Investigation into the Effect of Increasing Target Temperature and the Size of Cavity Confinements on Laser-Induced Plasmas
Abstract
:1. Introduction
2. Experimental Setup and Procedure
3. Results and Discussion
3.1. Effect of Target Temperature
3.1.1. Emission Intensity
3.1.2. Plasma Dynamics
3.1.3. Electron Temperature
3.1.4. Electron Density
3.2. Effect of the Cavity Confinements
3.2.1. Emission Intensity
3.2.2. Electron Temperature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bridge, C.M.; Powell, J.; Steele, K.L.; Sigman, M.E. Forensic comparative glass analysis by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1419–1425. [Google Scholar] [CrossRef]
- Rodriguez-Celis, E.M.; Gornushkin, I.B.; Heitmann, U.M.; Almirall, J.R.; Smith, B.W.; Winefordner, J.D.; Omenetto, N.; Rodriguez-Celis, E.M. Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications. Anal. Bioanal. Chem. 2008, 391, 1961–1968. [Google Scholar] [CrossRef]
- Naes, B.E.; Umpierrez, S.; Ryland, S.; Barnett, C.; Almirall, J. A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1145–1150. [Google Scholar] [CrossRef]
- Asimellis, G.; Hamilton, S.; Giannoudakos, A.; Kompitsas, M. Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1132–1139. [Google Scholar] [CrossRef]
- Harmon, R.S.; DeLucia, F.C.; McManus, C.E.; McMillan, N.J.; Jenkins, T.F.; Walsh, M.E.; Miziolek, A. Laser-induced breakdown spectroscopy—An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl. Geochem. 2006, 21, 730–747. [Google Scholar] [CrossRef]
- Gottfried, J.; De Lucia, J.F.C.; Munson, C.A.; Miziolek, A.W. Strategies for residue explosives detection using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2008, 23, 205–216. [Google Scholar] [CrossRef]
- Lei, W.; Motto-Ros, V.; Boueri, M.; Ma, Q.; Zhang, D.; Zheng, L.; Zeng, H.; Yu, J. Time-resolved characterization of laser-induced plasma from fresh potatoes. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 891–898. [Google Scholar] [CrossRef]
- Boueri, M.; Motto-Ros, V.; Lei, W.-Q.; Ma, Q.-L.; Zheng, L.-J.; Zeng, H.-P.; Yu, J. Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural networks. Appl. Spectrosc. 2011, 65, 307–314. [Google Scholar] [CrossRef]
- Corsi, M.; Palleschi, V.; Salvetti, A.; Tognoni, E. Calibration free laser induced plasma spectroscopy: A new method for combustion products analysis. Clean Air 2002, 3, 69–79. [Google Scholar] [CrossRef]
- Müller, K.; Stege, H. Evaluation of the analytical potential of laser-induced breakdown spectrometry (libs) for the analysis of historical glasses. Archaeometry 2003, 45, 421–433. [Google Scholar] [CrossRef]
- Carmona, N.; Oujja, M.; Rebollar, E.; Römich, H.; Castillejo, M. Analysis of corroded glasses by laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1155–1162. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Melessanaki, K.; Anglos, D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science—Applications and prospects. Anal. Bioanal. Chem. 2006, 387, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Awan, M.A.; Ahmed, S.H.; Aslam, M.R.; Qazi, I.A.; Baig, M.A. Determination of heavy metals in ambient air particulate matter using laser-induced breakdown spectroscopy. Arab. J. Sci. Eng. 2013, 38, 1655–1661. [Google Scholar] [CrossRef]
- Markiewicz-Kęszycka, M.; Casado-Gavalda, M.P.; Cama-Moncunill, X.; Cama-Moncunill, R.; Dixit, Y.; Cullen, P.J.; Sullivan, C. Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours. Food Chem. 2018, 244, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, D.; Ding, Y.; Yang, G.; Liu, K.; Wang, C.; Han, X. A review of laser-induced breakdown spectroscopy signal enhancement. Appl. Spectrosc. Rev. 2017, 53, 1–35. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Zhong, S.; Lu, Y.; Sun, X.; Ma, J.-Y.; Liu, Z. Application of LIBS in Element Analysis of Nanometer Thin Film Prepared on Silicon Basement. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2015, 35, 1376–1382. [Google Scholar]
- Neogi, A.; Thareja, R.K. Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field. Phys. Plasmas 1999, 6, 365–371. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Fluid Mechanics; Pergamon Press: London, UK, 1959. (In English) [Google Scholar]
- Zeldovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High Temperature Hydrodynamics Phenomena; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Sturm, V.; Péter, L.; Noll, R. Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Spectrosc. 2000, 54, 1275–1278. [Google Scholar] [CrossRef]
- Michel, A.P.M.; Lawrence-Snyder, M.; Angel, S.; Chave, A.D. Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Evaluation of key measurement parameters. Appl. Opt. 2007, 46, 2507–2515. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry. Anal. Chem. 1983, 55, 1252–1256. [Google Scholar] [CrossRef]
- Radziemski, L.J.; Cremers, D.A. Laser-Induced Plasmas and Applications; Marcel Dekker Inc.: New York, NY, USA, 1989. [Google Scholar]
- Lee, Y.; Song, K.; Sneddon, J. Laser Induced Plasmas for Analytical Atomic Spectroscopy; Wiley-VCH: New York, NY, USA, 1997. [Google Scholar]
- Sturm, V.; Noll, R. Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3 H8 for simultaneous C, H, O, and N measurement. Appl. Opt. 2003, 42, 6221–6225. [Google Scholar] [CrossRef] [PubMed]
- Amoruso, S.; Bruzzese, R.; Spinelli, N.; Velotta, R. Characterization of laser-ablation plasmas. J. Phys. B: At. Mol. Opt. Phys. 1999, 32, 131. [Google Scholar] [CrossRef]
- Luo, W.F.; Zhao, X.X.; Sun, Q.B.; Gao, C.X.; Tang, J.; Wang, H.J.; Zhao, W. Characteristics of the aluminum alloy plasma produced by a 1064 nm Nd:YAG laser with different irradiances. Pramana 2010, 74, 945–959. [Google Scholar] [CrossRef]
- Mendys, A.; Kanski, M.; Farah-Sougueh, A.; Pellerin, S.; Pokrzywka, B.; Dzierzega, K. Investigation of the local thermodynamic equilibrium of laser-induced aluminum plasma by Thomson scattering technique. Spectrochim. Acta Part B At. Spectrosc. 2014, 96, 61–68. [Google Scholar] [CrossRef]
- Sallé, B.; Lacour, J.-L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers, D.A.; Wiens, R.C. Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at stand-off distances and detection of chlorine and sulfur elements. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1413–1422. [Google Scholar] [CrossRef]
- Arp, Z.A.; Cremers, D.A.; Harris, R.D.; Oschwald, D.M.; Parker, G.R.; Wayne, D. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: Preliminary study for a Venus mission. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 987–999. [Google Scholar] [CrossRef]
- Russo, R. Laser ablation in analytical chemistry—A review. Talanta 2002, 57, 425–451. [Google Scholar] [CrossRef]
- Brygo, F.; Dutouquet, C.; Le Guern, F.; Oltra, R.; Semerok, A.; Weulersse, J. Laser fluence, repetition rate and pulse duration effects on paint ablation. Appl. Surf. Sci. 2006, 252, 2131–2138. [Google Scholar] [CrossRef]
- Harilal, S.S.; Bindhu, C.V.; Nampoori, V.; Vallabhan, C.P.G. Influence of ambient gas on the temperature and density of laser produced carbon plasma. Appl. Phys. Lett. 1998, 72, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.A.; Aragón, C. A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure. Appl. Phys. A 1999, 69, S475–S478. [Google Scholar] [CrossRef]
- Löbe, A.; Vrenegor, J.; Fleige, R.; Sturm, V.; Noll, R. Laser-induced ablation of a steel sample in different ambient gases by use of collinear multiple laser pulses. Anal. Bioanal. Chem. 2006, 385, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, N.M.; Hafeez, S.; Baig, M. Comparison of zinc and cadmium plasma parameters produced by laser-ablation. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1311–1320. [Google Scholar] [CrossRef]
- Bashir, S.; Farid, N.; Mahmood, K.; Rafique, M.S. Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Appl. Phys. A 2012, 107, 203–212. [Google Scholar] [CrossRef]
- Guo, K.; Chen, A.; Xu, W.; Zhang, D.; Jin, M. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Adv. 2019, 9, 065214. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Ren, L.; Tang, H.; Sun, Y. Spectral characteristics of laser-induced plasma under the combination of Au-nanoparticles and cavity confinement. Results Phys. 2019, 15, 102798. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, A.; Wang, Q.; Wang, Y.; Qi, H.; Li, S.; Jiang, Y.; Jin, M. Influence of target temperature on H alpha line of laser-induced silicon plasma in air. Phys. Plasmas 2018, 25, 083305. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, Y.; Wang, Y.; Zhang, D.; Li, S.; Jiang, Y.; Chen, A.; Jin, M. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma. Plasma Sci. Technol. 2017, 19, 125501. [Google Scholar] [CrossRef]
- El Sherbini, A.; Hegazy, H.; El Sherbini, T. Measurement of electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 532–539. [Google Scholar] [CrossRef]
- Sangines, R.; Sobral, H.; Alvarez-Zauco, E. The effect of sample temperature on the emission line intensification mechanisms in orthogonal double-pulse laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2012, 68, 40–45. [Google Scholar] [CrossRef]
- Asamoah, E.; Hongbing, Y. Influence of laser energy on the electron temperature of a laser-induced Mg plasma. Appl. Phys. A 2016, 123, 22. [Google Scholar] [CrossRef] [Green Version]
- Asamoah, E.; Xia, Y.; Hongbing, Y.; Wei, P.; Jiawei, C.; Weihua, Z.; Lin, Z.; Quaisie, J.K. Influence of cavity and magnetic confinements on the signal enhancement and plasma parameters of laser-induced Mg and Ti plasmas. Laser Part. Beams 2020, 38, 61–72. [Google Scholar] [CrossRef]
- NIST. Atomic Spectra Database. Available online: http://Physics.nist.gov/PhysRef-Data/ASD/lines_form.html (accessed on 13 December 2019).
- Gomba, J.M.; D’Angelo, C.; Bertuccelli, D.; Bertuccelli, G. Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 695–705. [Google Scholar] [CrossRef]
- Sun, D.; Su, M.; Dong, C.; Wen, G. A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry. Plasma Sci. Technol. 2014, 16, 374–379. [Google Scholar] [CrossRef]
- Griem, H. Principles of Plasma Spectroscopy; Cambridge University: Cambridge, UK, 1997. [Google Scholar]
- Hongbing, Y.; Asamoah, E.; Jiawei, C.; Dongqing, Y.; Fengxiao, Y. Comprehensive study on the electron temperature and electron density of laser-induced Mg plasma. J. Lasers Opt. Photonics 2018, 5, 2. [Google Scholar]
- Ghezelbash, M.; Majd, A.E.; Darbani, S.M.R.; Ghasemi, A. Experimental investigation of atomic and ionic titanium lines, diatomic TiOγ transition and continuum background radiation via magnetically confined LIBS. Ceram. Int. 2017, 43, 8356–8363. [Google Scholar] [CrossRef]
- Ahmed, R.; Akthar, M.; Jabbar, A.; Umar, Z.A.; Ahmed, N.; Iqbal, J.; Baig, M.A. Signal intensity enhancement by cavity confinement of laser-produced plasma. IEEE Trans. Plasma Sci. 2019, 47, 1616–1620. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Asamoah, E.; Wei, P.; Cong, J.; Zhang, L.; Quaisie, J.K.; Asamoah, A.; Ayepah, K.; Zhu, W. Investigation into the Effect of Increasing Target Temperature and the Size of Cavity Confinements on Laser-Induced Plasmas. Metals 2020, 10, 393. https://doi.org/10.3390/met10030393
Yao H, Asamoah E, Wei P, Cong J, Zhang L, Quaisie JK, Asamoah A, Ayepah K, Zhu W. Investigation into the Effect of Increasing Target Temperature and the Size of Cavity Confinements on Laser-Induced Plasmas. Metals. 2020; 10(3):393. https://doi.org/10.3390/met10030393
Chicago/Turabian StyleYao, Hongbing, Emmanuel Asamoah, Pengyu Wei, Jiawei Cong, Lin Zhang, James Kwasi Quaisie, Anita Asamoah, Kwaku Ayepah, and Weihua Zhu. 2020. "Investigation into the Effect of Increasing Target Temperature and the Size of Cavity Confinements on Laser-Induced Plasmas" Metals 10, no. 3: 393. https://doi.org/10.3390/met10030393
APA StyleYao, H., Asamoah, E., Wei, P., Cong, J., Zhang, L., Quaisie, J. K., Asamoah, A., Ayepah, K., & Zhu, W. (2020). Investigation into the Effect of Increasing Target Temperature and the Size of Cavity Confinements on Laser-Induced Plasmas. Metals, 10(3), 393. https://doi.org/10.3390/met10030393