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Abstract: Titanium and zirconia (ZrO2) ceramics are widely used in biomedical fields. This study aims
to achieve reliable brazed joints of titanium/ZrO2 using biocompatible Au filler for implantable medical
products. The effects of brazing temperature and holding time on the interfacial microstructures
and mechanical properties of titanium/Au/ZrO2 joints were fully investigated by scanning electron
microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results
indicated that the typical interfacial microstructure of the titanium/Au/ZrO2 joint was titanium/Ti3Au
layer/TiAu layer/TiAu2 layer/TiAu4 layer/TiO layer/ZrO2 ceramic. With an increasing brazing
temperature or holding time, the thickness of the Ti3Au + TiAu + TiAu2 layer increased gradually.
The growth of the TiO layer was observed, which promoted metallurgical bonding between the filler
metal and ZrO2 ceramic. The optimal shear strength of ~35.0 MPa was obtained at 1150 ◦C for 10 min.
SEM characterization revealed that cracks initiated and propagated along the interface of TiAu2 and
TiAu4 reaction layers.

Keywords: biomedical titanium; zirconia bioceramic; brazing; interfacial microstructure;
mechanical properties

1. Introduction

As one of the most popular biomedical metallic materials, titanium and titanium alloys have been
widely used to produce bone trauma products, artificial joints, cardiovascular stents, dental implants
and other medical products, owing to their low density, low elastic modulus, non-toxic behavior,
good corrosion resistance and excellent biocompatibility [1–8]. In recent decades, the production and
application of zirconia bioceramics have developed rapidly. The properties that it processes, such as its
high hardness, high wear resistance, excellent biocompatibility and aesthetic effect make it suitable
for surgical implant fabrication, especially for implants in the field of prosthodontics [9–13]. In many
applications, metal–ceramic hybrid components are desired for the manufacturing of implantable
medical products—for example, dental implants, micro-stimulators and so on [14–16].

At present, the main joining methods for metal–ceramic components in implant manufacturing
are cementation and mechanical bonding [17–20]. However, the joints of metal–ceramic composites
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constructed via these bonding methods display a low strength and are easy to loosen in practice, which
can shorten the life of implants and lead to potential dangers in applications. Brazing, a bonding
technology with the advantages of convenience, cost-effectiveness and high quality, has been widely
employed for joining metals and ceramics [21–23]. Sharma et al. [24,25] realized the brazing of
Ti-6Al-4V to ZrO2 successfully using Ag-Cu-In-Ti active filler and Ag-Cu-Ti composite fillers. ZrO2

was boned under the influence of active Ti from filler, which was absorbed in the surface pores through
capillary action at the ZrO2 surface. Fu et al. [26] and Bian et al. [27,28] used Sn-Ti and SnAgCu-Ti
active fillers to achieve the bonding of zirconia ceramics. The TiOx compounds were observed on the
ZrO2 side. Smorygo et al. [16] used Cu-Ag-Ti filler to achieve the bonding of titanium to a zirconia
ceramic by forming a layer of TiOx with a thickness of 3–4 µm between the filler and ZrO2 sample.
Moreover, the authors pointed out that the brazing temperature and holding time had great influences
on the evolution of the bond layer microstructure and the fracture behavior. Feng et al. [29] and
Dai et al. [30] utilized AgCu and AgCu composite fillers to achieve the bonding of a titanium alloy to a
zirconia ceramic. The Ti from the substrates crossed the brazing seam, accumulated on the ZrO2 and
reacted with the ZrO2 to form a TiO layer. In other words, the key to obtaining reliable bonding is the
formation of Ti-O compounds adjacent to the ceramics. There are two main ways for Ti to form Ti-O
reported in the literature, namely by adding Ti into the filler metal and by diffusing it from the base
metal. The issue is that the fillers that are usually used to braze metal and ceramics mainly contain
toxic elements, making them unsuitable for use in the bonding of biomedical joints. One potential
solution is to use Au, a biocompatible element, as the filler metal [31–36]. In addition, the melting
point of Au is much lower than that of titanium and zirconia ceramics, and its ductility is high, which
is conducive to the stress relief of metal–ceramic brazed joints. Furthermore, according to the binary
alloy phase diagram of Ti-Au [37], Ti can react with Au. Thus, when adopting pure Au as the filler
to bond titanium or titanium alloys to ceramics with appropriate brazing parameters, Ti can cross
the brazing seam to react with ceramics and realize the bonding of titanium or titanium to ceramics.
Bian et al. [38] adopted Au foil to braze titanium and alumina ceramic and a good brazed joint was
successfully obtained for implantable devices, where the formation of a Ti–O layer adjacent to alumina
was deduced but not definitely identified. Up to now, studies on brazing metals and ceramics for
biomedical applications are still rare.

In this study, the reliable brazing of biomedical titanium to zirconia ceramic was achieved by
adopting biocompatible Au filler. The typical microstructure of the brazed joints was analyzed.
Detailed investigations into the effects of brazing temperature and holding time on the microstructural
evolution, Ti–O compound layer and mechanical properties were conducted. The shear strength of
joints was tested, and fracture analyses were conducted to understand the mechanisms of the fractures.

2. Experimental Materials and Methods

Commercial pure titanium of purity 99.6 wt.%, mainly doped with 0.2 wt.% Fe and 0.18 wt.% O,
provided by Kunshan Bitaita Metal Products Co., Ltd., Kunshan, China, was cut into 20 mm × 10 mm
× 2 mm pieces. Figure 1a,b shows the microstructure and XRD pattern of pure titanium (according to
PDF#00-044-1294), respectively. It was clearly seen that the pure titanium mainly consisted of α-Ti with
an equiaxed structure. Sintered 3 mol% yttria-stabilized zirconia, supplied by Shanghai Unite Technology
Co., Ltd., Shanghai, China, was cut into 5 mm cubes using a diamond cutter. The back-scattered electron
(BSE) image of ZrO2 was shown in Figure 1c. Au foil with a purity of 99.99% and thickness of 50 µm,
which was used in the experiment, was supplied by KYKY Technology Co., Ltd., Beijing, China.

Prior to vacuum brazing, the surface of the titanium to be brazed was ground to a grit of 3000 mesh
by SiC grinding paper. Both substrates and the Au foil were cleaned using an ultrasonic bath in acetone
for 15 min, followed by air blowing. Then, the Au foils were sandwiched between the substrates,
as shown in Figure 1d. Brazing was performed in a vacuum furnace with a vacuum of 1.3 × 10−3 Pa.
The assembly was firstly heated to 1000 ◦C for 10 min from an ambient temperature, at a heating rate
of 20 ◦C/min, and then two groups of experiments were designed in order to investigate the effects
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of brazing temperature and holding time on the microstructures and mechanical properties of the
brazed joints: in one experiment, the temperature continued to increase to the brazing temperature
(1110–1190 ◦C) at a rate of 10 ◦C/min, with the holding time fixed at 10 min; in the other set of
experiments, the temperature continued to increase to 1150 ◦C at a rate of 10 ◦C/min, with the holding
time varying from 5 to 30 min. Subsequently, the specimens were cooled down to 300 ◦C at a rate of
5 ◦C/min. Finally, the assembly was spontaneously cooled to room temperature in the furnace.
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Figure 1. Microstructures of substrates and schematic diagram of brazing assembly. (a) Metallographic
figure ofα-Ti alloy, (b) XRD pattern ofα-Ti alloy, (c) BSE image of ZrO2 ceramic and (d) brazing assembly.

After the experiments, the cross-sections of brazed joints, which were obtained by cutting the
specimens perpendicular to the brazed interface using a diamond saw, were polished for microstructural
observations, and they were characterized with an SEM (MERLIN Compact, ZEISS, Stuttgart, Germany)
in BSE mode, equipped with an EDS (Octane Plus, EDAX, Mahwah, NJ, USA) to analyze the composition
of various reaction phases. The shear tests were performed with a universal testing machine (Instron
5967, Instron, Boston, MA, USA) at a constant rate of 1 mm/min at room temperature. The experimental
data were averaged from at least five specimens after removing the outliers for each parameter. After
the shear test, three randomly selected fractured specimens were analyzed by SEM in BSE mode and
XRD (DX-2700, Dandong Haoyuan Instrument Co., Ltd., Dandong, China), equipped with Cu-Kα

(λ = 0.154 nm), at operating parameters of 40 KV and 30 mA to identify the fracture path.

3. Results and Discussion

3.1. Typical Interfacial Microstructure of Titanium/Au/ZrO2 Joint

Figure 2 showed the typical microstructure and the main element distribution of the titanium/Au/ZrO2

joint brazed at 1150 ◦C for 10 min. As shown in Figure 2a–b, a sound joint without any microcracks or
pores was obtained, and the joint could be divided into five zones based on its different microscopic
morphologies. According to the elemental distribution along the red line shown in Figure 2c, it can be
seen that the content of Ti decreased gradually from the titanium substrate to the ZrO2 ceramic, while an
opposite trend for Au was observed. It was worth noting that there were four platforms in the variation
curve of both Ti and Au elements, which corresponded to Zones I, II, III and IV in Figure 2b. Combined
with the elemental distribution maps in Figure 2d–g, it was deduced that Ti dissolved and diffused to the
molten Au. At the same time, Au also diffused to the Ti substrate. From the phase diagram of Au-Ti [37],
it can be seen that Ti and Au form TixAuy intermetallic compounds (IMCs) easily. In addition, the diffusion
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of Ti across the brazing seam occurred, with Ti segregation on the ZrO2 ceramic side also observed,
forming Ti-O compounds via the following reaction: Ti+ ZrO2 → TiOx + ZrO2−x [39–41]. Eventually,
Zone V was formed via metallurgical bonding between the filler metal and the ceramic.
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Figure 2. Typical microstructures and elemental distribution of titanium/Au/ZrO2 joint at 1150 ◦C
for 10 min: (a) lower and (b) higher magnification of the typical interfacial microstructure, (c) line
distributions and (d–g) map distributions of Ti, Au, Zr and O.

In order to reveal more details of each zone in the titanium/Au/ZrO2 joint, the highly magnified
interfacial microstructures of Zones I–V are shown in Figure 3. The EDS chemical compositions of each
spot in Figure 3 are listed in Table 1. The EDS analyses of Zones I–IV showed that these zones mainly
contained Ti and Au. According to the molar ratio of Ti/Au and the Ti-Au binary phase diagram [37],
it can be concluded that the zones from I to VI were Ti3Au phase (Spot A), TiAu phase (Spot B), TiAu2

phase (Spot C) and TiAu4 phase (Spot D), respectively. When the brazing temperature exceeded the
melting point of Au (1064 ◦C), the Au foil began to melt and the interdiffusion of Ti and Au occurred,
both of which were driven by the concentration gradient. Then, Ti reacted with Au to form Ti3Au, TiAu,
TiAu2 and TiAu4 IMCs due to the decreasing concentration gradient of Ti [38]. Through the cooling
process, the Ti3Au, TiAu, TiAu2 and TiAu4 layers formed. The thicknesses of these layers, on average,
were ~4.8 µm, 5.3 µm, 14.2 µm and 10.2 µm combined with Figure 2a–b. The chemical composition of
Spot E in Zone V detected by EDS analysis showed that the titanium/oxygen atomic ratio was about
1:1. Combined with the results of Ti reacting with ZrO2 ceramics in previous studies [42,43], it can be
deduced that the black layer (Zone V) next to the ZrO2 side was a TiO layer. Therefore, the active Ti
from the substrate had two effects during brazing: one was to react with Au to form Ti–Au compounds,
and the other was to react with the ZrO2 ceramic to form a metallurgical bond.Metals 2020, 10, x FOR PEER REVIEW 5 of 11 
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Table 1. Energy dispersive spectroscopy (EDS) results of the spots marked in Figure 3 (at.%).

Spot Ti Au Zr O Possible Phases

A 75.67 22.48 0.02 1.83 Ti3Au

B 49.60 47.67 0.06 2.67 TiAu

C 32.05 61.52 0.03 6.40 TiAu2

D 18.44 73.80 0.04 7.72 TiAu4

E 40.29 2.07 3.02 54.62 TiO

Based on the above analyses, it can be concluded that the representative brazing microstructure of
the titanium/Au/ZrO2 joint brazed at 1150 ◦C for 10 min was titanium/Ti3Au layer/TiAu layer /TiAu2

layer /TiAu4 layer /TiO layer /ZrO2 ceramic.

3.2. Effects of Brazing Parameters on the Interfacial Microstructure of the Titanium/Au/ZrO2 Joints

It is acknowledged that the brazing temperature plays an important role in the evolution of
interfacial microstructure [16,29]. The microstructural evolutions of brazed joints at 1110–1190 ◦C at
intervals of 20 ◦C are shown in Figure 4a–e. It can be seen that the zones and phases in the joints are
consistent with the typical interfacial microstructure. However, with a rise in the brazing temperature,
the thickness of Ti3Au+TiAu+TiAu2 layers increased gradually from 19.2 µm to 24.3µm, owing to the
enhanced diffusion of Ti and Au with the increasing temperature, as shown in Figure 4a–c. With the
brazing temperature increasing further, as shown in Figure 4d–e, the thickness of Ti3Au + TiAu + TiAu2

layers showed no obvious change due to the Ti–Au reaction layers hindering the further diffusion of Ti
and Au by acting as barriers.
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10 min: (a) 1110 ◦C, (b) 1130 ◦C, (c) 1150 ◦C, (d) 1170 ◦C and (e) 1190 ◦C.

In order to further analyze the microstructural evolutions of the TiO layer in the titanium/Au/ZrO2

joint, the highly magnified microstructures of Zone V are shown in Figure 5. When the brazing
temperature was low (e.g., 1110 ◦C), only a limited number of Ti atoms diffused to the ZrO2 surface
and reacted with O atoms from ZrO2 to form a thin layer of TiO, which was not obviously observed by
SEM, as shown in Figure 5a. With the increase in temperature, more sufficient Ti atoms diffused to and
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accumulated on the ZrO2 surface. Thus, the thickness of the TiO layers increased gradually, as shown
in Figure 5b–e.
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It was well known that holding time is the other important factor affecting brazing quality, besides
brazing temperature. Figure 6a–e showed the BSE images of the interfacial microstructure of the
titanium/Au/ZrO2 joint brazed at 1150 ◦C for 5–30 min, respectively. Notably, the joints still consisted of
five zones and the phases were consistent with the typical interfacial microstructure shown in Figure 2.
With a longer holding time, the diffusion of Ti atoms was more sufficient and the thickness of Ti3Au +

TiAu + TiAu2 layers increased gradually from 22.6 µm to 30.3 µm. Additionally, the TiO layer showed
no significant changes, except for a slight increase in thickness.
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In summary, the effects of the brazing parameters on the microstructural evolution of the joints can
be summarized as follows: when the brazing temperature exceeded the melting point of the Au foil,
the Au foil started to melt and spread on the surface of the titanium substrate. Meanwhile, Ti dissolved
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and diffused to the molten Au which was driven by the concentration gradient of Ti. On the one
hand, Ti reacted with Au to form Ti–Au IMCs. In the cooling process, Ti3Au, TiAu, TiAu2 and TiAu4

layers formed simultaneously in the brazing seam due to the decreasing concentration gradient of
Ti. With the temperature increasing, the diffusion of Ti and Au was facilitated, and the concentration
gradient of Ti grew. Therefore, the thickness of the Ti3Au + TiAu + TiAu2 layer increased gradually.
However, with the brazing temperature increasing further, Ti–Au IMC layers prevented the further
interdiffusion of Ti and Au atoms, which resulted in an indiscernible change in the thickness of Ti3Au
+ TiAu + TiAu2 layers. Similar to the effect of the brazing temperature, with a longer holding time,
the diffusion of Ti and Au atoms was more sufficient, and the thickness of the Ti3Au + TiAu + TiAu2

layer increased. On the other hand, redundant Ti diffused to the ZrO2 ceramic side crossing the brazing
seam and accumulated on the surface of the ZrO2 ceramic. Active Ti could partially capture oxygen
from ZrO2 to form a TiO compound. When the brazing temperature was low, the diffusion speed of the
Ti atoms was slow and the number of Ti atoms that diffused to the ZrO2 surface was limited. Therefore,
the TiO layer was too thin to be observed by SEM. With an increase in temperature, a more sufficient
diffusion of Ti atoms to the ZrO2 surface occurred, which then accumulated on the ZrO2 surface and
reacted with the O atoms from ZrO2. Therefore, the thickness of the TiO layers increased gradually.
However, with a longer holding time, the Ti-Au IMC layers hindered the diffusion of more Ti atoms to
ZrO2. Thus, the TiO layer displayed no significant change, except for a slight increase in thickness.

3.3. Mechanical Properties and Fracture Morphology of Titanium/Au/ZrO2 Joint

To evaluate the mechanical properties of the brazed joints, shear tests at room temperature were
carried out. Figure 7a,b illustrated the effect of the brazing temperature and holding time on the average
shear strength of titanium/Au/ZrO2 joints, respectively. It can be seen clearly that both temperature
and holding time influenced the shear strength significantly. The shear strength improved with the
increase in brazing temperature and holding time, until the optimal shear strength of ~35.0 MPa was
reached at 1150 ◦C for 10 min, and then decreased.
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In order to further investigate the fracture mechanisms of the joints after the shear test, the
fracture paths and their magnified fractographs at different brazing temperature and holding
times are shown in Figure 8(a1–a2,b1–b2,c1–c2). Moreover, the corresponding XRD spectra (ZrO2:
PDF#01-088-1007, TiAu2: PDF#00-029-0651 and TiAu4: PDF#04-004-9165) on the ZrO2 side are
illustrated in Figure 8(a3,b3,c3). When the joints were brazed at a low temperature or for a short
holding time—for example, 1110 ◦C/10 min—the diffusion of Ti and Au atoms was slow and insufficient.
Thus, only a limited number of Ti atoms diffused to the ZrO2 surface and reacted with ZrO2 to form a
TiO layer. As a result, the TiO layer was too thin, resulting in weak metallurgical bonding between
ZrO2 and the brazing alloy. As a result, cracks initiated in the ZrO2/TiAu4 interface and propagated
to the brazing seam, mainly causing cracks on the TiAu4/TiAu2 (Zone IV/III) interface, as shown in
Figure 8(a1–a2). The corresponding XRD spectrum on the ZrO2 side in Figure 8(a3) mainly contained
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TiAu4 and TiAu2 phases, which further proves the above analysis. With the temperature increasing,
the diffusion of Ti and Au atoms accelerated and more Ti atoms accumulated on the ZrO2 surface,
forming a thicker and more continuous TiO layer in order to achieve better metallurgical bonding on
the ZrO2/brazing seam interface. In this case, the shear strength increased gradually. Figure 8(b1–b2)
shows the crack path and fractography obtained at 1150 ◦C for 10 min. The thickness of the TiO layer
was the most moderate and the joint achieved the maximum shear strength. The joints mainly cracked
on the brazing seam. Combined with the XRD spectrum in Figure 8(b3), it can be concluded that the
fracture path was located on the TiAu4/TiAu2 interface. With the brazing temperature and holding
time further increasing, the TiO layer became thicker and the residual stress between ZrO2 and the
brazing seam increased. As a result, the joints mainly cracked on the brazing seam and the ZrO2/TiAu4

interface, as shown in Figure 8(c1–c3) for the joint brazed at 1150 ◦C for 30min. Based on the above
analysis, it can be deduced that the formation and proper thickness of the TiO layer was crucial to the
shear strength of the joints.
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4. Conclusions

In this study, the reliable bonding of biomedical titanium/ZrO2 was successfully achieved using
Au foil. The typical interfacial microstructure of the brazed joint was characterized. The effects of
brazing temperature and holding time on the interfacial microstructure and mechanical properties of
the joints were investigated in detail. In conclusion:

(1) Ti3Au, TiAu, TiAu2, TiAu4 and TiO phases were formed in the brazed joint. The typical
interfacial microstructure of the titanium/Au/ZrO2 joint was titanium/Ti3Au layer/TiAu layer/TiAu2
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layer/TiAu4 layer/TiO layer/ZrO2 ceramic. The thicknesses of these layers, on average, were ~4.8 µm,
5.3 µm, 14.2 µm and 10.2 µm;

(2) The brazing temperature and holding time had significant effects on the interfacial microstructure
and mechanical properties of the brazed joints. With a higher brazing temperature or a longer holding
time, the diffusion of Ti and Au was accelerated, and the thickness of the Ti3Au + TiAu + TiAu2 layers
increased gradually. The TiO layer thickened gradually and promoted metallurgical bonding between the
brazing alloy and the ZrO2 ceramic;

(3) The joint brazed at 1150 ◦C for 10 min had an optimal shear strength of ~35.0 MPa, and a TiO
layer with a modest thickness. A crack was initiated and propagated along the interface of the TiAu2

and TiAu4 reaction layers.
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