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Abstract: Precipitation strengthened, fully ferritic microstructures in low-carbon, microalloyed steels
are used in applications requiring enhanced stretch-flange formability. This work assesses the
influence of thermomechanical processing on the evolution of austenite and the associated final
ferritic microstructures. Hot strip mill processing simulations were performed on a low-carbon,
titanium-molybdenum microalloyed steel using hot torsion testing to investigate the effects of
extensive differences in austenite strain accumulation on austenite morphology and microstructural
development after isothermal transformation. The gradient of imposed shear strain with respect
to radial position inherent to torsion testing was utilized to explore the influence of strain on
microstructural development for a given simulation, and a tangential cross-section technique was
employed to quantify the amount of shear strain that accumulated within the austenite during
testing. Greater austenite shear strain accumulation resulted in greater refinement of both the prior
austenite and polygonal ferrite grain sizes. Further, polygonal ferrite grain diameter distributions
were narrowed, and the presence of hard, secondary phase constituents was minimized, with greater
amounts of austenite strain accumulation. The results indicate that extensive austenite strain
accumulation before decomposition is required to achieve desirable, ferritic microstructures.
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1. Introduction

A challenge exists in the automotive industry to develop new, hot-rolled, high-strength low-alloy
(HSLA) steels offering a balance of high tensile strength and superior stretch-flange formability
to reduce vehicle weight without compromising safety, performance, or manufacturability [1,2].
The steel industry has responded by developing ferritic steels strengthened with extensive nano-sized
precipitation [2–4]. The single-phase ferritic matrix eliminates hard constituents and imparts superior
stretch-flange formability, while its high yield and tensile strengths are derived from nano-sized
precipitates. Titanium (Ti)-, niobium (Nb)-, or vanadium (V)-based microalloy systems are typically
used for such HSLA steels, and molybdenum (Mo) is often added to strongly retard the precipitate
coarsening rate [4,5]. Substitutional manganese (Mn) additions are also made to such HSLA steels
to compensate for the low carbon levels and lower the Ar3 transformation temperature for better
refinement of the microalloy precipitation sizes [6]. However, the Mo and Mn additions can enhance
the hardenability of the steel, resulting in slower austenite decomposition kinetics and hard secondary
phase constituents (e.g., bainite and/or martensite) in the final microstructures. Hard constituents are
undesirable because stretch-flange formability is markedly reduced due to the nucleation of voids at
the interfaces between the relatively hard and soft phases [7,8]. Therefore, the ability to obtain both fine
microalloy precipitates and a single-phase ferritic matrix in the final microstructure requires attention
to thermomechanical processing, due to its effect on the austenite decomposition behavior [9].
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Hot strip mills (HSM) are a key part of HSLA steel production. A typical, semi-continuous HSM
consists of the following units: reheat furnace, roughing stand, transfer table, coilbox, finishing mill,
runout table, and coiler [10]. The reheat furnace heats the slab to a suitable temperature to start hot
rolling. The roughing stand is used for major reductions in slab thickness. The transfer table carries the
slab, now called the transfer bar, from the roughing stand to the finishing mill. A coilbox is sometimes
used to wrap the transfer bar into a coil to obtain a more uniform temperature profile [10]. The transfer
bar is then delivered to the finishing mill, which is used for more precise gauge reductions. The strip is
water-cooled from coolant headers along the runout table to control the final microstructure and then
wrapped into a coil, which slowly cools to room temperature. Important processing steps during HSM
processing to develop the desired, ferritic microstructures are controlled rolling in the finishing mill
and accelerated cooling on the runout table (lowers the coiling temperature) [9].

Three types of austenite recrystallization behaviors are typical in HSM processing: static
recrystallization, austenite pancaking (i.e., avoidance of recrystallization), and dynamic/metadynamic
recrystallization [11]. The long interpass times and high temperatures, above the non-recrystallization
temperature (Tnr), during rough rolling allow for nearly complete static recrystallization (SRX) to take
place between rolling passes. Fine, equiaxed austenite grains are produced with negligible strain
accumulation through SRX. Finish rolling is typically close to or below the Tnr, thus encouraging
rapid strain-induced precipitation (SIP) of microalloy carbonitrides (e.g., Nb [12], Ti [13], and V [14]
containing HSLA steels). These precipitates retard or even prevent the SRX of austenite grains;
leading to pancaking, greater strain accumulation, and the generation of defects like dislocations and
deformation bands. One of the major differences between HSM and plate mill rolling schedules is
the interpass times, which are much shorter in the HSM and range from 0.2–5 s [11,15,16]. These
short interpass times encourage strain accumulation and dynamic recrystallization (DRX) [11,17]. Fine,
equiaxed austenite grains with negligible strain accumulation are also produced through DRX [18].

Hot torsion testing has been employed in numerous hot rolling simulations and recrystallization
studies of HSLA steels for its ability to impose large amounts of strain while accurately controlling
temperature, interpass time, and strain rate [9,15,18–21]. The conditioning of austenite into pancaked
grains during HSM processing is important for final microstructural development. Whitley et al. [19]
considered the evolution of the austenite grain morphology during hot torsion testing (shear
deformation), and Figure 1 [19] shows a schematic overview of the expected austenite morphology
at several stages throughout testing. The torsional axis is vertical to the page in Figure 1. Grains
undergo one or both of the following processes at a given time: (i) shear deformation, thus becoming
more elongated in morphology; and (ii) recrystallization, thus becoming refined and equiaxed in
nature. Austenite grains are assumed to be initially equiaxed after soaking at high temperatures
(Figure 1a), and they become elongated and rotated by the application of shear strain (Figure 1b) when
viewed normal to the torsional axis of a cylindrical specimen [19]. If deformation occurs above the Tnr,
SRX of the austenite is expected given sufficient interpass time (Figure 1c). However, if deformation
occurs below the Tnr, pancaking of the austenite is expected and results in rotated grains with higher
aspect ratios (Figure 1d). Austenite grains accommodate strain in this manner until there is sufficient
driving force for recrystallization in the form of stored strain energy [19]. Strain-free grains can form
in the regions of highest stored strain energy (e.g., grain boundaries and deformation substructure)
(Figure 1e).

A metallographic technique was developed by Whitley et al. [19] to quantify the shear strain
accumulation within (prior) austenite microstructures produced via hot torsion testing. Tested samples
are sectioned parallel to the torsional axis and metallographically prepared to observe the prior
austenitic microstructures. In this “tangential” plane cross-section, the inclination angles (θ′) of prior
austenite grains and other microstructural features can be measured with respect to the torsional
axis and used to estimate the amount of shear strain that accumulated during testing (γacc) with
the relationship

γacc = tan(θ′). (1)
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Figure 1. Schematic representation of the expected morphological evolution of austenite grains during 
hot torsion testing (shear deformation). The arrows indicate the progression of morphological 
changes. Austenite grains are (a) initially equiaxed and (b) elongate from imposed shear strain. Next, 
austenite grains either (c) recrystallize or (d) continue to deform in shear until (e) sufficient driving 
force is present for partial recrystallization. The torsional axis is vertical to the page. Adapted with 
permission from [19]. 
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prior austenitic microstructures. In this “tangential” plane cross-section, the inclination angles (θ’) of 
prior austenite grains and other microstructural features can be measured with respect to the 
torsional axis and used to estimate the amount of shear strain that accumulated during testing (γacc) 
with the relationship 

γacc = tanሺθ�ሻ. (1)

Multiple austenite deformation-recrystallization cycles during multi-pass torsion testing can 
result in mixed (prior) austenite microstructures displaying a distribution of inclination angles [18]. 
These distributions reflect the local variation in strain accumulation that can result during 
thermomechanical processing. Figure 2 [19] shows an example of this technique applied to a 1045 
steel microalloyed with V that underwent industrial bar rolling simulations via hot torsion testing. 
Various microstructural features are highlighted with their corresponding inclination angles with 
respect to the torsional axis, which indicated: 

(A) Manganese sulfide (MnS) inclusion, elongated and initially oriented parallel to the rolling 
direction. Since MnS inclusions do not recrystallize during thermomechanical processing, γacc 
represents the total shear strain imposed; 
(B) Highly elongated prior austenite grain with the same inclination angle as MnS, suggesting 
no recrystallization during thermomechanical processing; 
(C) Elongated prior austenite grain with an inclination angle less than (A) and (B), indicating 
some degree of recrystallization during thermomechanical processing, followed by subsequent 
deformation. The measured inclination angle represents the amount of shear strain that 
accumulated after the last recrystallization event, assuming an equiaxed grain morphology after 
recrystallization; 
(D) Fine, equiaxed prior austenite grains that indicate recrystallization without shear strain 
accumulation.  

Figure 1. Schematic representation of the expected morphological evolution of austenite grains during
hot torsion testing (shear deformation). The arrows indicate the progression of morphological changes.
Austenite grains are (a) initially equiaxed and (b) elongate from imposed shear strain. Next, austenite
grains either (c) recrystallize or (d) continue to deform in shear until (e) sufficient driving force is
present for partial recrystallization. The torsional axis is vertical to the page. Adapted with permission
from [19].

Multiple austenite deformation-recrystallization cycles during multi-pass torsion testing can result
in mixed (prior) austenite microstructures displaying a distribution of inclination angles [18]. These
distributions reflect the local variation in strain accumulation that can result during thermomechanical
processing. Figure 2 [19] shows an example of this technique applied to a 1045 steel microalloyed with
V that underwent industrial bar rolling simulations via hot torsion testing. Various microstructural
features are highlighted with their corresponding inclination angles with respect to the torsional axis,
which indicated:

(A) Manganese sulfide (MnS) inclusion, elongated and initially oriented parallel to the rolling
direction. Since MnS inclusions do not recrystallize during thermomechanical processing, γacc

represents the total shear strain imposed;
(B) Highly elongated prior austenite grain with the same inclination angle as MnS, suggesting no

recrystallization during thermomechanical processing;
(C) Elongated prior austenite grain with an inclination angle less than (A) and (B), indicating

some degree of recrystallization during thermomechanical processing, followed by subsequent
deformation. The measured inclination angle represents the amount of shear strain that
accumulated after the last recrystallization event, assuming an equiaxed grain morphology
after recrystallization;

(D) Fine, equiaxed prior austenite grains that indicate recrystallization without shear
strain accumulation.

The main aim of this work was to investigate differences in austenite strain accumulation before
decomposition and the associated influence on (prior) austenite morphology and microstructural
development after isothermal transformation for a low-carbon, Ti-Mo microalloyed steel.
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Figure 2. Light optical micrograph from the tangential plane cross-section of the prior austenite 
microstructure produced via industrial bar rolling simulations on a 1045 steel microalloyed with V 
using hot torsion testing. MnS inclusions (A) and some austenite grains (B) accumulate all imposed 
shear strain without recrystallizing. Other austenite grains (C) deform in shear after recrystallizing or 
(D) recrystallize following the final deformation pass. The torsional axis (TA) is vertical to the page, 
parallel to the reference line indicated. Adapted with permission from [19]. 

2. Materials and Methods  

A low-carbon, Ti-Mo microalloyed steel was investigated, and its chemical composition is 
shown in Table 1. The experimental alloy was received as 16 mm thick, hot-rolled steel from Baoshan 
Iron & Steel Co. (Shanghai, China). Table 2 provides estimates of particular critical transformation 
temperatures using empirical equations found in the literature. These critical transformation 
temperatures were used to guide the thermomechanical processing of the experimental alloy. The 
following empirical equations were used: Andrews for Ac1 and Ac3 [22], Schacht for Ar1 [23], 
Pickering for Ar3 [24], Lee #2 for Bs [25], and Borrato for Tnr [26]. The Ms temperature was determined 
experimentally using dilatometry [27]. 

Table 1. Experimental Alloy Composition. 

wt pct C Mn Si Mo Ti Al N S P Fe 
Ti-Mo 0.053 1.86 0.10 0.24 0.120 0.035 0.0036 0.0024 0.0085 Balance 

Table 2. Critical Transformation Temperature Estimates for the Experimental Alloy. 

°C Ac1 Ac3 Ar1 Ar3 Bs Ms Tnr 
Ti-Mo 706 875 725 871 606 362 995 

Reference [22] [22] [23] [24] [25] Experimental [26] 

Solutionizing temperatures for relevant compounds in austenite were determined based on 
solubility expressions [28,29]. The calculations showed that titanium nitride (TiN) remains 
undissolved during solid-state processing, thus all nitrogen (N) was assumed to be removed from 
solid solution. The evolution of equilibrium phases as a function of temperature was predicted with 
Thermo-Calc® (Thermo-Calc Software, Solna, Sweden, Version 2019) using the TCFE9 database 
(assuming all N was already incorporated into TiN precipitates), and the results are shown in Figure 

Figure 2. Light optical micrograph from the tangential plane cross-section of the prior austenite
microstructure produced via industrial bar rolling simulations on a 1045 steel microalloyed with V
using hot torsion testing. MnS inclusions (A) and some austenite grains (B) accumulate all imposed
shear strain without recrystallizing. Other austenite grains (C) deform in shear after recrystallizing or
(D) recrystallize following the final deformation pass. The torsional axis (TA) is vertical to the page,
parallel to the reference line indicated. Adapted with permission from [19].

2. Materials and Methods

A low-carbon, Ti-Mo microalloyed steel was investigated, and its chemical composition is shown in
Table 1. The experimental alloy was received as 16 mm thick, hot-rolled steel from Baoshan Iron & Steel
Co. (Shanghai, China). Table 2 provides estimates of particular critical transformation temperatures
using empirical equations found in the literature. These critical transformation temperatures were
used to guide the thermomechanical processing of the experimental alloy. The following empirical
equations were used: Andrews for Ac1 and Ac3 [22], Schacht for Ar1 [23], Pickering for Ar3 [24],
Lee #2 for Bs [25], and Borrato for Tnr [26]. The Ms temperature was determined experimentally using
dilatometry [27].

Table 1. Experimental Alloy Composition.

Wt pct C Mn Si Mo Ti Al N S P Fe

Ti-Mo 0.053 1.86 0.10 0.24 0.120 0.035 0.0036 0.0024 0.0085 Balance

Table 2. Critical Transformation Temperature Estimates for the Experimental Alloy.

◦C Ac1 Ac3 Ar1 Ar3 Bs Ms Tnr

Ti-Mo 706 875 725 871 606 362 995
Reference [22] [22] [23] [24] [25] Experimental [26]

Solutionizing temperatures for relevant compounds in austenite were determined based on
solubility expressions [28,29]. The calculations showed that titanium nitride (TiN) remains undissolved
during solid-state processing, thus all nitrogen (N) was assumed to be removed from solid solution.
The evolution of equilibrium phases as a function of temperature was predicted with Thermo-Calc®

(Thermo-Calc Software, Solna, Sweden, Version 2019) using the TCFE9 database (assuming all N
was already incorporated into TiN precipitates), and the results are shown in Figure 3. The MC
equilibrium phase represents a mixed microalloy carbide exhibiting the NaCl (B1) crystal structure
without the incorporation of N. From the determined equilibrium dissolution temperature of MC,
a soaking temperature of 1250 ◦C was selected.
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ends of the sample were restrained to keep the reduced gauge length fixed during torsion testing, 
and the Gleeble® 3500 was programmed to minimize axial stresses by adjusting the stroke arm. Axial 
stresses did not exceed ±10 MPa during testing. Helium (He) gas was used as the quenchant for all 
tests and was directed from quench heads both in front and behind the sample. The torsion motor 
coupler within the Hot Torsion Mobile Conversion Unit was set for 20° free rotation, which allowed 
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sample. The oxygen partial pressure within the chamber was maintained under 30 ppm during 
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Port, UK). 
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that was calibrated at 1100 °C prior to testing. The pyrometer is not reliable below ~700 °C, so it was 
used to control temperature during heating, soaking, and deformation. An alternative method was 
required to control temperature during the accelerated cooling and isothermal holding steps due to 
the relatively low temperatures employed. Attaching a thermocouple to the fixed shoulder of the 
sample, where limited deformation occurs, and accounting for the temperature difference between 
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controlling temperatures below ~700 °C. Therefore, a Type K thermocouple was spot welded to the 
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that included isothermal holding. Each thermocouple wire was insulated with a small section of 
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Figure 3. Evolution of equilibrium phases as a function of temperature predicted with Thermo-Calc®

using the TCFE9 database. It was assumed that all N was first incorporated into TiN precipitates at
much higher temperatures (greater than 1500 ◦C).

2.1. Hot Torsion Testing

Hot torsion testing was accomplished using a Gleeble® 3500 system equipped with the Hot
Torsion Mobile Conversion Unit (Dynamic Systems Inc., Poestenkill, NY, USA). Sub-sized torsion
samples were machined from the as-received material according to the schematic illustration in Figure 4,
where the rolling direction was parallel to their lengths. Figure 5 shows a photograph inside the Hot
Torsion Mobile Conversion Unit chamber, highlighting the setup used during testing. Both ends of the
sample were restrained to keep the reduced gauge length fixed during torsion testing, and the Gleeble®

3500 was programmed to minimize axial stresses by adjusting the stroke arm. Axial stresses did not
exceed ±10 Mpa during testing. Helium (He) gas was used as the quenchant for all tests and was
directed from quench heads both in front and behind the sample. The torsion motor coupler within
the Hot Torsion Mobile Conversion Unit was set for 20◦ free rotation, which allowed rapid acceleration
of the torsion motor during deformation as well as a rapid reduction in torque on the sample during
interpass times. Hot torsion testing was performed under the protective environment of argon (Ar)
gas to minimize oxidation and decarburization near the surface of the sample. The oxygen partial
pressure within the chamber was maintained under 30 ppm during testing and monitored using a
PurgEye® 200 oxygen sensor (Huntingdon Fusion Techniques, Burry Port, UK).

The temperature of each sample was monitored at the mid-length of the reduced gauge section
using a Metis Model MQ11 optical pyrometer (Process Sensors Corporation, Milford, MA, USA) that
was calibrated at 1100 ◦C prior to testing. The pyrometer is not reliable below ~700 ◦C, so it was
used to control temperature during heating, soaking, and deformation. An alternative method was
required to control temperature during the accelerated cooling and isothermal holding steps due to
the relatively low temperatures employed. Attaching a thermocouple to the fixed shoulder of the
sample, where limited deformation occurs, and accounting for the temperature difference between the
shoulder and mid-length of the reduced gauge section, proved to be an efficient method for controlling
temperatures below ~700 ◦C. Therefore, a Type K thermocouple was spot welded to the surface of the
sample roughly 0.5 mm away from the fixed shoulder (as shown in Figure 5) for testing that included
isothermal holding. Each thermocouple wire was insulated with a small section of ceramic tubing to
prevent short-circuiting. An isothermal holding temperature of 650 ◦C was planned, and preliminary
testing showed that an offset value of approximately 18 ◦C (i.e., shoulder temperature of 632 ◦C) was
appropriate to account for the temperature difference between the shoulder and reduced gauge section.
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processing simulations was the “effective radius”, which is positioned at 72.4 pct of the radial 
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Microstructural gradients within samples undergoing torsion testing require the selection of a
specific radial position to determine deformation parameters since imposed shear strain (γ) varies
with the radius of the reduced gauge section (r), according to

γ =
r ϕ
L

= tan(θ), (2)

where ϕ is the angle of twist (in radians), L is the reduced gauge length of the sample, and θ is the
expected inclination angle with respect to the torsional axis corresponding to the imposed shear strain.
The radial position used in this work to determine deformation parameters during HSM processing
simulations was the “effective radius”, which is positioned at 72.4 pct of the radial distance from the
central axis [30]. Barraclough et al. showed that this location represents the bulk behavior for materials
having a wide variety of strain rate sensitivities and/or strain hardening behaviors [30].

The following equations were used to convert the pass-by-pass shear strains and strain rates
into appropriate angles of twist and twisting times for simulation purposes, as well as to convert the
resulting torque to shear stress. The angle of twist for each pass was calculated according to

ϕ =
γ L

0.724r
, (3)
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and the twisting time (t) for each pass was calculated according to

t =
γ
.
γ

, (4)

where
.
γ is the shear strain rate. Barraclough et al. [30] developed an equation to convert torque (Γ) to

shear stress (τ) considering the effective radius, which assumes pure torsion and uniform shear strain
along the length of the reduced gauge section

τ =
3Γ

2π[(r 2)
3 − (r 1)

3]
, (5)

where r2 is the outer surface radius and r1 is the inner surface radius. Finally, the shear stress and
strain values were converted to equivalent true stress (σ) and strain (ε) values by applying the Von
Mises criterion

σ =
√

3τ, (6)

ε =
γ
√

3
, (7)

and used to determine the MFS for each pass according to

MFS =
1

εb−εa

εb∫
εa

σ dε, (8)

where εa and εb are the initial and final equivalent true strains per pass, respectively. The integrals
were solved using analytical solutions of logarithmic regressions of the data according to

εb∫
εa

(a1 ln(ε) + b1)dε =[(a1ε) ln(ε) − a1ε+ b1ε]
εb

εa
, (9)

where a1 and b1 are constants. This approach typically assumes uniform constitutive mechanical
properties of the material through the cross-section.

Table 3 summarizes the hot torsion testing schedule applied. The testing parameters were
developed after consideration of the literature [9,11,15,18] and industrial processing [16,31]. Samples
were heated at 5 ◦C/s to a soaking temperature of 1250 ◦C and held for 5 min to dissolve microalloy
carbides. Rough rolling simulations consisted of four identical passes between 1240 and 1150 ◦C,
each with relatively long interpass times to promote SRX of the austenite. Finish rolling simulations
consisted of seven passes: either between 1150 and 1000 ◦C (designated as High T Finish) or between
1050 and 900 ◦C (designated as Low T Finish). Note that the designations of either High T Finish
or Low T Finish simulations include the identical rough rolling simulations. These temperature
ranges were selected to be above or mostly below the estimated Tnr of approximately 1000 ◦C
to develop (prior) austenite microstructures with drastically different strain accumulation prior to
decomposition. The roughing-to-finishing delay was 30 and 100 s for the High T Finish and Low
T Finish simulations, respectively. Short interpass times are typical during HSM processing, which
promote austenite pancaking and possibly DRX of the austenite later during finish rolling [11,15,16].
Overall, the amounts of true strain imparted during rough and finish rolling simulations were about
1.60 and 2.40, respectively, totaling about 4.00. The cooling rate between all passes was kept constant at
5 ◦C/s to ensure accurate temperature control. Additionally, relatively low target shear strain rates
were utilized to ensure accuracy of the imparted shear strains. After the last finishing pass (F7),
samples were either: (i) quenched as rapidly as possible (~43 ◦C/s) to room temperature to investigate
the prior austenite grain (PAG) size and morphology, or (ii) accelerated cooled at ~30 ◦C/s to an
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isothermal holding temperature of 650 ◦C, held for 30 min, and finally quenched as rapidly as possible
to room temperature to investigate polygonal ferrite characteristics and the presence of any secondary
phase constituents.

Table 3. Hot Torsion Testing Schedule to Simulate High T Finish* and Low T Finish** Processing.

Pass No. Temperature (◦C) True
Strain

Shear
Strain

Twist Angle
(rad)

Shear Strain
Rate (s−1)

Interpass Time (s)

R1 1240 0.40 0.80 4.42 5 20
R2 1210 0.40 0.80 4.42 5 20
R3 1180 0.40 0.80 4.42 5 20
R4 1150 0.40 0.80 4.42 5 30* or 100**

F1 1150* or 1050** 0.50 1.00 5.52 10 8
F2 1110* or 1010** 0.50 1.00 5.52 10 8
F3 1070* or 970** 0.40 0.80 4.42 10 6
F4 1040* or 940** 0.40 0.80 4.42 10 4
F5 1020* or 920** 0.30 0.60 3.31 10 2
F6 1010* or 910** 0.20 0.40 2.21 10 2
F7 1000* or 900** 0.10 0.20 1.10 10 Quench or Hold

Previous research [19] has shown that a tangential orientation is best for investigating PAG
morphologies and quantifying the amount of shear strain that accumulated within the microstructure
for samples tested via hot torsion. This orientation is presented schematically in Figure 6. Tested
samples were prepared in the tangential orientation according to the following procedure. First,
the reduced gauge section was cut free from its ends on both sides of the sample. Next, the gauge
section was cut in half (perpendicular to the torsional axis) to reveal the “thermal plane”. Note that
the thermal plane corresponds to the mid-length of the reduced gauge section, approximately where
the optical pyrometer was aligned prior to testing. Then, each piece was cut in half (parallel to the
torsional axis). Finally, these quartered sections were mounted in Bakelite and precision ground to the
radial position of interest using measurements of chord length to reveal the tangential plane.
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Figure 6. Schematic of the tangential orientation (evaluated at some radial position, r*) of samples
tested via hot torsion. The shaded region represents the tangential plane of interest, and the boxed
region represents the approximate location of microstructural characterization.

In addition to the effective radius, two other radial positions were selected to further investigate
how strain influences austenite conditioning and the final microstructures during HSM processing.
Recall that shear strain varies with the radius of the reduced gauge section according to Equation
(2). The target shear strain for the HSM processing simulations was 8.00, where the effective radius
(0.724 radial position) was used to determine the deformation parameters. Radial positions of 0.50
and 0.90 were also selected to represent an extensive range of possible shear strain accumulation.
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The approximate shear strain for the 0.50 radial position is 5.52, which might represent processing of
thicker gauge material, and the approximate shear strain for the 0.90 radial position is 9.94, which
might represent processing of thinner gauge material. All three radial positions were investigated
using the tangential orientation for each condition produced via hot torsion testing.

2.2. Microstructural Characterization

Samples for microscopic evaluation were sectioned, mounted in Bakelite, and prepared using
standard metallographic procedures. Samples were etched with either a 1 pct nital or a modified
Béchet–Beaujard reagent. The 1 pct nital reagent was used to reveal ferrite grain boundaries and
secondary phase constituents. The modified Béchet-Beaujard reagent was used to reveal PAG
boundaries and consisted of 200 cm3 of deionized water, 2.6 g of picric acid solids, 8 cm3 of
Teepol (wetting agent), and 2 cm3 of hydrochloric acid. This reagent was heated to 65 ◦C on a
temperature-controlled hot plate equipped with a thermocouple feedback and stirred with a magnetic
stir rod throughout the etching process. After each interval of etching with the modified Béchet-Beaujard
reagent, samples were immersed in a methanol bath, ultrasonicated, and dried with a heat gun. PAG
boundaries were highlighted in black to enhance their clarity within the provided micrographs.

General imaging of microstructures was accomplished using light optical microscopy (LOM),
where the micrographs were used to determine average grain size, phase area fraction, etc. LOM was
performed with an Olympus Model PMG3 inverted light microscope (LECO Corporation, St. Joseph,
MI, USA) with a PAXcam Model PX-CM digital camera (MIS Inc., Villa Park, IL, USA) and PAX-it!
Image analysis software (MIS Inc., Villa Park, IL, USA, Version 7.8). Electron backscatter diffraction
(EBSD) analysis was performed on isothermally transformed microstructures with a JSM-7000F field
emission-scanning electron microscope (JEOL USA Inc., Peabody, MA, USA) to investigate polygonal
ferrite grain diameter distributions. Prior to EBSD analysis, samples were metallographically prepared
and vibratory polished for at least 4 h using 0.02 µm colloidal silica solution. EBSD scans were
performed at an accelerating voltage of 20 keV, calibrated EBSD camera working distance of 18 mm,
and step size of 0.1 µm. EBSD data were collected with a Hikari Pro detector (EDAX Inc., Mahwah, NJ,
USA) using the TEAMTM software ( EDAX Inc., Mahwah, NJ, USA, Version 4.5), and the datasets were
analyzed with the Orientation Imaging Microscopy Analysis© software ( EDAX Inc., Mahwah, NJ,
USA, Version 8.1). EBSD datasets were cleaned using the following functions: Neighbor Orientation
Correction (Level 3, Tolerance 5.0, Minimum Confidence Index (CI) 0.10); Grain CI Standardization
(Tolerance 5.0, Minimum Size 3, Multi Row 1); and Neighbor CI Correlation (Minimum CI 0.30, Single
Iteration).

Polygonal ferrite and prior austenite grain sizes were determined with the concentric circle method
utilizing the ImageJ software (open-source). The intercepts of the circles with the grain boundaries
were counted, and the average intercept lengths were calculated and reported as the average grain
sizes. A total of 1000 or more grain boundary intercepts were counted for each condition to determine a
representative grain size. Note that prior austenitic twins were observed within some PAGs, but these
were not considered in the PAG size measurements. Aspect ratios of the PAGs were determined
by measuring the major and minor axes of individual grains (assuming an elliptical shape) with
the ImageJ software and calculating their ratios. Inclination angles of the PAGs with respect to the
torsional axis were measured with the ImageJ software and used to quantify the amount of shear
strain that accumulated within the (prior) austenite microstructures using the previously described
metallographic technique developed by Whitley et al. [19]. A total of 100 or more PAGs were measured
for each condition to determine a representative aspect ratio and inclination angle.

The ImageJ software was also used to determine the area fraction of secondary-phase constituents
using an image thresholding procedure. This procedure was employed because of the distinct difference
in the etching response of the polygonal ferrite (carbon depleted) and secondary phase constituents
(carbon rich) with 1 pct nital. First, LOM micrographs were thresholded from grayscale images
to black-and-white images using a grayscale value range that best captured the secondary phase
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constituents but without capturing polygonal ferrite grain boundaries. After thresholding, pixels in
the desired grayscale value range were transformed to white pixels (representing the secondary phase
constituents), while all other pixels were transformed to black pixels (representing polygonal ferrite).
Figure 7 provides an example of the thresholding process. Finally, the ratio of the number of white or
black pixels to the total number of pixels was used to determine the secondary phase constituents or
polygonal ferrite area fractions, respectively. This procedure was repeated at five or more different
areas of the microstructure for each condition to determine representative phase area fractions.

Samples were metallographically prepared and etched with 1 pct nital prior to Vickers
microhardness testing in order to relate microhardness to microstructural features. Vickers
microhardness testing was performed with a LM110 hardness tester (LECO Corporation, St. Joseph,
MI, USA) according to ASTM Standard E384-17 [32]. A 5 × 5 array of indents with an indentation load
of 100 g was used to determine the representative values of the polygonal ferrite in each isothermally
transformed condition. Indentations immediately adjacent to secondary phase constituents (including
large TiN precipitates) were disregarded. Very low indentation loads of 10 g were used to investigate
the small secondary phase constituents. Note that indentation loads like 10 g can result in consistently
higher microhardness values [33], so values determined with this indentation load were used for
comparison only.
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Figure 7. Example of the image thresholding process used to determine the area fraction of constituent
phases in mixed microstructures: (a) original light optical microscopy (LOM) micrograph, where light
etched regions represent polygonal ferrite and dark etched regions represent the secondary phase
constituents, and (b) processed image, where black pixels represent polygonal ferrite and white pixels
represent the secondary phase constituents.

3. Results

3.1. Strain Accumulation in the (Prior) Austenite

Figure 8 shows the MFS as a function of inverse absolute temperature for the (a) High T Finish
and (b) Low T Finish HSM processing simulations. Two linear regressions are included in each figure:
the first for the roughing stage and the second for the finishing stage (without including the softening
regions). Note that the imparted shear strain was incrementally reduced from the F1 to F7 deformation
steps (1.00 to 0.20) during finish rolling simulations, and deformation parameters were identical
between High T Finish and Low T Finish simulations. The relatively low imparted shear strain for
the F7 deformation step (0.20) contributed to the drop in the MFS observed for that deformation step
in both simulations. Thus, the data obtained from the F7 deformation steps were not considered in
the analysis. The MFS continuously increased from the F1 to F6 deformation steps for High T Finish
simulations. However, a softening region was indicated following the F4 deformation step for Low
T Finish simulations. This softening region was not indicated for High T Finish simulations when
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subjected to identical strains per pass. The rates at which MFS increased with respect to inverse
absolute temperature were similar between the two rolling simulations for both the roughing and
finishing stages. Low T Finish simulations were expected to cause a sharper increase in the rate
at which MFS changed with respect to absolute temperature relative to High T Finish simulations,
but this behavior was not observed. The lack of a sharper increase in the rate of change in MFS with
respect to absolute temperature for Low T Finish simulations may be due to limited strain-induced
precipitation as a result of the finish rolling start (F1) temperature being above the estimated Tnr

coupled with the relatively short interpass times. However, the magnitudes of the MFS were greater
overall for the Low T Finish simulations, since lower deformation temperatures were employed. The
softening region indicated in the last passes near the end of Low T Finish simulations may suggest
recrystallization of the austenite after extensive strain accumulation. Characterization of the prior
austenite microstructures of samples quenched immediately after the final finishing deformation step
(F7) was performed for each simulation to relate the observed PAG morphology with the amount of
shear strain that accumulated during thermomechanical processing. Additionally, a separate sample
underwent Low T Finish simulations but was quenched after the fourth finishing deformation step (F4)
to investigate the prior austenite microstructure immediately preceding the softening region indicated
in Figure 8b.
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Figure 8. Summary of mean flow stress as a function of inverse absolute temperature for (a) High T
Finish and (b) Low T Finish simulations via hot torsion testing. Two linear regressions are included in
each figure: the first for the roughing stage (R) and the second for the finishing stage (F), excluding the
softening region. The error bars represent one standard deviation.

The prior austenite microstructures produced via hot torsion testing are shown in Figure 9 after
etching with a modified Béchet-Beaujard reagent. Samples that underwent High T Finish simulations
are shown in Figure 9a–c, and samples that underwent Low T Finish simulations are shown in
Figure 9d–f. Three radial positions are shown for each HSM processing simulation: mid-radius, 0.50 (a
and d); effective radius, 0.724 (b and e); and near-surface, 0.90 (c and f). PAG sizes were significantly
refined for Low T Finish simulations (roughly 6–9 µm) compared to High T Finish simulations (roughly
14–15 µm). PAGs were mostly equiaxed for High T Finish simulations, and the (prior) austenite was
only slightly refined by the additional strain near the surface. However, Low T Finish simulations
resulted in mixed (prior) austenite microstructures consisting of larger, pancaked, and aligned grains
and smaller, equiaxed grains. PAGs were not inclined to the torsional axis (horizontal to the page) for
High T Finish simulations, but PAGs were inclined to the torsional axis for Low T Finish simulations
and exhibited an average inclination angle of approximately 60 ± 10◦. Interestingly, the average
inclination angles for the Low T Finish simulations were consistent between the three radial positions
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investigated. This average prior austenite inclination angle corresponds to an accumulation of roughly
1.7 shear strain (0.85 true strain) within the microstructure according to Equation (1). If no shear strain
accumulates during rough rolling simulations, a total of 4.8 shear strain could accumulate during finish
rolling simulations. Therefore, roughly 36 pct of the total shear strain is accumulated during Low T
Finish simulations, while negligible shear strain is accumulated during High T Finish simulations. The
differences in prior austenite morphology are highlighted in Figure 10, where higher magnification
images are shown for the 0.724 radial position.
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Figure 9. LOM micrographs of the prior austenite microstructures produced via (a–c) High T Finish
and (d–f) Low T Finish simulations. The following radial positions are shown: (a) and (d) 0.50; (b) and
© 0.724; and (c) and (f) 0.90. The torsional axis (TA) is horizontal to the page. Etched with a modified
Béchet-Beaujard reagent, and prior austenite grain boundaries are highlighted in black.
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Figure 10. Higher magnification LOM micrographs of the prior austenite microstructures produced via
(a) High T Finish and (b) Low T Finish simulations highlighting differences in morphology. The 0.724
radial position is shown in both. The torsional axis (TA) is horizontal to the page. Dashed lines in
(b) show the inclination angles of various prior austenite grains. Etched with a modified Béchet-Beaujard
reagent, and prior austenite grain boundaries are highlighted in black.

Figure 11 summarizes the average PAG (a) size and (b) aspect ratio with respect to radial position
determined for microstructures produced via High T Finish and Low T Finish simulations. Note that
as radial position increases (towards the surface), the amount of shear strain imposed during torsion
testing increases according to Equation (2). PAG size decreases with increasing radial position for
both High T Finish and Low T Finish simulations. Radial position had a greater influence on PAG
size refinement for Low T Finish simulations compared to High T Finish simulations. PAG aspect
ratios ranged between approximately 1–2 and 1–3.5 for High T Finish and Low T Finish simulations,
respectively, considering all radial positions. The large range of PAG aspect ratios for Low T Finish
simulations was a result of its mixed nature involving pancaked grains with higher aspect ratios along
with fine, equiaxed grains with lower aspect ratios. The PAG morphology becomes more equiaxed
with increasing radial position, especially for Low T Finish simulations. The micrographs provided in
Figure 9d–f and data summarized in Figure 11 suggest that greater imposed shear strain results in
a greater amount of fine, equiaxed (prior) austenite grains for Low T Finish simulations. The prior
austenite microstructures and MFS results are consistent with the occurrence of recrystallization due to
high strain accumulation.
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The prior austenite microstructure produced via Low T Finish simulations and quenched after
the fourth finishing deformation step (F4) is shown in Figure 12 after etching with a modified
Béchet–Beaujard reagent. Only the 0.724 radial position is shown. PAGs were mostly pancaked
and inclined to the torsional axis, but some fine, equiaxed grains can also be observed (Figure 12b).
The PAG size was approximately 11 ± 1 µm, which was greater than the PAG size that resulted from
quenching after the final finishing deformation step (F7). That value was approximately 7.2 ± 0.3
µm at the effective radius. The finer and more equiaxed (prior) austenitic microstructure obtained
after complete Low T Finish simulations compared to quenching after the F4 step suggests that more
austenite recrystallization occurred (whether statically and/or dynamically) due to the additional shear
strain that was imparted during thermomechanical processing. Figure 13 shows PAG inclination angle
histograms constructed for Low T Finish simulations quenched after the (a) F4 step and (b) F7 step.
Data were collected at the 0.724 radial position. Interestingly, both simulations resulted in similar
distributions of inclination angles, and the average inclination angles were determined to be 60◦ ± 8◦

and 59◦ ± 10◦ for interrupted and complete Low T Finish simulations, respectively. This microstructural
inclination angle may correspond to a critical amount of shear strain (approximately 1.7) that must
accumulate during thermomechanical processing before a significant driving force for austenite
recrystallization is available.
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magnification. The 0.724 radial position is shown in both. The torsional axis (TA) is horizontal to the
page. Dashed lines in (b) show the inclination angles of various prior austenite grains. Etched with a
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Figure 13. Prior austenite grain (PAG) inclination angle histograms for microstructures produced
via Low T Finish simulations: (a) quenched after the fourth finishing deformation step (F4) and
(b) quenched after the final finishing deformation step (F7). Data were obtained at the 0.724 radial
position for both cases.
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3.2. Isothermally Transformed Microstructures

The polygonal ferrite microstructures produced via hot torsion testing followed by isothermal
holding at 650 ◦C for 30 min are shown in Figure 14 after a 1 pct nital etch. Samples that underwent
High T Finish simulations are shown in Figure 14a–c, and samples that underwent Low T Finish
simulations are shown in Figure 14d–f. Three radial positions are shown for each HSM processing
simulation: mid-radius, 0.50 (a and d); effective radius, 0.724 (b and e); and near-surface, 0.90 (c and f).
Table 4 summarizes the average polygonal ferrite area fraction, grain size, and Vickers microhardness
for each condition. All radial positions for each HSM processing simulation exhibited a mostly
ferritic microstructure (greater than 97 pct), where a small amount of secondary phase constituents
was observed in some conditions. However, High T Finish simulations clearly resulted in more
secondary phase constituents than Low T Finish simulations. The average Vickers microhardness for
the secondary phase constituents in the High T Finish and Low T Finish simulations (both evaluated at
the 0.724 radial position) was approximately 550 HV (10 g). The presence of hard, secondary phase
constituents negatively impacts stretch-flange formability [7,8]. Polygonal ferrite grain sizes were
significantly refined for Low T Finish simulations (roughly 2.7–3.2 µm) compared to High T Finish
simulations (roughly 5.2–6.0 µm). The refinement observed for Low T Finish simulations is due to
the increased boundary surface area per grain volume from the austenite pancaking and generation
of defects, both of which enhance the ferrite nucleation kinetics during austenite decomposition [12].
Polygonal ferrite grain sizes were relatively consistent for all the radial positions investigated for
each processing simulation. Finally, polygonal ferrite microhardness was similar for the Low T Finish
conditions, due in part to the refined grain size, except for the 0.90 radial position, which exhibited a
marked decrease in microhardness. Thermomechanical processing may have an important influence on
microalloy precipitation within the ferrite, and this behavior is being investigated in ongoing research.

Table 4. Characteristics of Isothermally Transformed Microstructures.

Simulation
Designation

Radial
Position

Ferrite Area
Fraction (pct)

Ferrite Grain
Size (µm)

Ferrite Vickers
Microhardness (100 g)

High T Finish
0.50 97.4 5.4 ± 0.3 263 ± 9
0.724 98.7 5.2 ± 0.3 271 ± 13
0.90 > 99 6.0 ± 0.4 256 ± 8

Low T Finish
0.50 98.8 3.2 ± 0.1 283 ± 8
0.724 > 99 3.1 ± 0.1 284 ± 6
0.90 > 99 2.7 ± 0.05 245 ± 11

EBSD analysis of polygonal ferrite microstructures produced via both processing simulations
was performed to measure grain diameter distributions. Composite image quality (IQ) and inverse
pole figure (IPF) maps for the High T Finish and Low T Finish simulations are shown in Figure 15a,b,
respectively, for the 0.724 radial position. These maps provide a clear delineation of polygonal ferrite
grains and highlight the substantial differences in overall morphology that resulted from the different
HSM processing simulations. Figure 16 shows ferrite grain diameter histograms constructed for (a)
High T Finish and (b) Low T Finish simulations, where data were collected and averaged from four
90 × 90 µm2 regions. High T Finish simulations exhibited a bimodal distribution centered around 2–4
and 10–20 µm and Low T Finish simulations exhibited a unimodal distribution centered around 1–4 µm.
Additionally, the average ferrite grain diameters determined by EBSD analysis were approximately
4.8 ± 0.1 and 2.7 ± 0.1 µm for the High T Finish and Low T Finish simulations, respectively. These
values are similar to the values determined via LOM using the concentric circle method for the
0.724 radial position. Overall, these data suggest that extensive austenite strain accumulation before
decomposition is required to achieve fine, homogeneous microstructures of polygonal ferrite and to
avoid small amounts of hard, secondary-phase constituents.
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Figure 14. LOM micrographs of the polygonal ferrite microstructures produced via (a–c) High T Finish
and (d–f) Low T Finish simulations followed by isothermal holding at 650 ◦C for 30 min. The following
radial positions are shown: (a) and (d) 0.50; (b) and (e) 0.724; and (c) and (f) 0.90. The torsional axis
(TA) is horizontal to the page. Etched with 1 pct nital.
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The torsional axis (TA) is horizontal to the page.
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Figure 16. Ferrite grain diameter histograms obtained with EBSD analysis of the polygonal ferrite
microstructures produced via (a) High T Finish and (b) Low T Finish simulations followed by isothermal
holding at 650 ◦C for 30 min. Data were obtained at the 0.724 radial position for both.

4. Conclusions

The effects of extensive differences in austenite strain accumulation before decomposition on
(prior) austenite morphology and microstructural development after isothermal transformation were
investigated for a low-carbon, Ti-Mo microalloyed steel. Roughly 36 pct of the total shear strain
imparted during finish rolling simulations accumulated within the prior austenitic microstructures for
Low T Finish simulations, while negligible shear strain was accumulated for High T Finish simulations.
The amounts of shear strain that accumulated during Low T Finish simulations were similar (roughly
1.7) at multiple radial positions subjected to different total strains, as well as for both interrupted and
complete multi-pass rolling simulations. This value of accumulated shear strain may indicate a critical
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amount of strain that must accumulate during thermomechanical processing before a sufficient driving
force for austenite recrystallization is available in this steel. Low T Finish simulations resulted in a
significant refinement in PAG size compared to High T Finish simulations, and greater imposed shear
strain resulted in a greater amount of fine, equiaxed austenite grains (intermixed with larger, pancaked
grains) for Low T Finish simulations. Additionally, Low T Finish simulations followed by isothermal
holding at 650 ◦C for 30 min resulted in a significant refinement in polygonal ferrite grain sizes and
better homogenization compared to High T Finish simulations. Therefore, the results suggest that
extensive austenite strain accumulation before decomposition is required to achieve fine, homogeneous
microstructures of polygonal ferrite and to avoid small amounts of hard, secondary-phase constituents
that may diminish stretch-flange formability.
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