existence of the pseudo-symmetry
necessarily involves an imaginary phase of higher symmetry that would act as a parent phase for both
the crystal and its twin, but Friedel disagreed on this point and clearly stated that twinning is not a
matter of symmetry but of metrics [19].
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Figure 1. Similarities between the models of deformation and growth twinning shown in the case of 
type I twins. (a) Deformation twinning by simple shear introduced by Mügge in 1889 and represented 
by Hall in 1954. Reprinted from [9] with permission from Elsevier. The angle between the plane K2 
and its image K2’ by the shear along d // η1 is 2θ (d and θ are not marked in the figure). (b) 2D 
representation of twinning by pseudo-merohedry as initially introduced by Mallard in 1893 and 
Friedel in 1904 for growth twins. The parent lattice is in blue and its twin in red. The obliquity θ is the 
angle between the reticular direction η2 = b = [0,1] and the normal to the plane K1 = (0,1). The two 
lattices are in mirror symmetry and differ by a slight misfit represented by the vector d // [1,0]. 

Friedel introduced in 1904 the concept of “twinning by reticular pseudo merohedry” by 
generalizing Mallard’s concept of “pseudo-merohedry” to the “multiple” lattices. The ratio of the 

Figure 1. Similarities between the models of deformation and growth twinning shown in the case of
type I twins. (a) Deformation twinning by simple shear introduced by Mügge in 1889 and represented
by Hall in 1954. Reprinted from [9] with permission from Elsevier. The angle between the plane
K2 and its image K2

′ by the shear along d // η1 is 2θ (d and θ are not marked in the figure). (b) 2D
representation of twinning by pseudo-merohedry as initially introduced by Mallard in 1893 and Friedel
in 1904 for growth twins. The parent lattice is in blue and its twin in red. The obliquity θ is the angle
between the reticular direction η2 = b = [0, 1] and the normal to the plane K1 = (0, 1). The two lattices
are in mirror symmetry and differ by a slight misfit represented by the vector d // [1, 0].

Friedel introduced in 1904 the concept of “twinning by reticular pseudo merohedry” by
generalizing Mallard’s concept of “pseudo-merohedry” to the “multiple” lattices. The ratio of
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the volume of the supercell that forms the multiple lattice divided by that of the unit cell is an integer
called “twin index” [19,20] and noted q. The Coincidence Site Lattice (CSL) and the associated number
Σ introduced by Bollmann in 1970 [21] are nothing else than the multiple lattice and twin index
introduced by Friedel decades earlier (see [22] for historical details). Mallard and Friedel’s theory
has strongly influenced mineralogy because it explains many growth twins observed in numerous
gemstones and rocks.

Friedel did not clearly recognize that the concept of “obliquity” he introduced for the growth
twins is in direct correspondence with that of shear introduced by Mügge two decades earlier, even if
he perfectly knew and largely cited Mügge’s works on deformation twinning in 1926 [20]. However, as
already mentioned, both are directly linked by s = d/h = 2 tan(θ). This relation is important because it
means that a unique crystallographic model could explain both the growth twins and the deformation
twins. For deformation twins, experiments show that only the twins with the lowest shear values are
observed. This result is so well known that it is perceived as “obvious”; but it is not. Actually, the
twins with high shear values would relax more efficiently the applied stress than low shear twins,
and they should thus be favored by thermodynamics because the Gibbs free energy G is reduced by
the external work W = σij εij. However, a large shear twin cannot form instantaneously in the whole
volume of the sample; accommodation in the external surrounding parent host is required, which
introduces a positive term to G. Only the contribution of the accommodation term explains why the
observed twins are generally low shear twins. The physical origin of the growth twins is different.
They appear at the first stage of the formation of a crystal as accidental defects that are made possible
only because of the low energy of the interface between the crystal and its twin. In general, the crystal
grows perpendicularly to low energy faces that are often planes with low indices. If the growth plane
is not a symmetry plane of the crystal, the stacking is faulted and this generates a newly oriented
crystal, i.e., a twin. The crystal and the twin then grow at the same speed to form the twinned edifice.
If the twin could be formed instantaneously on perfectly flat layer, the value of the obliquity would
have no effect on the propensity of the twin to form. As shown by Friedel, however, only twins with
low obliquity are observed. This is because the interface is never perfectly flat and the twin co-exists
with its parent crystal in the volume. Therefore, as for deformation twins, the accommodation of
the distortion between the two lattices is important and should be considered in three dimensions.
This qualitatively explains why the same crystallographic approach can work for both deformation
and growth twins despite the difference of mechanism. The misfit to accommodate the formation of
growth twins is quite similar to the shear distortion of deformation twins. In his excellent 1954 review,
Cahn [7] noticed that the shear associated with some deformation twins in metals is very large (up to
0.7), implying an obliquity (19◦) far larger than the maximum admitted obliquity for growth twins
(~6◦). This fact has discouraged crystallographers to develop a unified theory. Mineralogists continue
their research on growth twins with Friedel’s theory, whereas metallurgists and geologists interested
in the mechanical properties use Mügge, Bilby, Bevis and Crocker equations. However, to our opinion,
the mathematics is the same for both types of twins.

The manuscript aims at presenting a synthetic and didactic view on the crystallography of twins.
It will explain in details how the three transformation matrices (shear, orientation and correspondence)
disseminated until now under various forms in a vast literature can be determined and expressed
uniformly as dyadic products. This systematic approach will be helpful to realize that the earlier works
rely on Friedel’s assumption of “low obliquity” that implicitly links the orientation and the shear
matrices. A new twin mode that breaks this correlation, called “tilted” mode, will be introduced to
complete the “normal” Friedelian mode. It will allow us to explain with a simple twin index q = 1
some deformation twins in magnesium and bcc metals oddly reported in earlier literature with q = 2.
Another contribution of the paper concerns the type II twins. We will show that they can be introduced
independently of the type I twins as simple shears acting on a rational plane of the reciprocal space.
Eventually, we will discuss why we think that the terminology “transformation twins” for phase
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transformation variants is inappropriate. We will also explain why the crystallography of twins should
continue to evolve by exploring hypotheses that were forbidden, more by dogmatism than by physics.

2. The Type I Twins and the Twinning Transformation Matrices

2.1. Crystallographic Notations

Jaswon, Dove, Bilby, Bevis and Crocker and other authors used the tensor notation with the full
expression of the indices that makes the reading of their papers uneasy. Matrix notation in which the
indices are not written allow lighter equations, as already commented by Christian and Mahajan [10].
Here, we will use the same matrix notations and conventions as in Reference [23]. We briefly recall
them. Vectors are written in bold lower cases, and matrices in bold capital letters. A vector d of
the direct space is in column, and a vector p* of the reciprocal space is in line. The same reciprocal
vector is simply written p when it is in column, i.e., p∗ = pt with the symbol t in the superscript
meaning “transpose” (not “twin”). A term-by-term scalar product is calculated by taking a vector of
the reciprocal space and a vector of the direct space, for example p∗·d = pt

·d = pidi with Einstein’s
convention, i.e., summing the coordinates of indices i ∈ {1, 2, 3}. The dyadic product of the vectors
d⊗ p = (d·pt) is the matrix dip j. By default, we will always write the equations with column vectors.
The dyadic product notation has all the properties of the matrix product; it is for example associative,
which means that for any vector u, we get (d·pt)·u = d·(pt

·u), i.e., it is the vector d multiplied by the
scalar product pt

·u.
We recall that if a distortion matrix F acts on the vectors u of the direct space, d′ = F·d, the

same distortion acts on the plane p by p′ = F∗·p, with F∗ = F−t (inverse of the transpose of F).
It can be checked that any direction d lying on the plane p remains on the plane after distortion as
p′t·d′ = (F−tp)t

·Fd = pt
·d = 0. For any crystal one can be associate a crystallographic basis

Bc = (a, b, c) formed by the usual crystallographic vectors. At the basisBc can be associated a 3× 3 unit
cell matrix Bc = [a, b, c] by writing the coordinates of a, b, c in columns in a unit orthonormal reference

frame. The metrics of the crystal is then defined by the metric tensorM = Bt
cBc =


a2 bt

·a ct
·a

at
·b b2 ct

·b
at
·c bt

·c c2

.
The metric tensor is nothing else than the coordinate transformation matrix between the reciprocal
space and the direct spaceM = [B∗c → Bc]. It has the properties to be symmetricM = M

t, and
M
∗ = [Bc → B

∗
c] = M

−1. The scalar product between the vectors u and v of the direct space is
determined by expressing one vector in the reciprocal space thanks to the metric tensor, (u·v) = utMv.
The norm ‖d‖ of a vector d of the direct space, and the norm ‖p‖∗ of a vector p of the reciprocal space
are respectively given by:

‖d‖ =
√

dt
Md and ‖p‖∗ =

√
ptM∗p (1)

The notation
~
d applied to a direct vector means that d is normalized by ‖d‖, and the notation

~
p

applied to a reciprocal vector p means that p is normalized by ‖p‖∗.

~
d =

d
‖d‖∗

and
~
p =

p
‖p‖∗

(2)

The inter-reticular distance dhkl between the planes p of Miller indices p = (h, k, l) is:

dhkl =
1
‖p‖∗

(3)

The unit normal direction in the direct space of a plane p is n given by:

n = M∗~p (4)
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It can be verified that ntMn = nt ~
p = 1.

The present paper is written by trying to find a good compromise between a rigorous but heavy
notation and a weak but easy-to-read one. The use of the conventional crystallographic notations is
respected, even if sometimes the reader must remain very careful to avoid confusion. For example, we
use the conventional indices u, v, w in italic for a direction d = [u, v, w], but we also use the same letters
in bold to designate three vectors u, v, w. Similarly, we use the conventional indices h, k, l for a plane
p = (h, k, l) without any relation with the reciprocal vectors h, k, l. The value h also designates in the
text the distance between the q-layers of the p-plane.

Three matrices play key roles in the crystallographic description of structural phase transformation
in general, and for deformation twinning in particular. They are the lattice distortion matrix F, the
orientation relationship matrix T, and the correspondence matrix C, as detailed in Reference [23,24].
The methods to calculate them have been progressively developed at the end of 19th and along the
20th centuries by Mügge, Kihô, Jaswon, Dove, Bilby, Bevis and Crocker. They are all based on the
Friedelian notion of “normal” obliquity (as it will be clarified in Section 4).

2.2. Schematic Representation of Twinning

The main equations of F, T and C matrices of type I twins are already reported in literature, but
spread in different papers [4–15], and sometimes without clearly explaining the nature of the proposed
matrix. We will give to them in a unique formalism by considering Figure 2.
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Figure 2. Schematic representation of a type I deformation twinning (normal mode). The parent crystal
Υ is in blue and its twin α in red. The supercell (u, v, w) of the parent crystal Υ is distorted by a simple
shear along the direction d that lies in the plane p such that its image (u′, v′, w′) becomes an equivalent
supercell of the twin α. The angle θ = (w, n) = (w′, n) is the “normal” obliquity, where n is the normal
to the plane p.

The parent crystal is noted Υ, and its twin α. Actually, they are the same phase, and the Greek
letters are used here only to differentiate the orientations of the crystals. We call uγ, vγ, wγ the three
reticular vectors of the parent crystal forming the supercell that is sheared. Their coordinates are
rational. The lower index Υ refers to the crystal Υ. Please note that in our paper [23] Υ was written as an
upper index, but here we prefer to put it to the lower position to leave space for the sign “t” (transpose)
in the dyadic products. When the coordinates of a vector u are expressed in the crystallographic basis
of the crystal Υ, we use the notation u/γ. For example uα/γ means a reticular vector of the crystal α
whose coordinates are written in Bγ

c , where Bγ
c is the crystallographic basis of the crystal Υ. When

the coordinates of reticular vectors of phase Υ are written in their own crystallographic basis Bγ
c ,

we simply write uγ in place of uγ/γ; in other words we assimilate the geometrical vector uγ to its
algebraic coordinates uγ/γ.

We note u′ = u, v′ = v, and w′ the images of the vectors u, v, and w by the simple shear F on
the plane p = (u, v) along the direction d. For type I twins, p = K1 and d // η1. The direction w is the



Metals 2020, 10, 231 6 of 32

direction usually called η2. It is just rotated; its length is unchanged ‖w‖ = ‖w′‖. It should be noted
that w points to a node located in the qth layer of plane p, as illustrated in Figure 3. Thus, the direction
w and its image w′ are such that pt

·w = pt
·w′ = q, where q is the twin index (integer). As u and v

are reticular vectors, q is also the volume of the supercell divided by the volume of the primitive cell.
The case q = 1 defines a primitive lattice, and thus applies to “twinning by pseudo merohedry”, and
the case q > 1 defines a multiple lattice (a supercell) and thus applies to “twinning by reticular pseudo
merohedry” in Friedel’s terminology. The input for type I twins are the reticular shear plane p = K1

and a reticular direction w. Actually, the only input is p since w can be deduced from p by Bezout’s
algorithm [25].
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Figure 3. Schematic representation of the layers formed by the plane p = (h, k, l). The inter-reticular
distance is noted dhkl. The vector normal to the plane is n in the direct space. The nodes of the lattices
are marked by small circles. The supercell of the parent crystal that is used to model the type I twins
is (u, v, w) marked in bold black. Here, the vector w points to a node of the second layer q = 2. The
distance h between the p-layers is h = q·dhkl.

2.3. The Distortion Matrix F

From a mechanical point of view, a simple shear can be described by two orthogonal vectors, the
shear direction d that is a vector of the direct space, and the shear plane p that is a vector of the reciprocal
space. They are orthogonal, which means that pt

·d = 0. The matrix of simple shear is calculated from
the dyadic product between the normalized vectors d and p expressed in the crystallographic basis
(not specified here to make the formula more compact), that is:

F = I + s
(~
d·

~
p

t
)

(5)

with I the identity matrix, and s the shear amplitude. The notation Fγ will be also used to specify that
F acts on the reticular directions of the crystal Υ.

It can be checked that for any vector r that belongs to p, i.e., pt
·r = 0, then F r = r. In addition, n

the unit normal to the plane p given by Equation (4) is transformed into the vector n′ = F n = n+ s
~
d,

and any vector u = n + r is transformed such that u′ − u = n′ − n = s
~
d, which signifies that s

in Equation (5) is the measure of the displacement along the direction d of any point located in a
plane parallel to p at a unit distance from p. In order to determine F from Equation (5) one needs
to determine the direction d and the shear value s as function of the reticular plane p and reticular
direction w used to define the supercell. The directions u, v are left invariant by the shear, u′ = u, and
v′ = v. The direction w′ = F w is such that w′ −w = d is the shear direction (not rational, at least in
the usual theory), with:

d = −2w + 2hn (6)



Metals 2020, 10, 231 7 of 32

where h is the distance between the p-layers that are sheared, h = q·dhkl =
q
‖p‖∗ and hn = q M

∗p
ptM∗p .

Pythagorean theorem also shows that ‖d‖2 = 4
(
‖w‖2 − h2

)
. Consequently:

s2 =
‖d‖2

h2 = 4
(
‖w‖2

h2 − 1
)

(7)

Equation (7) is a classical formula of literature (see for example [10]). Combining Equation (5)
with (6) and (7) allows determining the shear distortion matrix only from p (K1) and w (η2). We can

also note that Tr(F) = Tr(I) + s·Tr
(~
d·

~
p

t
)

with Tr
(~
d·

~
p

t
)
= Tr

(
~
p

t
·

~
d
)
= 0. Consequently, Tr(F) = 3.

The trace of the simple shear matrix is equal to the space dimension.

2.4. The Orientation Matrix T

The orientation matrix that encodes the orientation relationship between the twin and the
parent crystals is the matrix Tα→γ = [Bα

c → B
γ
c ]. The upper index α→ γ means that the matrix

transforms the coordinates of vectors written in Bγ
c into coordinates expressed in Bα

c with the
(left-right) = (head-tail) convention for composition, for example T1→3 = T1→2T2→3. With the
coordinate transformation matrix, the coordinates of the vectors uγ, vγ, expressed in the basis Bα

c are
uγ/α = Tα→γuγ = uγ, vγ/α = Tα→γvγ = vγ. We can also consider the normal n to the plane p
and notice that nγ/α = Tα→γnγ = −nγ. The matrix that responds to these constraints is:

Tα→γ = m(p) = I− 2
(
n·

~
p

t
)

(8)

We recall that n is deduced from p by Equation (4). Thus, Equation (8) can also be written
Tα→γ = I − 2

ptM∗p (M
∗p·pt). The orientation matrix Tα→γ is simply a mirror symmetry through

the plane p. Following Friedel, we will consider that twinning is a matter of lattices and metrics, not
of symmetry. With this hypothesis, there is not distinction between a mirror symmetry through the
plane p and a rotation of 180◦ around n. This rotation is deduced from m(p) by a composition with the
inversion −I. That is:

r(180◦,n) = −I + 2
(
n·

~
p

t
)

(9)

This last equation was reported by Bilby and Crocker [13] with a more complex tensor
notation. We insist again on the fact that m(p) and r(180◦,n) are completely equivalent to describe the

lattice. Whatever the choice, it can be easily checked that (Tα→γ)2 = I, which also implies that
Tγ→α = (Tα→γ)−1 = Tα→γ. As we decide to use the convention that type I twins are mirror
symmetries for the edifice, we will continue using Equation (8). With this convention, twinning switches
a right-hand basis into a left-hand basis; the determinant of the orientation matrix is Det(T) = −1.

2.5. The Correspondence Matrix C

Taking the convention that the twinned crystal α is in p-mirror symmetry relation with the parent
crystal Υ, the directions uγ, vγ, wγ become after distortion the directions u′γ = uα, v′γ = vα,
w′γ = −wα. The coordinates of the vectors uα, vα, wα in their crystallographic basis Bα

c are the
same as those of the vectors uγ, vγ, wγ in their crystallographic basis Bγ

c . The correspondence matrix
gives the coordinates of the vectors u′γ, v′γ, w′γ in Bα

c , the crystallographic basis of the twin. It was
initially determined as a linear form by Mügge [4], latter corrected by Pabst [26], and by Andrew and
Johnson [27]. The corrections concern the signs and a pre-factor number. Actually, the formula needs
clarification, as pointed out by Feng et al. [28]. This confusion still exists nowadays; many papers
report Pabst’s formula, sometimes only citing Klassen-Nejkyudova’s review book [29], whereas the
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correct correspondence formula is that given Andrew and Johnson. In matrix form, the correspondence
is:

Cα→γ = I−
2

pt·w

(
w·pt

)
(10)

Any reticular vector rγ written in the basis Bγ
c becomes after distortion a reticular vector of the

twin written in the basis Bα
c by rα = Tα→γFγr′γ = Cα→γr′γ. It can be easily checked that for any

vector r in the plane p, rα = Cα→γr′γ = rγ and that Cα→γwγ = −wα. This proves that formula
(10) is that of the correspondence matrix. Another demonstration will be given in Section 2.6. As
the coordinate of the vectors p and w are integers or half-integers, and as pt

·w = q is integer, C
is necessarily rational. This is a general property of the correspondence matrices [23]. It can also
be checked that (Cα→γ)2 = I, which also implies that Cγ→α = (Cα→γ)−1 = Cα→γ

· With the
convention that twinning transforms a right-hand basis into a left-hand one, Det(C) = −1.

Bevis and Crocker [14] proposed an interesting formula to calculate the shear value s from
the correspondence matrix. The demonstration is based on the fact that a rotation or a mirror
symmetry T preserves the metrics, and consequently the metric tensor M verifies the property
Tt
MT = M. As the correspondence matrix C is linked to the orientation matrix T and distortion

matrix F, by C = TF, we get Ct
MC = FtTt

MTF = Ft
MF. Using Equation (5), it leads to

Ct
MC = M+ s

(
M

~
d·

~
p

t
+

~
p·

~
d

t
M

)
+ s2 ~

p·
~
d

t
M

~
d·

~
p

t
. By multiplying both left sides of the equality

byM−1, and by taking the trace Tr and applying the general property Tr(A·B) = Tr(B·A), we get
Tr

(
M
−1Ct
MC

)
= 3 + s2, which leads to Bevis and Crocker’s formula:

s =
√

Tr
(
M
−1Ct
MC

)
− 3 (11)

Using similar arguments, the shear value s can be extracted from the shear matrix F by:

s =
√

Tr
[
M(F− I)M−1(F− I)t

]
(12)

2.6. The Conjugate Type II Twins Deduced from the Type I Twins

In the literature, the twins are given by the four elements K1, η1, K2, η2 without detailed
explanations on their calculation. From our understanding, the type I twins are first calculated by
choosing a rational plane p = K1, and by defining a rational vector w = η2 as close as possible to the
normal n of the plane p. The vectors w in the first layer (pt

·w = q = 1, primitive cell) and then the
vectors w of the higher levels q are investigated. A threshold limit must be chosen for q. From p and w,
the shear direction d // η1 is calculated with Equation (6). Then, the second plane K2 is determined as
the plane that contains simultaneously the direction η2 and the normal to the plane K. The plane K is
the plane that contains the direction η1 and η2. It is represented by the circle in the (x, y) plane that is
transformed into the ellipse in Figure 1a. It is given by the reciprocal vector K = η1 ∧η2. The plane K
is sometimes called “plane of shear” [10], but to our opinion this term should be avoided because of its
confusion with the shear plane p. We propose to call K the “globally invariant normal plane” as it will
be justified in Section 2.7. The plane K2 is a reciprocal vector given by K2 = η1 ∧M

∗K. With our
notations it is:

K2 = d∧ (M∗(d∧w)) (13)

Now, we can build the conjugate twin of the type I twin by considering the shear plane p = K2

and the shear direction d // η2. As η2 is rational and K2 is not necessarily rational, the conjugate twin
is of type II. The macroscopic interface or habit plane between the parent crystal and its twin is the
plane K2, or a rational plane close to K2. The interface is probably decomposed into rational ledges
and terraces at the microscopic scale.
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In summary, the type I twins are defined from two inputs: the rational plane p = K1 and the
rational direction w = η2. The vector w could be actually deduced from p and q. The outputs are the
shear direction d // η1 (not necessarily rational) and the rotated plane K2 (not necessarily rational). The
conjugate type II twins are then defined from the shear plane p = K2 (not necessarily rational) and the
rational shear direction d // η2, as synthetized in Table 1.

Table 1. Twinning elements for a twin and its conjugate. The plane K1 and the direction η2 are rational.
The vectors p and d are the shear plane and shear direction, respectively. A sign “=” or “//” is added to
specify the relation between the vectors.

Type K1 K2 η1 η2

Twin I p = rotated d // w =
Conjugate II rotated p = w = d //

The shear amplitude is the same for a twin and its conjugate. This can be demonstrated by
considering the globally invariant normal plane K in Figure 4. It is constituted of the vectors η1 and
η2. The planes K1 and K2 are viewed on their edges. Simple geometry arguments shows that the
obliquity between the direction η2 and the normal to the plane K1 is the same as the obliquity between
the direction η1 and the normal to the plane K2. This is the angle θ noted in the figure. Since s = 2
tan(θ), the shear is the same for a twin and for its conjugate. Another demonstration consists in noting
that

∣∣∣η1·η2

∣∣∣ = ‖d1‖
2 ‖η1‖ = ‖d2‖

2 ‖η2‖, and that h1‖η1‖ = h2‖η2‖ because it is area of the rhombus K.

Consequently, s1 = ‖d1‖
h1

= ‖d2‖
h2

= s2.
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Figure 4. Scheme showing a flat view of the K plane and explaining why the shear value is the same for
a twin and its conjugate: the shear vectors are noted d1 and d2, respectively, and the plane K becomes
K′ and K”, respectively. The obliquity θ is the same. The planes K1 and K2 are viewed on their edges.

A 2D example with a rectangular crystal twinned along its diagonal is shown in Figure 5. Please
note that the conjugate twin is actually a case forbidden by the usual theory because the twin plane is a
mirror symmetry and because the shear vector is rational, but we think that the theory should evolve
to include this case, as it will discussed in Section 6.4.
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Figure 5. Conjugate twins. The 2D rectangular twins are defined by K1 = (−1, 1), η1 = −[1, 1], K2 = (1,
0), η2 = [0, 1] (details given in Appendix A); the direct twin F1 is on the left-hand side and its conjugate
twin F2 on the right-hand side. The twin F1 is calculated with p = K1, w = η2, and its conjugate F2 with
p = K2 and d // η2.

The method we described to determine η1 and K2 from K1 and η2 is used to determine the type
II twins from type I twins. However, to our knowledge, it has never been explained that the type II
twins can also be determined independently of the type I twins. We will show in Section 5 that this is
possible by conceptualizing the type II twins as real reciprocal twins, i.e., twins of the reciprocal lattice.
For this purpose, we need to introduce some mathematics to write matrices in the reciprocal space.

2.7. The Transformation Matrices Expressed in the Reciprocal Space

First, we introduce the general notions of “full invariance” and “global invariance” for a plane.
A plane g of the direct space is “fully invariant” by the distortion F if all the directions r it contains
are invariant by F, i.e.,

(
∀r, gt

·r = 0
)
⇒ (Fr = r) . A plane g of the direct space will be said “globally

invariant” by a distortion F if F∗g = g, with F∗ = F−t. A plane that is globally invariant is unrotated
and its inter-reticular distance is preserved, but some of the directions it contains can be rotated or
distorted (even if they remains in the plane). In type I twins, the plane K = η1 ∧ η2 is globally
invariant but not fully invariant. As K is perpendicular to the shear plane K1, we call it ”the globally
invariant normal” plane. Actually, all the planes that contains the direction d are globally invariant,
and only p is fully invariant.

Now, let us consider again the shear matrix F expressed in the direct space by the Equation (5).
Any direction u of the lattice is transformed into a new direction u′ = F u. The same shear acts in the
reciprocal space, and the action is expressed with F∗ = F−t. Any plane h of the lattice is transformed
into a new plane by h′ = F∗h. It can be shown that:

F∗ = I− s
(

~
p·

~
d

t
)

(14)

In other words, a shear on the plane p along the direction d with an amplitude s in the direct space
is also a shear on the plane d along the direction p with an amplitude s∗ = −s in the reciprocal space,
as illustrated in Figure 6. Please note that switching from direct space to reciprocal space induces a
switch of the vectors d and p with their associated metrics. Let us explain why d is the shear plane of
the reciprocal lattice. In the direct space, the direction d is common to all the planes g that check the
condition dt

·g = 0, i.e., all the planes g that are in “zone axis” with the direction d. Among them,
there are the plane p which is left fully invariant by F and the plane K introduced in Section 2.6 which
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is globally invariant. For the directions, whatever the space, the nature of invariance (full or global)
does not matter; they are simply invariant. In the reciprocal space, the planes g become the directions
g, and the zone axis direction d becomes the plane d that contains the directions g. All the reciprocal
directions g belonging the reciprocal plane d are invariant by the shear; consequently, the d-plane is
fully invariant.
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Figure 6. Twinning in the reciprocal space. The 2D rectangular twin defined by K1 = (−1, 1), η1 = −(1,
1), K2 = (1, 0), η2 = [0, 1] (Appendix A) is viewed in the direct space on the left-hand side, and in the
reciprocal space on the right-hand side. F and F* designate the same shear action; only the space in
which they are illustrated changes.

A type I twin is defined by p rational and d not necessarily rational, and its conjugate type II twin
by d rational and p not necessarily rational. As working in the reciprocal space reverses the planes and
directions, type II twins in the direct space are type I twins in the reciprocal space, and type I twins in
the direct space are type II twins in the reciprocal space. However, we point out that the transformation
matrices of the type II twins in the direct space (i.e., the usual type II twins of literature) cannot be
defined just by exchanging d and p, or by taking the inverse of the transpose of the matrices of the
type I twins in the direct space. Actually, it will be shown in Section 5 that the d-planes should be used
to split the reciprocal lattice into layers in order to determine type II twins, exactly as it was done to
determine the type I twins from the p-planes of the direct lattice.

If T is the orientation matrix of the twin written in the direct space by Equation (8), it becomes in
the reciprocal space T∗ = T−t; the calculations show that:

T∗ = m∗
(n) = I− 2

(~
p·nt

)
(15)

which is a mirror symmetry through the plane n. Indeed T∗
~
p = −

~
p, and for all the directions g of the

reciprocal space such that ntg = 0 (i.e., the planes g in the direct space that contain the direction n),
then T∗g = g. This means that the planes containing the normal direction n are indexed similarly in
the parent and twin crystals.

If C is the correspondence matrix of the twin written in the direct space by Equation (10), it
becomes in the reciprocal space C∗ = C−t. There is no general dyadic expression made of p and w for
C∗. A general expression similar to Equation (10) can be determined only by considering twinning as a
shear on a rational plane of the reciprocal lattice, as it will be done in Section 5.
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3. Direct Determination of the Transformation Matrices with the Help of Supercell Matrices

The transformation matrices that were presented in the previous sections have been determined
and reported along the last 130 years. The method to obtain them results from a mixture of geometrical
considerations and intuitions, which sometimes led to confusions, as that reported by Feng et al. [28].
There is however a direct and unambiguous way to find the formulae of F, T and C. It is based
on the explicit formulation of the matrices that define the supercell associated with the twin, as
introduced in Reference [23]. Let us write Bγ

super = (uγ, vγ, wγ) the basis of the supercell formed

by the vectors of the parent crystal, Bγ′
super =

(
uγ, vγ, w′γ

)
the basis of the distorted supercell, and

Bα
super = (uα, vα, −wα) the basis of the same supercell formed by the vectors of the twin. The

matrices that correspond to these supercells are Bγ
super = [uγ, vγ, wγ]/Bγ

c
Bγ′

super =
[
uγ, vγ, w′γ

]
/Bγ

c
and Bα

super = [uα, vα, −wα]/Bα
c

; they are obtained by writing the coordinates of the vectors in column
in their respective crystallographic bases. As the coordinates of the vectors uα, vα, wα in Bα

c are the
same as those of uγ, vγ, wγ in Bγ

c , we get [uγ, vγ, wγ]/Bγ
c

= [uα, vα, wα]/Bα
c

, i.e., the two tables
of numbers are the same. Similarly, Bα

super = [uα, vα, −wα]/Bα
c

= [uγ, vγ, −wγ]/Bγ
c

. Consequently,
the three supercell matrices can be expressed by tables of three column-vectors expressed in the basis
Bγ

c (the index /Bγ
c will be omitted to gain visibility):

Bγ
super = [uγ, vγ, wγ]

Bγ′
super =

[
uγ, vγ, w′γ

]
Bα

super = [uγ, vγ, −wγ]

(16)

with w′γ = wγ + dγ. Now, the transformation matrices according [23] are simply:

Fγ = Bγ′
super·

(
Bγ′

super

)−1

Tα→γ = Bα
super·

(
Bγ′

super

)−1

Cα→γ = Bα
super·

(
Bγ

super

)−1
(17)

It can be checked that Cα→γ = Tα→γFγ, as expected. These products have similar characteristics;
they are all of type [u, v, y]·[u, v, x]−1. Calculation show that a general formula exists for this form:

[u, v, y]·[u, v, x]−1 = I +
1

pt·x

(
(y− x)·pt

)
(18)

with p = (u∧ v) the cross-product of u by v. The vector p is a direction in the reciprocal space; it is
the plane (u, v) in the direct space.

The distortion matrix Fγ is obtained with y = w′γ and x = wγ. Since y− x = w′γ −wγ = d,
it comes immediately that:

Fγ = I +
1

pt·w

(
d·pt

)
(19)

Comparing it with Equation (5) leads to the shear value s =
‖d‖·‖p‖∗

pt·w = ‖d‖
q·dhkl

= ‖d‖
h which is the

expected form of the shear.
The orientation matrix Tα→γ is obtained with y = −wγ and x = w′γ. Since

y− x = −
(
wγ + w′γ

)
= −2hn, Equation (8) derives immediately. The correspondence matrix Cα→γ

is obtained with y = −wγ and x = wγ. Since y− x = −2wγ, Equation (10) results immediately.
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4. The Tilted Mode

4.1. Specificity of the Normal Mode

The crystallography of twins is based on the single shear paradigm. We know that twinning is
not the result of a simple shear mechanism because of the steric effect of the atoms (see Section 6.4),
but that is true that simple shear is a convenient and effective hypothesis to work with lattices. Even
though we decide to stay inside this framework, we realized that there is an additional hypothesis that
has never been explicitly stated, probably because it seemed so obvious to the pioneers that they did
not feel important to specify it. The classical theory implicitly states that the shear displacement for the
deformation twins (or the misfit for the growth twins) should be calculated between the two vectors w
and w′ (linked by a 180◦ rotation around the normal n of the twin plane), i.e., that d = w′ −w. The
reason for this hypothesis dates from the earliest research on twinning. The first studies were devoted
to minerals, and more specifically to structures that slightly deviate from simpler cubic ones. In these
cases, the normal n to the plane p has no rational indices, because of the metrics, but it is close to a
rational direction. For instance, in a monoclinic structure with lattice parameters a ≈ b ≈ c and β ≈ 90◦,
the normal n to a plane p = (h, k, l) is quite close to the direction r = [h, k, l]. In the 2D example of
Figure 1b, the normal n to the plane p = (0, 1) is quite close to the direction b = [0, 1]. More generally,
the deviation between the normal to the twin plane and the closest rational direction is measured by
the obliquity angle θ, as illustrated in Figure 2. As the obliquity θ = (w, n) = (w′, n) is defined in
reference to the normal n, we call the associated twin mode “normal”. This is the only mode that has
been considered by the classical theory until now. Since in many twinned minerals the obliquity is
small, the amplitude ‖d‖ = 2h tan(θ) is also small, and d is indeed a small translation vector between
the parent and the twin lattice. However, there is no proof that there is no other translation vectors d of
smaller amplitude that also belong to p. Actually, in metals and alloys, and in many minerals, the
obliquity can be quite large, and the shear amplitude deduced from d = w′ −w (normal mode) is not
anymore necessarily the smallest translation vector. There is thus another mode that can lead to the
same twin orientation with smaller shear values.

4.2. The Tilted Mode Explained in 2D

In the normal mode “N”, the vector −wα is the image of wγ by (i) the shear, and (ii) by the 180◦

rotation around the normal n. In the tilted mode, it is not the case anymore, and we have to adapt
our notation to split the roles of F and T. In order to make it simple, let us consider the 2D scheme of
Figure 7 in which the obliquity θ is quite large. In the layer q = 1, wγ the parent direction closest to
the normal n has for image the twin direction w′γ = −wα by a 180◦ rotation around n. The angle(
wγ, w′γ

)
= 2θ is large, and consequently, the amplitude of the shear vector in the normal mode

dN (q = 1) = w′γ −wγ is also large. In the tilted mode “T”, the direction −wα remains the orientation
image of wγ by the rotation the (180◦, n), but it is not anymore the distortion image of wγ. The vector
tγ = wγ + uγ which, as wγ, points to a node of the layer q = 1, is indeed closer to −wα. In this
example, the amplitude of the shear vector dT (q = 1) = −wα − tγ is smaller than that of dN (q = 1).
Please note that for the calculation the vector −wα and tγ should be expressed in the same basis, for
example in Bγ

c , by writing wα/γ = Tγ→αwα. The notion of obliquity should be adapted; we will
note the normal obliquity θN, instead of only θ, and θT the tilted obliquity.
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Figure 7. 2D representation of the normal and tilted modes. The parent lattice Υ in blue is transformed
into the twin lattice α in red. Different shears can lead to this configuration with the same parent/twin
orientation. On the layer q = 1, the normal shear mode is represented by the vector dN (q = 1), and
the tilted shear mode by the vector dT (q = 1). In the normal mode −wα is the image of wγ by the
shear. The angle (wγ, −wα) is twice the obliquity, i.e., 2θN. In the tilted mode −wα is the image of
tγ = wγ + uγ by the shear. The angle θT = (tγ, −wα) is the tilted obliquity.

In the example of Figure 7, the amplitude of the normal shear mode in the layer q = 1, dN (q = 1)
is larger than that of tilted shear mode dT (q = 1). If one considers the second layer q = 2, then the
amplitude dN (q = 2) becomes smaller than that of dT (q = 2). This situation occurs quite often in metals.
Let us give some examples by comparing the literature with the results obtained by a computer
program we wrote to calculate the tilted modes [25]. The

{
1121

}
twins in magnesium are classified as

q = 2 by Crocker and Bevis [15] and by Christian and Mahajan [10], whereas Crocker and Bevis authors
clearly noticed that “every point of the hexagonal Bravais lattice is sheared to its correct twin position”. It
seems that the authors realized this fact by geometry and not by calculation because q = 2 signifies
that only half of the lattice nodes should go to their correct position by shear. We do not understand
why Crocker, Bevis, Christian and Mahajan, did not recognize the contradiction between q = 2 and the
absence of lattice shuffle. Actually, our computer program [25] shows the

{
1121

}
twins are associated

with q = 1 in tilted mode, with the same shear value s = 0.61 as that found by Crocker and Bevis, now
without contradiction. Another example is the

{
1012

}
extension twin in magnesium that is classified

with q = 4 by Crocker and Bevis [15] and by Christian and Mahajan [10]. Our computer program shows
that these twins are actually twins with q = 2 in a tilted mode, with the same shear value s = 0.128. We
can now specify without geometry and without any ambiguity the ratio of shuffle/shear. The primitive
Bravais lattice of hexagonal compact structure is constituted of two atoms, one at the node of the lattice
and an extra-one in position (2/3, 1/3, 1/2), which means that twin mode with q = 1, half of the atoms
(those of the nodes) go to their correct positions by shear. The lattice shuffle is null, and the atomic
shuffle is 0.5. For the extension twins, with q = 2, the supercell contains three extra atoms in addition
to those located at the nodes of the supercell, and consequently, one quarter of the atoms go to their
correct positions by shear, and three-quarter shuffle. The atomic trajectories are shown in hard-sphere
model in [30]. The lattice shuffle is thus 0.5, and the atomic shuffle is 3/4. A third example is the {112}
twinning in bcc metals. The shear value s = 1

√
2
≈ 0.71 is obtained by Crocker with q = 2, even it is

noticed that “no atomic shuffling is necessary”. Our computer program [25] shows that {112} twins with
the same shear value are actually twins with q = 1 in the tilted mode.

One could think from these examples, that even if the tilted mode q = 1 is missed, it does not
matter so much because the twin shear can be deduced from the normal mode with q = 2, as in the
example of Figure 7. This is not true. The tilted mode cannot always be substituted by a normal mode
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of a q index twice higher. In the example of Figure 8, the tilted mode is the lowest shear mode for q = 1
and q = 2.
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The tilted mode will be said to be the “complementary” of the normal mode. A 2D example of
complementary twins is shown in Figure 9.
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Figure 9. Complementary twins. The 2D rectangular twin is defined by K1 = (−1,1), η1 = −[1, 1],
K2 = (1, 0), η2 = [0, 1], and its complementary has the same elements except that the shear direction is
along the opposed direction −η1 = [1, 1]. The twinning mode is normal on the left-hand side, and tilted
on the right-hand side. The shear amplitudes in both modes are calculated in Appendix A.

Let us now explain the tilted mode in 3D with Figure 10. The normal n intersects the q-layer of the
plane p at the point H. The four nodes of the q-layer “around” H are A, B, C and D. The node closest to
H is A. The image of A by the rotation (180◦, n) is the point A′. If the obliquity θ were very small, the
node closest to A′ would have been A (“normal” twin mode); however, if the obliquity is large, as it is
the case in the figure, the node closest to A′ is not anymore A. In Figure 10, the closest node to A′ is B.
The twin lattice can thus be obtained by a shear along the vector dT = BA′. The twinning mode is
“tilted”. Let us note the vector t = OB. This vector checks pt

·t = pt
·w = q. The vector −wα, which is

the image of wγ by the n-180◦ rotation, is not anymore the image of wγ by the shear along dN as in the
normal mode; it is the image of tγ = wγ + uγ by the shear along dT.



Metals 2020, 10, 231 16 of 32Metals 2020, 10, x FOR PEER REVIEW 15 of 30 

 

 
Figure 10. 3D representation of the tilted mode of twinning. (a) Supercell (u,v,w). The normal n 
intersects the q-layer at the point H. The four nodes of the q-layer “around” H are A, B, C and D. The 
point closest to H is A. The image of A by the (180°, n) rotation is A’. (b) Top-view of the q-layer. In 
this example, the shortest distance between A’ and the nodes A,B,C,D is BA’. Thus A’ is the image of 
B by shear (and not of A as expected in a normal mode). The twinning mode is “tilted” if one assumes 
that the lowest shear is selected. 

More generally, from this analysis, we can identify four possible shears: one normal mode (from 
A) and three tilted modes (from, B, C or D). The third vector 𝐭ఊ of the sheared supercell for each of 
these four possibilities is given by: 

Normal mode 𝐭ఊ = 𝐰ఊ  (20) 

 

Tilted modes 

𝐭ఊ = 𝐰ఊ + 𝐮ఊ  𝐭ఊ = 𝐰ఊ + 𝐯ఊ  𝐭ఊ = 𝐰ఊ + 𝐮ఊ+𝐯ఊ 

The shear vector 𝐝 associated with these four possibilities are 𝐝 for the normal mode, given 
by Equation (6), i.e., 𝐝 = −2𝐰ఊ + 2ℎ𝐧, and 𝐝 = 𝐝 − 𝐮ఊ , 𝐝 − 𝐯ఊ , or 𝐝 − 𝐮ఊ − 𝐯ఊ  for the tilted 
modes. When written in the general form, they are: 𝐝 = −(𝐰ఊ + 𝐭ఊ) + 2ℎ𝐧 (21) 

Among the four possibilities (one normal and three tilted), the lowest shear ‖𝐝‖ is chosen. The 
three tilted modes and the normal mode are said “complementary”. 

The transformation matrices (distortion, orientation, correspondence) can be calculated 
following the method described in Section 3. We write 𝓑௦௨் = (𝐮, 𝐯, 𝐰) the basis of the supercell 
that is transformed into 𝓑௦௨ by T the p-mirror symmetry, and we introduce 𝓑௦௨ி = (𝐮, 𝐯, 𝐭) 
the basis of the supercell that is transformed into 𝓑௦௨  by F the shear along the vector d. The basis 
of the distorted supercell is 𝓑௦௨ிᇱ = (𝐮, 𝐯, 𝐭ᇱ

), which is also the basis of the supercell of the twin 𝓑௦௨ = (𝐮, 𝐯, −𝐰). 
Similarly as in Section 3, we define the supercell matrices. Written in the basis 𝓑  they are: 𝐁௦௨் = ൣ𝐮, 𝐯, 𝐰൧ 𝐁௦௨ி = ൣ𝐮, 𝐯, 𝐭൧ 𝐁௦௨ிᇱ = [𝐮, 𝐯, 𝐭′] 𝐁௦௨ = ൣ𝐮, 𝐯, −𝐰൧ 

(20) 

Figure 10. 3D representation of the tilted mode of twinning. (a) Supercell (u, v, w). The normal n
intersects the q-layer at the point H. The four nodes of the q-layer “around” H are A, B, C and D. The
point closest to H is A. The image of A by the (180◦, n) rotation is A’. (b) Top-view of the q-layer. In this
example, the shortest distance between A′ and the nodes A, B, C, D is BA’. Thus A′ is the image of B by
shear (and not of A as expected in a normal mode). The twinning mode is “tilted” if one assumes that
the lowest shear is selected.

More generally, from this analysis, we can identify four possible shears: one normal mode (from
A) and three tilted modes (from, B, C or D). The third vector tγ of the sheared supercell for each of
these four possibilities is given by:

Normalmode tγ = wγ

Tiltedmodes


tγ = wγ + uγ

tγ = wγ + vγ

tγ = wγ + uγ + vγ

(20)

The shear vector d associated with these four possibilities are dN for the normal mode, given
by Equation (6), i.e., dN = −2wγ + 2hn, and dT = dN − uγ, dN − vγ, or dN − uγ − vγ for the tilted
modes. When written in the general form, they are:

d = −(wγ + tγ) + 2hn (21)

Among the four possibilities (one normal and three tilted), the lowest shear ‖d‖ is chosen. The
three tilted modes and the normal mode are said “complementary”.

The transformation matrices (distortion, orientation, correspondence) can be calculated following
the method described in Section 3. We write Bγ

superT = (uγ, vγ, wγ) the basis of the supercell that is

transformed into Bα
super by T the p-mirror symmetry, and we introduce Bγ

superF = (uγ, vγ, tγ) the
basis of the supercell that is transformed into Bα

super by F the shear along the vector d. The basis of

the distorted supercell is Bγ′
superF =

(
uγ, vγ, t′γ

)
, which is also the basis of the supercell of the twin

Bα
super = (uα, vα, −wα).

Similarly as in Section 3, we define the supercell matrices. Written in the basis Bγ
c they are:

Bγ
superT = [uγ, vγ, wγ]

Bγ
superF = [uγ, vγ, tγ]

Bγ′
superF =

[
uγ, vγ, t′γ

]
Bα

super = [uγ, vγ, −wγ]

(22)
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with t′γ = t + d. The transformation matrices are deduced from them by:

Fγ = Bγ′
superF·

(
Bγ

superF

)−1

Tα→γ = Bα
super·

(
Bγ′

superF

)−1

Cα→γ = Bα
super·

(
Bγ

superF

)−1

(23)

For the computation of the matrices Fγ, Tα→γ and Cα→γ, Equation (23) associated with
Equation (20) is sufficient. However, their dyadic product forms can also be determined by using
Equation (18), i.e., [u, v, y]·[u, v, x]−1 = I + 1

pt·x ((y− x)·pt) with p = (u∧ v):
The distortion matrix Fγ is obtained with y = t′γ and x = tγ. Since y− x = t′γ − tγ = d, it

comes immediately that Fγ is given by Equation (19), which is the expected general form of shear.
However, now the shear vector d should be calculated with the general Equation (21).

The orientation matrix Tα→γ is obtained with y = −wγ and x = t′γ. Since y − x =

−

(
wγ + t′γ

)
= −2hn, Tα→γ is given by Equation (8) without any change. This proves that the

orientation of the twin is independent of the twinning mode (normal of tilted).
The correspondence matrix Cα→γ is obtained with y = −wγ and x = tγ. It appears as a more

general form of Equation (10):

Cα→γ = I−
1

pt·w

(
(w + x)·pt

)
(24)

where the reticular vector t is given by Equation (20).
The computer program we wrote in Python performs all these calculations in order to “predict”

the twins, at least in the framework of the simple shear hypothesis. It explores all the planes p = (h,
k, l) with a threshold in the indices h, k, l, and it calculates the four modes for each plane p (shear,
orientation and correspondence matrices). The shear values obtained for all the explored planes p are
then ranked from the lowest to the highest values. The results obtained for fcc, bcc, hcp metals, and for
some minerals will be presented in a separated paper [25].

5. The Type II Twins Built as Real Reciprocal Twins

As introduced in Section 2.6, the type II twins are usually defined as “the conjugates” of type I
twins. As the type I twins preserve a plane (the mirror plane) and the type II twins preserve a direction
(the 180◦ rotation axis), it was confusingly perceived that type I and type II could have a link with the
direct and reciprocal spaces, respectively; but, to our knowledge, no one thought or wrote anything
clear about this. We will show that type II twins are actually real reciprocal twins, i.e., they act as
twins by a simple shear on a rational plane of the reciprocal space. With this idea, type II twins can be
determined independently of the type I twins.

5.1. The q* Layers of d-Plane in the Reciprocal Space

For a scientist practicing transmission electron microscopy (TEM), the reciprocal space is as
real as the direct space, and the switch is simply made by pressing the button “diffraction” of the
microscope. More precisely, TEM diffraction allows us to see the nodes of the reciprocal lattice that are
close to the Laue sphere [31]. The crystal is orientated such that the parallel electron beam is along
a crystallographic direction d (the “zone axis”), and the diffraction spots correspond to the planes
that contains this direction; they form a lattice of points called the zero-order Laue zone q* = 0, as
illustrated in Figure 11. If the electron beam is not parallel, the convergent beam diffraction (CBED)
allows exploring higher order Laue zones q* > 0, as shown in Figure 12.
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reciprocal directions p such that dt

·p = q*.

Similarly as the direct lattice can be imagined as layers of a p-plane constituted of nodes w such
that pt

·w = q, the reciprocal lattice can be imagined as layers of a d-plane constituted by nodes p such
that dt

·p = q*. We recall that in the direct space d and p are a direction and a plane, respectively, and
that in the reciprocal space they become a plane and a direction, respectively. We have also seen in
Section 2.7 that type II twins in the direct space are type I twins in the reciprocal space. Let us use this
property to build them.

5.2. The Reciprocal Transformation Matrices Determined from the Reciprocal Supercell

The type II twins can be imagined exactly as the type I twins, but now by considering a supercell
(h, k, l) of the reciprocal lattice instead of the supercell (u, v, w) of the direct lattice, as shown in
Figure 13. Here, h, k, l are three directions of the reciprocal space, i.e., three planes of the direct space.
The vector l acts as the vector w; it defines the size of the supercell by the integer dt

·l = q∗. The
reciprocal length between the d-planes is h∗ = q∗/duvw where duvw is the length of the vector d = [u, v,
w]. It is the inverse of a distance.
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Figure 13. Supercell (h, k, l) of the reciprocal lattice used to build the type II twins. Here, l points
to a node of the second layer q* = 2. The reciprocal length between the d-planes that are sheared is
h∗ = q∗/duvw.

Exactly as type I twins are simple shear in the direct space, type II twins are simple shear in the
reciprocal space. They are defined with the help of the supercell Bγ∗

super = (hγ, kγ, lγ) that is sheared
and becomes a supercell Bα∗

super = (hα, kα, lα) that is in mirror symmetry with Bγ∗
super through the

reciprocal plane d = (hγ, kγ). As for type I twins, the type II twins can have one normal mode and
three tilted modes that can be determined from the supercell, as shown in Figure 14.
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Figure 14. 3D geometrical representation in reciprocal space of a type II twin, with its normal mode
(from A*) and its three tilted modes (from B*, C* or D*). The figure is very similar to that of twinning in
the direct space (Figure 10). (a) Supercell (h, k, l). The normal d* intersects the q*-layer at the point H*.
The four nodes “around” H* are A*, B*, C* and D*. The point closest to H* is A*. (b) Top-view of the
q*-layer.

The associated vector forming the third vector gγ of the supercell that is sheared is:

Normalmode gγ = lγ

Tiltedmodes


gγ = lγ + hγ

gγ = lγ + kγ

gγ = lγ + hγ + kγ

(25)
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We define the reciprocal supercell matrices in the basis Bγ∗
c by:

Bγ∗
superT = [hγ, kγ, lγ]

Bγ∗
superF =

[
hγ, kγ, gγ

]
Bγ∗′

superF =
[
hγ, kγ, g′γ

]
Bα∗

super = [hγ, kγ, −lγ]

(26)

with g′γ = gγ + p. The shear vector p associated with these four possibilities are pN for the normal

mode, pN = −2lγ + 2h∗
(
M

~
d
)
, and pT = pN − hγ, pN − kγ, or pN − hγ − kγ for the tilted modes.

They can be written in the general form:

p = −
(
lγ + gγ

)
+ 2h∗

(
M

~
d
)

(27)

The four supercell matrices allows the calculation of the transformation matrices, which are:

Fγ∗ = Bγ∗′
super·

(
Bγ∗

superF

)−1

Tα∗→γ∗ = Bα∗
super·

(
Bγ∗′

superF

)−1

Cα∗→γ∗ = Bα∗
super·

(
Bγ∗

superF

)−1

(28)

The dyadic forms of these matrices is determined by using again the fact that the product
[h, k, y]·[h, k, x]−1 = I + 1

dt
·x

(
(y− x)·dt

)
with d = (h∧ k).

The distortion matrix Fγ∗ is obtained with x = gγ and y = g′γ. Since y− x = g′γ − gγ = p, it
comes immediately that

Fγ∗ = I +
1

dt
·g

(
p·dt

)
(29)

Comparing with Equation (14) and taking into account that dt
·g = dt

·l = q∗ and h∗ = q∗/duvw,
the shear value is s∗ =

‖p‖∗‖d‖
dt
·g

=
‖p‖∗duvw

q∗ =
‖p‖∗

h∗ which is the expected form of the shear in the
reciprocal space.

The orientation matrix Tα∗→γ∗ is obtained with y = −gγ and x = g′γ. Since

y− x = −
(
g + g′γ

)
= −2h∗

(
M

~
d
)
, an equation similar to that of Equation (8) is deduced:

Tα∗→γ∗ = m∗
(d) = I− 2

(
M

~
d·

~
d

t
)

(30)

The correspondence matrix Cα∗→γ∗ is obtained with y = −lγ and x = gγ. Since y −

x = −
(
lγ + gγ

)
an equation similar to Equation (24) is deduced:

Cα∗→γ∗ = I−
1

dt
·g

(
(l + g)·dt

)
(31)

with l = lγ and g = gγ. For normal reciprocal twinning mode lγ = gγ, and the equation becomes:

Cα∗→γ∗ = I−
2

dt
·g

(
g·dt

)
(32)

which is similar to Equation (10) by replacing p to d and w to g. For type II twins, by construction, d
and g are rational vectors, and consequently, Cα∗→γ∗ is necessarily a rational matrix.
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The three equations (30)–(32) give the transformation matrices of the type II twins in the reciprocal
space. The matrices can then be simply expressed in the direct space by taking the inverse of their
transposes. The computer program [25] will be used to determine the type II twins by exploring the
directions d = [u, v, w], within a threshold in the indices u, v, w. The shear amplitudes will be ranked
from the lowest to the highest values. This is an on-going work. Clearly, the list of twins determined
from this approach is expected to be the same as that determined by calculating the conjugate twins of
the type I twins. In particular, the list of shear values should be same as that of type I twins. This is not
obvious if we only consider that the shear amplitudes of the type II twins associated to Equation (29)
are s∗ =

‖p‖∗‖d‖
dt
·g

and those of the type I twins associated with Equation (18) are s =
‖d‖‖p‖∗

pt·w . It is true

that both are of kind ‖d‖‖p‖∗ divided by an integer, but d is rational (not necessarily p) for type II twins,
whereas p is rational (not necessarily d) for the type I twins. Only the list of shear amplitudes should
be the same; the list of matrices (shear, orientation and correspondence) will be different from that of
the type I twins.

6. Discussion

6.1. Synthesis

We explained in details the crystallography of twinning inside the Friedelian framework in which
twinning is assumed to result from a simple shear mechanism and where only the lattice (simple or
multiple) and its metrics matter. The model for deformation twins and growth twins is the same;
formally, there is no mathematical difference between the shear vector d used for the formers, and the
lattice misfits used for the latter. In both cases, the model assumes that the amplitude of the shear/misfit
should be small in order to facilitate the accommodation and reduce the accommodation energy at the
interface and in the bulk around the twin. For type I twins, we used the convention that the parent
and twin lattices are in mirror symmetry through a plane p (of normal n). We explicitly wrote the
transformation matrices (distortion F, orientation T and correspondence C) in dyadic matrix forms
with the convention the determinant of F is 1, and that of T and C is −1. Another convention could
have been chosen in which the parent and its twin are related by a 180◦ rotation around n. In that case,
the transformation matrices T and C would have a determinant equal to 1. We also introduced two
new concepts.

The first novelty is the “tilted mode”. The classical twinning model implicitly assumes that a
reticular direction w should be “close to” the normal n of the twin plane p and that the twin is such
that w becomes w′ by a small shear d (deformation twinning) or by a small misfit (growth twinning)
with w′ −w = d. In order to quantitatively estimate how w should be close to n, Friedel introduced
the obliquity θ, which is simply the angle between w and n. He found that in most of minerals, growth
twins are formed with obliquities below 5 or 6◦, which would correspond to a shear amplitude of s
~0.2. However, in metallurgy, some twinning shear reported in literature can be as high as 0.7. It does
not imply that Friedel’s approach cannot be applied anymore, but the hypothesis d = w′ −w should
be generalized. Let us consider again Friedel’s assumption: the reticular direction of twin wα and
the reticular direction of the parent wγ are in mirror symmetry through the plane p and are such that
the image −wα = w′γ where w′γ is the image of wγ by the shear. In other words, Friedel assumed a
correlation between the mirror orientation T and the lattice distortion F. However, there is no physical
reason for that, and we proposed in this paper to consider the other cases in which −wα would be the
shear-image of a reticular direction that is not necessarily wγ, i.e., in which −wα = t′γ where tγ is a
reticular direction of the same p-layer, i.e., pt

·t = pt
·w = q. In this mode, the shear direction becomes

d = t′ − t. With Friedel’s hypothesis t = w, and since w
′

+ w is parallel to n, this mode was called
“normal”. In the case where t , w, and t

′

+ t is not parallel anymore to n, the mode was called “tilted”.
The tilted mode allowed us to explain with the index q = 1 some twins without shuffle previously and
oddly reported with a twin index q = 2. The details of the calculations of the transformation matrices
for the normal mode are given in Sections 2 and 3, and their generalization to the tilted modes are in
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Section 4. An important step that allowed us to establish these matrices quite automatically was the
introduction of the supercell matrices and the general Equation (18).

The second novelty of the paper is the way to consider the type II twins. In the normal mode, the
distortion matrix of a type I twin is given by Equation (19) Fγ = I + 1

pt·w (d·pt) where the twinning
plane p is rational, and w is a rational direction of the qth layer of the plane p that will also become a w
direction of the twin. Generally, in literature, the plane p is noted K1, the vector d is parallel to η1,
and the direction w is η2. The plane usually noted K2 is the plane that contains w and that is only
rotated by the shear (it would be fully invariant if the rotation were compensated). To our knowledge,
literature always introduce type II twins as the conjugate twins of type I twins. Once a type I twin
is defined from p = K1 and w = η2, its other twinning elements K2, d // η1 are calculated, and the
type II is deduced with p = K2 and d // η2. In the dyadic product d·pt of type I twin, the vector p is
rational, but d is not necessarily rational, and in that of type II twins, the vector d is rational but p is not
necessarily rational. Introducing type II twins as conjugates of type I twins hides an important concept.
We showed that type II twins can be imagined exactly as type I twins by considering the reciprocal
lattice instead of the direct lattice. Type II twins are a simple shear on a rational plane of the reciprocal
space, and they can be treated with the same formalism as type I twins, independently of them. The
direction w in the q-layer of the p-plane used to build the supercell for the type I twins is replaced
for the type II by the g direction in the q*-layer of the d-plane, where g is a rational direction of the
reciprocal lattice (i.e., a reticular plane of the direct lattice) and d is a rational plane (i.e., a reticular
direction of the direct lattice). The distortion matrix of type II twins is calculated exactly as for type I
twins; they are expressed in the reciprocal space by Fγ∗ = I + 1

dt
·g

(
p·dt

)
. Once determined, the type II

shear can be expressed in the direct space by considering that Fγ = (Fγ∗)−t. Besides these two new
complements to the classical Friedel’s theory of twinning, we would like to take the opportunity of this
study to discuss other points.

6.2. Are the “Transformation Twins” Really Twins?

In the paper we have only considered the deformation twins and the growth twins. In literature,
there is a third category called “transformation twins”. This last term is often taken as synonymous of
“variants” or “domains” despite the fact that a simple observation generally permits to distinguish
variants from twins. The variants inherited from a phase transformation appear as intricate laths or
plates forming a complex microstructure, whereas the growth twins are isolated crystals in contact
with a parent crystal, and the deformation twins appear as isolated plates or lenticles inside a parent
host. The use of the term “twin” in place of “variants” dates from Friedel, and it was popularized
by the Phenomenological Theory of Martensite Crystallography (PTMC). This theory, in Wechsler,
Liebermann and Read’s version [32] and its further developments [33–35], assumes that a twin relation
exists between the variants. This hypothesis is completely admitted in the community of shape
memory alloys. However, we have a very strong reservation on the PTMC and this basic hypothesis,
as we detailed in [36], and we reject the idea that the variants are necessarily linked by a twin relation.
Despite what is sometimes claimed, this assumption has never been proved experimentally, and it is
not in agreement with some algebraic considerations. Let us explain them.

First, we consider the Υ→α phase transformation, where the parent crystal Υ and the daughter
crystal α1 are linked by specific misorientation T. Because of the symmetries of the parent crystal γ,
there are different daughter crystals equivalent to α1 that are called “variants”. We call Gγ and Gα

the point group of the parent and daughter phases, respectively. The variants are given by the cosets
αi = gγi H

γ

T where gγi are symmetry matrices of Gγ, and Hγ

T is the subgroup of the symmetries that
are common to the parent crystal and the daughter crystal α1:

Hγ

T = Gγ
∩TGαT−1 (33)
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Each variant αi is misorientated with the parent crystal by a set of equivalent matrices αiT. The
number of different variants αi is given by Lagrange’s formula [23,37]:

Nα
T =

|Gγ
|∣∣∣Hγ

T

∣∣∣ (34)

The misorientations between the variants αi and α j are given by the sets of matrices T−1αi jT,

made with the double-cosets αi j = (αi)
−1
α j = Hγ

T gγi jH
γ

T with gγi j =
(
gγi

)−1
gγj . The number of

distinct misorientations between the variants is given by Burnside’s formula (see [37]).
Deformation and growth twinning also imply a specific misorientation T between the parent

crystal Υ and its daughter twin crystal α1. Both Υ and α crystals are constituted of the same phase.
Because of the symmetries of the parent crystal, there are different equivalent daughter twins. As for
phase transformations, the twin variants are given by the cosets αi = gγi H

γ

T where Hγ

T is given by
Equation (33) with Gγ = Gα. Each twin variant αi is misorientated with the parent crystal by a set of
equivalent matrices αiT. The number of twin variants αi is also given by Lagrange’s formula (34).

The difference between the deformation/growth twins and the transformation variants is now
clearer. The misorientations between a parent and its equivalent twins are given by the simple cosets
αiT, and the number of twins is given Lagrange’s formula, whereas the misorientations between the
variants are given by the double cosets T−1(αi)

−1
α jT and their number is given Burnside’s formula.

In twinning, the parent and its twin are in direct contact, and this direct relation is expressed by
a simple coset. In the case of a phase transformation, the variants grow from the parent phase
independently of each other; when they meet each other the relation between them is indirect and
expressed by double-cosets. PTMC made the hypothesis that one variant can be directly transformed
by twinning into another one by stress: αi → α j ; this phenomenon was called “variant reorientation”
or “detwinning”, but we think that actually the transformation is indirect and mediated by the parent
phase: αi → γ→ α j . Let us come back to the origin of our difference of point of view. In the case
of deformation/growth twinning, the matrix T is necessarily a mirror symmetry or a 180◦ rotation,
whereas for transformations variants the matrices forming the double cosets T−1(αi)

−1
α jT do not

necessarily contain these 2-fold operations. The 2-fold operators are called “ambivalent”, and the
others are called “polar” [37–39]). PTMC assumes that all the operators are of 2-fold type; it ignores
the existence of the polar operators. How is it possible? This is because in its latest versions PTMC
implicitly assumes that there is not a unique misorientation T. PTMC considers T as secondary minor
adjusting parameter deduced from the compatibility criterion between the “correspondence” variants
(which are in fact “stretch” variants [23]). Here again, we disagree. Experiments show that there is
a unique orientation T, with possibly some continuous slight misorientations around T due to the
plastic accommodation of the distortion [40–45]. We consider that the compatibility obtained by variant
coupling is not essential because dislocations can act as additional accommodation means. We believe
that a unique orientation T should be the core of the crystallographic models of phase transformation.
The great metallurgist Nishiyama was convinced in the 1950s to give up his earlier model of martensitic
transformations in steels [46] because of the TEM observations he made of some twins in steels [47],
and later he became an ardent partisan of the PTMC in his book [48]. However, he timidly conceded at
the end of his carrier in a one-page comment [49]: “it is adventurous to deduce any conclusion associated
with more fundamental laws from the invariant plane hypothesis. It is desirable to induce the fundamental law
from the data of some phenomena with least deviation, such as the orientation relationships”. It is unfortunate
that he could not continue gown this path, and that his comment disappeared into oblivion.

To conclude this section, we strongly recommend keeping the term “twin” for real growth or
deformation twins, and use the clearer terms “variants” or “domains” for the daughter products
created by a phase transformation.
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6.3. Can 3, 4 and 6-Fold Operations be Twin Operations?

Friedel always considered that twinning operations are not limited to the 2-fold operations (mirror
symmetry or 180◦ rotation for the twin edifice); he argued that 3, 4 and 6-fold operations should also be
included in the theory. Despite our great admiration for his work, we will not follow him on this topic,
and we prefer to adopt Mügge’s point of view that there is no need of these higher order operations.
Friedel showed with many examples in mineralogy that twinning is a matter of metrics and lattices,
not of symmetry. Thus, it seems contradictory to introduce ex nihilo some crystal symmetries in the
twining theory. They look very similar to the pseudo-symmetries derived from Mallard’s hypothetical
cubic phase that Friedel still discarded. It seems that, more than one century after Mügge and Friedel,
the debate about the high-order operations is not yet closed (see [1]). We think very possible that the
cases of complex edifices that look like high-order twins are not twins but variants inherited from a real
high temperature phase during cooling (see previous Section). The observed 3, 4 or 6-fold symmetry
would be that of the parent phase, and the variants would come in contact during their growth from
the parent crystal, without direct transformation (by shear or misfit reduction) between the lattices of
the variants. The other possibility is that they are not the result of a simple shear and would be special
types of epitaxial twins (see next Section).

6.4. Beyond Dogmas

Science is very conservative and slowly advances. This makes it strong and reliable. However,
it should always be remembered that science works with models that are based on hypotheses and
paradigms, not on dogmas. We should remain open to new ideas as far as they are in agreement with
the observations, and we should give up the old models, or at least make them evolve, if they cannot
explain some experimental facts. Models and theory should never substitute the experience. Let us
propose some original paths to explore for future research.

6.4.1. Epitaxial Twinning

Clearly, the crystallographic theory of twinning does not explain all the observations, even with
the complements brought in this paper. Friedel was not completely satisfied; his model based on the
lattice or multiple lattice could describe many growth twins of minerals, but some of them remained
outside its capabilities. One is the Zinnwald twin in quartz in which the interface is a plane

(
1010

)
for

the parent and
(
1011

)
for its twin. The fact that the interface cannot be indexed similarly in the parent

and its twin is difficult to understand within the classical Friedel’s theory. It seems that they are not type
II twins, even if we have not yet checked this point. Quartz also produces unconventional twins such
as the Lötshental twins, the Zyndel twins and the Seedorf twins [1]. To explain them, Friedel [50] at the
end of his life proposed a model based on diperiodic multiple “lattice” that replaces the triperiodic
one, but these developments were largely ignored by the scientific community, probably because of the
rareness of these unconventional twins. For the last decade, we have used the atomic hard-sphere
assumption to establish some simple crystallographic models of martensitic transformations in steels
and other alloys [40–45] and of deformation twinning in magnesium alloys [23,30,51,52]. We came
to conclude that the habit plane is not fully invariant during the lattice distortion. For example, in
case of the extension twins in magnesium, some reticular directions in the

(
1012

)
twin plane must

elongate to leave some Mg atoms go through the plane, before coming back to their initial length once
the distortion is complete [30]. Thus, the lattice distortion is not a simple shear mechanism in it is
continuity; it is a simple shear only if the pictures of the initial and final states are considered, and if
the movie of the atomic displacements during the process if ignored. After this theoretical work, the
experimental discovery an unconventional deformation twin in magnesium in which the interface is(
2132

)
in the host parent and

(
0112

)
in the twin [52] came without surprise (but not without satisfaction).

At that time, we were not yet aware that Friedel already encountered unconventional growth twins in
mineralogy. If twinning is not a simple shear mechanism, what could it be? A generalized theory of
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twinning should be in agreement with the classical twinning cases, but also with the unconventional
ones in which the interface plane is not invariant. The general character of twinning comes from the
fact that the accommodation is spread in whole volume. For deformation twins, the energy required to
create this accommodation volume is brought by the work of the external stress W = σij εij. As the
invariance condition of the interface plane is not required anymore, new forms of distortion matrices
F are possible. A necessary condition is that the volume is conserved, i.e Det(F) = 1. Additional
conditions must substitute the previous “invariant plane” one; and among them, one could be that F
minimizes the misfits in volume with the host parent by adopting an epitaxy orientation relationship.
For steels we proposed that the habit plane should be an unrotated plane [43], i.e., it should be an
eigenvector of F*; and this condition could probably be acceptable to define a part of the epitaxial
relation. A wide range of new distortion matrices is now open. An example of such possible epitaxial
distortion is shown in Figure 15a. The general theory with its mathematics remains to be built, and
more experimental results on the unconventional twins should be collected.
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6.4.2. Iso-orientation Twinning

Even if the simple shear hypothesis is maintained, there is another assumption in the usual
crystallography of deformation twinning that is implicit or admitted as “obvious”, but that could be
discussed: it is said that the twinning plane p should not be a mirror plane of the crystal lattice, and its
normal n should not be a 2-fold symmetry of the individual crystal lattice. Such cases however exist
for growth twinning; they correspond to “twinning by merohedry”, in which T is a mirror symmetry
of the lattice but not of the crystal. For deformation twinning, a distortion that would lead to the same
lattice orientation was excluded. We think that this restrictive hypothesis results from a confusion
between the orientation and the distortion. Actually, iso-orientation twinning can be imagined for
T ∈ Gγ with the only condition that the shear vector d is a reticular direction. The cases would be
equivalent to T = I (identity matrix) and F = C. An example is given in Figure 15b. The twin would
be “invisible” by X-ray diffraction or by Electron BackScatter Diffraction (EBSD) mapping, or at least
would be detectable only the traces left by the accommodation dislocations and by the continuous
rotation fields they generate. These rotation fields take the form of continuous features in the pole
figures, as already observed for martensite in steels [40] and for the extension twins in magnesium [30].
The possibility of iso-orientation twinning would be equivalent to a glide of perfect dislocations in
regularly stacked in layers parallel to the twinning plane. As already proposed by Friedel [20], it is
possible that the unclear phenomena called “kinking” (“knickung” in German, as introduced by Mügge,
and later translated by “pliage en genou” in French) is the manifestation of such iso-T shears. Kinking
is a macroscopic and fast bending deformation of the crystal without the creation of new distinct
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orientations. A schematic representation of the lattice change during kinking is shown in Figure 16.
Nowadays, kinking and shear bands are considered to result from a collective and brutal glide glides
of dislocations (Figure 16a), but we prefer following Friedel to conceive kinking as a kind of iso-T
twinning (Figure 16b). Friedel clearly proposed that “glide is nothing else than a mechanical twin by which
the crystal is transformed into itself ” [20]. This point of view has completely been forgotten because of
the great success of dislocations from 1940s till now.
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Figure 16. Two interpretation of the kinking phenomenon (“pliage en genou” in French). (a) By a
sequential and well-ordered movement of perfect dislocations. The origin of the dislocations is difficult
to explain. (b) By an iso-orientation shear. The nodes of the lattices (blue disks) are in the same positions
in (a,b).

We do not contest that dislocations exist; they react together; they explain many physical and
mechanical properties; but we do not believe that they explain everything in materials science.
To our point of view, dislocations are not relevant to explain collective effects such as martensitic
transformations and deformation twinning. They are the consequence (the defects) created by the
transformations, but they are not their cause and they should not be taken as the starting point of the
models. As we already argued in [36], all the models of martensitic transformation and deformation
twinning that are based on sequential and periodic glides of partial “interface dislocations” remain
mute on the origin of these dislocations. A complex “pole mechanism” was imagined but never
confirmed experimentally.

Explaining the macro/mesoscopic phenomenon of kinking and deformation twinning by a lattice
distortion driven by the interaction work W = σij εij is more natural to us than imagining individual
and correlated glides under the Peach-Koehler force of dislocations created by an unknown or
highly speculative process. The ideao iso-orientation lattice shear has been discarded to the profit of
dislocation-based plasticity because it is usually believed that it is energetically impossible for the
atoms to move collectively by a macroscopic shear. This is the famous Frenkel’s argument based
on an incorrect demonstration and against which we proposed a wave-like propagation of phase
transformation [36]. In metallurgy and in crystallography, the belief that iso-T deformation can only
be obtained by dislocation glide is so strong that mathematics of crystallography use the semi-direct
Seitz notation {F|t} of affine operations in order to separate the linear application F from the translation
t. However, some researchers have introduced the “global group” that contains all the operations
that preserve the lattice with its orientation [34,35] and that contains the iso-T shear distortion we are
describing. We remained very cautious on the real existence of the “global” group (see Section A2
of [23]) because the iso-T shear would indeed imply high shear values and important accommodation
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energies, but the wave-like process we proposed in [36] could allow in some rare cases such large
shears to be favored by the work of the external stress.

Let us take the risk to go even further by generalizing the idea of iso-orientation shear to usual
gliding. If only the initial and final states are considered, imagining dislocations as incompatibility
defects resulting from an iso-orientation shear is very similar the usual view of dislocation gliding, as
illustrated in Figure 17.

Imagining gliding as localized nano-shear band could have some advantages over the dislocation
model to explain some mesoscopic phenomena. The glide in some bcc metals and some minerals is
easy in one direction and impossible in the reverse direction. This fact and other non-Schmid behaviors
are difficult to explain with dislocations, even by considering their complex core structure. They are
simpler to understand by seeing them as cases of iso-T twinning with q > 1 for which the shuffles of
the atoms inside the supercell depend on the direction of the applied shear.Metals 2020, 10, x FOR PEER REVIEW 26 of 30 
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Figure 17. Similarities between glide and twinning. (a) Usual view on glide, the upper lattice is
translated relatively to the lower part. (b) Same final state obtained by iso-orientation twinning. (c)
Dislocations are the frontiers between sheared and a non-yet sheared parts of the crystal. (d) Plasticity
is usually considered as a consequence of glides, but it could be equivalently explained localized
sheared bands.

7. Conclusions

Deformation and growth twins can be described with the same mathematics. The concept of lattice
misfit and obliquity for the growth twins is indeed quite equivalent to that of shear incompatibility for the
deformation twins. The paper recalls the hypotheses on which the theory has been built over the last 130
years with Mügge, Mallard, and Friedel works, and later with Bilby, Bevis and Crocker’s developments
(Section 1). The three transformation matrices (distortion F, orientation T, correspondence C) are
determined in dyadic forms, first by synthesizing the various geometrical/algebraic results of literature
(Section 2), and secondly, by proposing a systematic method that uses the supercell matrices (Section 3).
Then, two important complements to the usual theory were proposed.

(1) The usual theory only considers the cases in which F and T play a similar role (on the reticular
direction w). This assumption is justified for twinning with low obliquity/shear values, but is
not relevant for larger values. We showed in Section 4 that in such cases F and T should be
uncorrelated, with T playing on w, and F acting on another reticular direction t pointing to a
node of the same layer as that of w. The usual twinning mode was called “normal” and the other
modes were called “tilted”. The normal and tilted modes constitute “complementary” twins. The
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tilted modes explain with an index q = 1 some twins without lattice shuffling previously reported
with q = 2 in literature.

(2) Type II twins have always been introduced as the conjugates of type I twins, which does not
permit to capture their true nature. We showed in Section 5 that type II twinning is a simple
shear on a reticular plane of the reciprocal lattice, exactly as type I twining is a simple shear on a
reticular plane of the direct lattice. Type II twins can be determined independently of the type I
twins, with the same mathematics.

In the Section 6, we explained why the variants inherited from a phase transformation should not
be called “transformation twins”. We also showed that, even with the complements proposed in the
paper, the crystallography of twinning needs more generalization. As Friedel, we think that twinning
is fundamentally not a simple shear mechanism. The non-shear nature of twinning is particularly clear
in the cases of the Zinnwald growth twin in which the interface is

(
1010

)
parent

//
(
1011

)
twin

, and for

the unconventional deformation twin we recently observed in magnesium for which the interface
is

(
2132

)
parent

//
(
0112

)
twin

. These “epitaxial twins” are not yet mathematically formalized. We also

follow Friedel to consider that kinking could be a type of “iso-orientation twinning”.
When, more a century ago, Mügge, Mallard and Friedel proposed models of twinning based only

the lattice and its metrics, the existence of the atoms was still discussed and the structure of the motif
was very vague. Their approaches were very successful, but not yet complete, and Friedel knew it. It
is now great time to rehabilitate the atoms and propose general forms of lattice distortions that are
compatible with their sizes, or more precisely with their interatomic potentials and the energetic gaps
of the intermediate states. Crystallography needs physics and mechanics to complete the twinning
models. It is also important to re-analyze without pre-conceived opinion the numerous cases of
twinning and kinking encountered in metallurgy and mineralogy with modern experimental tools,
such as in-situ X-ray or neutron diffraction, and EBSD.
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Appendix A

We consider the 2D rectangular crystal with its right-hand crystallographic basis (aγ, bγ) and
its twin with its left-hand crystallographic basis (aα, bα). The normal and tilted twinning modes
leading to the twinned crystal are represented in Figure A1(a) and Figure A1(b), respectively. What are
the transformation matrices and the shear amplitudes for these two modes? In order to simplify the
notation, we assume that aα = 1 and that bα/aα = r with r ≤ 1.
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The twinning plane is p =

(
−1
1

)
and the twinning direction d is parallel to dmax =

[
1
1

]
.

Please note that the amplitude of d is not yet know. Let us consider Figure A2. It gives the relations:
(1) dmax =

√
1 + r2, (2) h·dmax = r (surface of the rectangle), (3) h2 + e2 = r2. From them, it can be

shown that the shear value for the normal mode is:

sN =
dN

h
=

2e
h

= 2r (A1)

and the shear value for the tilted mode is:

sT =
dT

h
=

1
r
− r (A2)

The shear values are plotted as functions of r in Figure A3.
Note that sN + sT = smax with smax = dmax

h . The shear amplitude of the two modes are equal
for a rectangle with the metric ratio rc = 1

√
3
. If one considers that the lowest shear is favored, the

twinning mode will be normal for r ≤ rc and tilted for r ≥ rc.
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The shear matrix for each mode is now deduced from Equation (5) F = I + s
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for the tilted mode.
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They are FN = 1
1+r2

[
1 + 3r2

−2r2

2r2 1− r2

]
and FT = 1

1+r2

[
2r2 1− r2

r2
− 1 2

]
. It can be checked that both

matrices leave the direction
[

1
1

]
invariant.

Another and more automatic way to determine the shear matrices FN and FT consists in using
Equation (19) instead of Equation (5). For normal mode FN is calculated from d given by Equation (6)

and w = bγ, and for the tilted mode FT is calculated by Equation (21) with w =

[
0
1

]
and t =

[
−1
0

]
.

Following this method, there is no need to calculate the shear amplitudes. The values sN and sT can be
determined afterwards, by using Equation (12).

The correspondence matrices are determined by considering Figure A4. In the normal mode, the
shear transforms the basis vectors of the parent crystal aγ → a′γ = aα + 2bα and bγ → b′γ = −bα ;

the correspondence matrix is thus CN =

[
1 0
2 −1

]
. In the tilted mode, the shear transforms the basis

vectors of the parent crystal aγ → a′γ = bα and bγ → b′γ = aα ; the correspondence matrix is thus

CN =

[
0 1
1 0

]
. Their determinant is -1 because of the convention that twinning is a mirror symmetry

of lattices. The correspondence matrices and the metric tensors could be used to find again the shear
amplitudes thanks to Bevis and Crocker’s Equation (11), and the calculations confirm the values of sN

and sT previously determined.
The orientation matrix is the same in both modes. It is given by Equation (8). Calculations show

that T = 1
1+r2

[
1− r2 2r2

2 1− r2

]
. One can check the master equation C = T·F.
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