Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Preparation of the Samples
2.2. Sample Characterization
3. Results and Discussion
3.1. Voltage-Time Response of PEO Coatings
3.2. Phase and Composition Analysis
3.3. Microstructure Analysis of PEO Coatings
3.4. PEO Layer Thickness and Weight Gain
3.5. The Anti-Corrosion Performance Evaluation of PEO Coatings
3.5.1. Potentiodynamic Polarization Tests
3.5.2. Electrochemical Impedance Spectroscopy (EIS) Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allachi, H.; Chaouket, F.; Draoui, K. Corrosion inhibition of AA6060 aluminium alloy by lanthanide salts in chloride solution. J. Alloys compd. 2009, 475, 300–303. [Google Scholar] [CrossRef]
- Chakraborty, S.; Banerjee, S.; Sharma, I.G.; Paul, B.; Suri, A.K. Studies on the synthesis and characterization of a molybdenum-based alloy. J. Alloys Compd. 2009, 477, 256–261. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 0, 73–93. [Google Scholar] [CrossRef]
- Xue, W.; Wu, X.; Li, X.; Tian, H. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. J. Alloys Compd. 2006, 425, 302–306. [Google Scholar] [CrossRef]
- Dean, J.; Gu, T.; Clyne, T.W. Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method. Surf. Coat. Technol. 2015, 269, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, A.L.; Lyubimov, V.V.; Ashitkov, R.V. Phase formation in ceramics coatings during plasma electrolytic oxidation of aluminum alloys. Ceram. Int. 1998, 24, 1–6. [Google Scholar] [CrossRef]
- Byeon, S.S.; Wang, K.; Seo, Y.J.; Jung, Y.G.; Koo, B.H. Structural properties of the oxide coatings prepared by electrolyte plasma process on the Al 2021 alloy in various nitrogen solutions. Ceram. Int. 2012, 38S, S665–S668. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Khrisanfova, O.A.; Zavidnaya, A.G.; Sinebrukhov, S.L.; Gordienko, P.S.; Iwatsubo, S.; Matsui, A. Composition and adhesion of protective coatings on aluminum. Surf. Coat. Technol. 2001, 145, 146–151. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L.; Jin, X.; Du, J.; Xue, W. Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25 °C–300 °C. Ceram. Int. 2019, 45, 12312–12318. [Google Scholar] [CrossRef]
- Wang, K.; Byeon, S.S.; Jung, Y.G.; Koo, B.H. Effect of the nitrogen inducing agents on the corrosion behavior of the oxide coatings prepared by electrolytic plasma processing on the Al 2021 alloy. Ceram. Int. 2012, 38S, S669–S672. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.C.; Malayoglu, U.; Shrestha, S. An investigation into the mechanical and tribological properties of plasmaelectrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy. Mater. Sci. Eng. A 2011, 528, 7451–7456. [Google Scholar] [CrossRef]
- Sharifi, H.; Aliofkhazraei, M.; Darband, G.B.; Shrestha, S. A review on adhesion strength of PEO coatings by scratch test method. Surf. Rev. Lett. 2017, 25, 1830004. [Google Scholar] [CrossRef]
- Kuhn, A. Plasma anodizing of magnesium alloys. Met. Finish. 2003, 101, 44–50. [Google Scholar] [CrossRef]
- Hussein, R.O.; Northwood, D.O.; Nie, X. The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys. Surf. Coat. Technol. 2013, 237, 357–368. [Google Scholar] [CrossRef]
- Nie, X.; Meletis, E.; Jiang, J.C.; Leyland, A.; Yerokhin, A.; Matthews, A. Abrasive Wear/Corrosion Properties and TEM Analysis of Al2O3 Coatings Fabricated Using Plasma Electrolysis. Surf. Coat. Technol. 2002, 149, 245–251. [Google Scholar] [CrossRef]
- Sreekanth, D.; Rameshbabu, N.; Venkateswarlu, K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceram. Int. 2012, 38, 4607–4615. [Google Scholar] [CrossRef]
- Shokouhfar, M.; Dehghanian, C.; Baradaran, A. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance. Appl. Surf. Sci. 2011, 257, 2617–2624. [Google Scholar] [CrossRef]
- Cheng, Y.; Matykina, E.; Arrabal, R.; Skeldon, P.; Thompson, G.E. Plasma electrolytic oxidation and corrosion protection of Zircaloy-4. Surf. Coat. Technol. 2012, 206, 3230–3239. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.R.; Wu, Y.K.; Wu, G.R.; Wang, D.D.; Liu, X.T.; Han, H.P.; Su, Y.; Shen, D.J. The correlation between the Na2SiO3·9H2O concentrations and the characteristics of plasma electrolytic oxidation ceramic coatings. Ceram. Int. 2019, 45, 19388–19394. [Google Scholar] [CrossRef]
- Ghasemi, A.; Scharnagl, N.; Blawert, C.; Dietzel, W.; Kainer, K.U. Influence of electrolyte constituents on corrosion behaviour of PEO coatings on magnesium alloys. Surf. Eng. 2010, 26, 321–327. [Google Scholar] [CrossRef]
- Yao, Z.P.; Wang, D.L.; Xia, Q.X.; Zhang, Y.J.; Jiang, Z.H.; Wang, F.P. Effect of PEO power modes on structure and corrosion resistance of ceramic coatings on AZ91D Mg alloy. Surf. Eng. 2012, 28, 96–101. [Google Scholar] [CrossRef]
- Sreekanth, D.; Rameshbabu, N.; Venkateswarlu, K.; Challapalli, S.; Krishna, L.; Kalvala, P. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy. Surf. Coat. Technol. 2013, 222, 31–37. [Google Scholar] [CrossRef]
- Bespalova, Z.I.; Panenko, I.N. Impact of Electrolyte Composition and Modes of Operation on the Structure, Morphology, and Properties of Oxide Ceramic Coatings Fabricated by Microarc Oxidation. Surf. Eng. Appl. Electrochem. 2019, 55, 38–45. [Google Scholar] [CrossRef]
- Sankara Narayanan, T.S.N.; Park, I.S.; Lee, M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Li, X.; Luan, B. Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Mater. Lett. 2012, 86, 88–91. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, D.; Yu, J.; Di, S. Effects of Al2O3 Nano-additive on Performance of Micro-arc Oxidation Coatings Formed on AZ91D Mg Alloy. J. Mater. Sci. Technol. 2014, 30, 984–990. [Google Scholar] [CrossRef]
- Toorani Farani, M.; Aliofkhazraei, M.; Sabour Rouh Aghdam, A. Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy. Surf. Coat.Technol. 2018, 352, 561–580. [Google Scholar] [CrossRef]
- Cai, J.; Cao, F.; Chang, L.; Zheng, J.; Zhang, J.; Cao, C. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film. Appl. Surf. Sci. 2011, 257, 3804–3811. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Bakhsheshi-Rad, H.R. Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives. J. Alloys Compd. 2016, 688, 841–857. [Google Scholar] [CrossRef]
- Liang, J.; Hu, L.; Hao, J. Preparation and Characterization of Oxide Films Containing Crystalline TiO2 on Magnesium Alloy by Plasma Electrolytic Oxidation. Electrochim. Acta. 2007, 52, 4836–4840. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Huang, Y.; Ovri, H.; Zheludkevich, M.L.; Kainer, K. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim. Acta. 2015, 187, 20–33. [Google Scholar] [CrossRef]
- Arrabal, R.; Matykina, E.; Viejo, F.; Skeldon, P.; Thompson, G.; Merino, M. AC Plasma Electrolytic Oxidation of Magnesium with Zirconia Nanoparticles. Appl. Surf. Sci. 2008, 254, 6937–6942. [Google Scholar] [CrossRef]
- Liang, J.; Bala Srinivasan, P.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009, 51, 2483–2492. [Google Scholar] [CrossRef] [Green Version]
- Han, B. Plasma-Electrolytic-Oxidation Coating containing Y2O3 Nanoparticles on AZ91 Magnesium Alloy. Int. J. Electrochem. Sci. 2018, 13, 5681–5697. [Google Scholar] [CrossRef]
- Krstic, Z.; Krstic, V.D. Silicon nitride: The engineering material of the future. J. Mater. Sci. 2012, 47, 535–552. [Google Scholar] [CrossRef]
- Lou, B.S.; Lin, Y.Y.; Tseng, C.M.; Lu, Y.C.; Duh, J.G.; Lee, J.W. Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives. Surf. Coat. Technol. 2017, 332, 358–367. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Scharnagl, N.; Kainer, K.U. Influence of incorporating Si3N4 particles into the oxide layer produced by plasma electrolytic oxidation on AM50 Mg alloy on coating morphology and corrosion properties. J. Magnes. Alloys 2013, 1, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Xu, G.; Yang, Y.; Chen, S. Multiphase Ceramic Coatings with High Hardness and Wear Resistance on 5052 Aluminum Alloy by a Microarc Oxidation Method. ACS Sustain. Chem. Eng. 2018, 6, 2431–2437. [Google Scholar] [CrossRef]
- Dehnavi, V.; Luan, B.L.; Liu, X.Y.; Shoesmith, D.W.; Rohani, S. Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode. Surf. Coat. Technol. 2015, 269, 91–99. [Google Scholar] [CrossRef]
- Dehnavi, V.; Liu, X.Y.; Luan, B.L.; Shoesmith, D.W.; Rohani, S. Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy. Surf. Coat. Technol. 2014, 251, 106–114. [Google Scholar] [CrossRef]
- Macêdo, M.I.F.; Bertran, C.A.; Osawa, C.C. Kinetics of the γ → α-alumina phase transformation by quantitative X-ray diffraction. J. Mater. Sci. 2007, 42, 2830–2836. [Google Scholar] [CrossRef]
- Loong, C.K.; Richardson, J.W.; Ozawa, M. Structural phase transformations of rare-earth modified transition alumina to corundum. J. Alloys Compd. 1997, 250, 356–359. [Google Scholar] [CrossRef]
- Yurekturk, Y.; Muhaffel, F.; Baydogan, M. Characterization of micro arc oxidized 6082 aluminum alloy in an electrolyte containing carbon nanotubes. Surf. Coat. Technol. 2015, 269, 83–90. [Google Scholar] [CrossRef]
- Khan, R.H.U.; Yerokhin, A.; Li, X.; Dong, H.; Matthews, A. Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration. Surf. Coat. Technol. 2010, 205, 1679–1688. [Google Scholar] [CrossRef]
- Doolabi, D.S.; Ehteshamzadeh, M.; Mirhosseini, S.M.M. Effect of NaOH on the Structure and Corrosion Performance of Alumina and Silica PEO Coatings on Aluminum. J. Mater. Eng. Perform. 2012, 21, 2195–2202. [Google Scholar] [CrossRef]
- Venugopal, A.; Srinath, J.; Rama Krishna, L.; Ramesh Narayanan, P.; Sharma, S.C.; Venkitakrishnan, P.V. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy. Mater. Sci. Eng. A 2016, 660, 39–46. [Google Scholar] [CrossRef]
- Dehnavi, V.; Luan, B.; Shoesmith, D.; Liu, X.Y.; Rohani, S. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf. Coat. Technol. 2013, 226, 100–107. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Qin, T.W.; Li, L.L.; Wang, H.M.; Zhang, Z. Comparison of corrosion resistance of microarc oxidation coatings prepared with different electrolyte concentrations on AM60 magnesium alloy. Corros. Eng. 2011, 46, 17–23. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.; Shrestha, S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys. Surf. Coat. Technol. 2010, 205, 1793–1798. [Google Scholar] [CrossRef]
- Demirba, Ç.A.; Ayday, A. The influence of Nano-TiO2 and Nano-Al2O3 Particles in Silicate Based Electrolytes on Microstructure and Mechanical Properties of Micro Arc Coated Ti6Al4V Alloy. Mater. Res. 2018, 21, 1–5. [Google Scholar] [CrossRef]
- Wu, X.Q.; Xie, F.Q.; Hu, Z.C.; Wang, L. Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy. Trans. Nonferrous Met. Soc. China 2010, 20, 1032–1036. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W. Microstructural, surface and electrochemical properties of pulse electrodeposited Ni–W/Si3N4 nanocomposite coating. Ceram. Int. 2018, 44, 19907–19918. [Google Scholar] [CrossRef]
- Xue, W.; Jin, Q.; Zhu, Q.; Hua, M.; Ma, Y. Anti-corrosion microarc oxidation coatings on SiC P/AZ31 magnesium matrix composite. J. Alloys Compd. 2009, 482, 208–212. [Google Scholar] [CrossRef]
- Dehnavi, V.; Shoesmith, D.W.; Luan, B.L.; Yari, M.; Liu, X.Y.; Rohani, S. Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy–The effect of the PEO process stage. Mater. Chem. Phys. 2015, 161, 49–58. [Google Scholar] [CrossRef]
- Gu, C.; Wang, L.; Hu, X.; Dong, W.; DaCosta, H. Borate’s effects on coatings by PEO on AZ91D alloy. Surf. Eng. 2017, 33, 773–778. [Google Scholar]
- Butyagin, P.I.; Khokhryakov, Y.V.; Mamaev, A.I. Microplasma systems for creating coatings on aluminium alloys. Mater. Lett. 2003, 57, 1748–1751. [Google Scholar] [CrossRef]
- Liang, J.; Guo, B.; Tian, J.; Liu, H.; Zhou, J.; Xu, T. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Appl. Surf. Sci. 2005, 252, 345–351. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Rameshbabu, N.; Sreekanth, D.; Bose, A.C.; Muthupandi, V.; Subramanian, S. Fabrication and characterization of micro-arc oxidized fluoride containing titania films on Cp Ti. Ceram. Int. 2013, 39, 801–812. [Google Scholar] [CrossRef]
- Shi, L.; Xu, Y.; Li, K.; Yao, Z.; Wu, S. Effect of Additives on Structure and Corrosion Resistance of ceramic Coatings on Mg-Li Alloy by Micro-Arc Oxidation. Curr. Appl. Phys. 2010, 10, 719–723. [Google Scholar] [CrossRef]
- Yagi, S.; Kuwabara, K.; Fukuta, Y.; Kubota, K.; Matsubara, E. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation. Corros. Sci. 2013, 73, 188–195. [Google Scholar] [CrossRef]
- Shen, M.J.; Wang, X.; Zhang, M.F. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax. Appl. Surf. Sci. 2012, 259, 362–366. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, S.F.; Shen, Y.L.; Zhang, L.H.; Liu, T.Z.; Zhang, Y.Q.; Guo, S.B. Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys. Appl. Surf. Sci. 2012, 258, 6602–6610. [Google Scholar] [CrossRef]
- Kaseem, M.; Yang, H.W.; Ko, Y.G. Toward a nearly defect-free coating via high-energy plasma sparks. Sci. Rep. 2017, 7, 2378. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.H.; Gu, W.C.; Chen, H.; Li, L.; Niu, E.W.; Yang, S.Z. Microstructure and Corrosion Performance of Oxide Coatings on Aluminium by Plasma Electrolytic Oxidation in Silicate and Phosphate Electrolytes. Chin. Phys. Lett. 2006, 23, 3331–3333. [Google Scholar]
- Shao, L.; Li, H.; Jiang, B.; Liu, C.; Gu, X.; Chen, D. A Comparative Study of Corrosion Behavior of Hard Anodized and Micro-Arc Oxidation Coatings on 7050 Aluminum Alloy. Metals 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, L.; Cai, W.; Shan, A.; Jiang, Z. Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy. J. Alloys Compd. 2010, 505, 188–193. [Google Scholar] [CrossRef]
- Bisquert, J.; Compte, A. Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 2001, 499, 112–120. [Google Scholar] [CrossRef]
- Suay, J.J.; Gimenez, E.; Rodriguez, T.; Habbib, K.; Saura, J.J. Characterization of anodized and sealed aluminium by EIS. Corro. Sci. 2003, 45, 611–624. [Google Scholar] [CrossRef]
- Yao, Z.; Jiang, Z.; Xin, S.; Xuetong, S.; Wu, X. Electrochemical Impedance Spectroscopy of Ceramic Coatings on Ti–6Al–4V by Micro-Plasma Oxidation. Electrochim. Acta. 2005, 50, 3273–3279. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Q.; Leyland, A.; Matthews, A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling. Corro. SCi. 2003, 45, 1243–1256. [Google Scholar] [CrossRef]
Specimen Designation | APA | APB | APC | APD | APE | APF | |
---|---|---|---|---|---|---|---|
Size (cm) | 5 × 5 × 0.1 | ||||||
Si3N4 concentration in electrolyte (g L−1) | 0 | 1.5 | 0 | 0.5 | 0.5 | 0.5 | |
Electrolyte concentration | Na2SiO3·5H2O (g L−1) | 7 | |||||
KOH (g L−1) | 2.5 | ||||||
Na3PO4·12H2O (g L−1) | 5 | ||||||
Na2B4O7·10H2O (g L−1) | 0 | 0 | 5 | 5 | 5 | 5 | |
Duty cycle (%) | 80 | 50 | 25 | ||||
Frequency (Hz) | 1000 | ||||||
Voltage (V) | 600 | ||||||
Current density (mA·cm−2) | 100 | ||||||
Time (sec) | 600 | ||||||
Breakdown voltage (V) | 382.3 | 385.0 | 397.1 | 396.0 | 399.5 | 417.2 | |
The time to reach breakdown voltage (s) | 16.5 | 18.5 | 22.0 | 34.5 | 24.5 | 22.0 |
Sample | APA | APB | APC | APD | APE | APF | |
---|---|---|---|---|---|---|---|
Composition | |||||||
O | 62.37 | 60.97 | 61.13 | 59.56 | 60.88 | 58.98 | |
Na | 0.14 | 0.20 | 0.08 | 0.06 | 0.11 | 0.12 | |
Al | 36.29 | 30.77 | 36.15 | 34.36 | 35.30 | 35.33 | |
Si | 1.15 | 5.85 | 1.37 | 4.03 | 1.63 | 3.29 | |
P | 0.02 | 1.33 | 0.08 | 0.19 | 0.09 | 0.34 | |
K | 0.03 | 0.13 | 0.06 | 0.03 | 0.24 | 0.13 | |
N | 0.00 | 0.75 | 0.00 | 0.25 | 0.33 | 0.19 | |
B | 0.00 | 0.00 | 1.13 | 1.52 | 1.42 | 1.62 |
Sample No. | APA | APB | APC | APD | APE | APF |
---|---|---|---|---|---|---|
Weight gain (g) | 0.048 | 0.121 | 0.041 | 0.062 | 0.054 | 0.047 |
Layer thickness (µm) | 7.55 ± 0.58 | 25.5 ± 52.02 | 8.10 ± 0.62 | 14.35 ± 1.13 | 10.8 ± 1.05 | 9.88 ± 1.01 |
Surface roughness (µm) | 1.01 ± 0.11 | 4.88 ± 0.2 | 1.44 ± 0.13 | 2.2 ± 0.17 | 1.83 ± 0.12 | 1.54 ± 0.09 |
Average pore size (µm) | 0.804 | 6.532 | 0.662 | 1.647 | 0.859 | 0.850 |
Average porosity (%) | 0.229 | 19.057 | 0.201 | 3.888 | 0.769 | 0.717 |
Sample No. | Al | APA | APB | APC | APD | APE | APF |
---|---|---|---|---|---|---|---|
Icorr (A⋅cm−2) | 4.97 × 10−7 | 8.49 × 10−10 | 2.70 × 10−9 | 4.83 × 10−10 | 1.43 × 10−9 | 1.01 × 10−9 | 7.17 × 10−9 |
Ecorr (V) | −0.773 | −0.639 | −0.775 | −0.599 | −0.762 | −0.727 | −0.706 |
Rp (Ω·cm2) | 8.15 × 103 | 3.07 × 107 | 9.66 × 106 | 5.40 × 107 | 1.83 × 107 | 2.60 × 107 | 3.64 × 107 |
Substrate | Electrolyte | NaCl Solution | Icorr (A·cm−2) | Ecorr (V) | Ref. |
---|---|---|---|---|---|
Al-Mg-Si alloy | alkaline-phosphate-based electrolytes and Na3AlF6 | 3.5 wt % | 9.40 × 109 | −0.659 | [63] |
pure aluminum | NaOH, Na2SiO3 and (NaPO3)6 | 4.32 × 10−9 | −1.390 | [64] | |
7050 Al | Sodium hexametaphosphate, Sodium silicate, Sodium tungstate and Sulfuric acid | 2.10 × 10−10 | −0.665 | [65] | |
LY12 aluminum alloy | NaAlO2 and with and without NaF | 0.88 × 10−7 | −0.602 | [66] |
Parameter | Al | APA | APB | APC | APD | APE | APF |
---|---|---|---|---|---|---|---|
R1 (Ω⋅cm2) | 25.36 | 20.96 | 28.87 | 29.3 | 28.83 | 30.92 | 29.66 |
Q1 (S⋅sn1)) | 5.13 × 10−5 | 8.31 × 10−8 | 1.3 × 10−7 | 6.45 × 10−8 | 1.22 × 10−7 | 1.77 × 10−8 | 0.22 × 10−6 |
n1 | 0.839 | 0.85 | 0.81 | 0.87 | 0.82 | 0.80 | 0.72 |
R2 (Ω⋅cm2) | 3.40 × 103 | 2.02 × 104 | 1.42 × 103 | 3.26 × 106 | 1.54 × 103 | 2.18 × 103 | 1.01 × 104 |
Q2 (S⋅sn2) | -- | 6.51 × 10−6 | 8.76 × 10−4 | 8.98 × 10−9 | 7.01 × 10−7 | 5.03 × 10−8 | 0.76 × 10−6 |
n2 | -- | 0.90 | 1.00 | 0.77 | 0.92 | 0.80 | 0.82 |
R3 (Ω⋅cm2) | -- | 4.38 × 105 | 1.72 × 104 | 7.49 × 106 | 2.51 × 104 | 2.97 × 104 | 4.25 × 104 |
Q3 (S⋅sn3) | -- | 0.32 × 10−6 | 7.93 × 10−7 | 1.56 × 10−6 | 9.49 × 10−4 | 5.83 × 10−7 | 0.49 × 10−3 |
n3 | -- | 0.74 | 0.91 | 0.89 | 0.93 | 0.80 | 0.80 |
R4 (Ω⋅cm2) | -- | 5.05 × 105 | 1.49 × 104 | 2.85 × 107 | 2.70 × 104 | 3.66 × 104 | 1.42 × 105 |
W (Ω⋅s-1/2) | -- | 1.09 | 1.05 × 10−8 | 2.23 × 105 | 9.39 × 10−7 | 0.26 × 10−4 | 6.78 × 10−6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengesha, G.A.; Chu, J.P.; Lou, B.-S.; Lee, J.-W. Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum. Metals 2020, 10, 394. https://doi.org/10.3390/met10030394
Mengesha GA, Chu JP, Lou B-S, Lee J-W. Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum. Metals. 2020; 10(3):394. https://doi.org/10.3390/met10030394
Chicago/Turabian StyleMengesha, Getinet Asrat, Jinn P. Chu, Bih-Show Lou, and Jyh-Wei Lee. 2020. "Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum" Metals 10, no. 3: 394. https://doi.org/10.3390/met10030394
APA StyleMengesha, G. A., Chu, J. P., Lou, B. -S., & Lee, J. -W. (2020). Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum. Metals, 10(3), 394. https://doi.org/10.3390/met10030394