Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel
Abstract
:1. Introduction
2. Experimental Methods
3. Results
3.1. Microstructure Feature
3.2. Texture Feature
4. Discussion
5. Conclusions
- (1)
- The warm rolling of C-Cr-Nb steel was more conducive to the formation of a deformation band as compared to room-rolling. Deformation bands with higher densities and narrower thicknesses were observed in the sample rolled at 450 °C. The annealed sheet had a ferrite and fine martensite microstructure that annealed at the inter-critical region. The ferrite matrix exhibited a much more homogeneous distribution after annealing in the sample rolled at 450 °C as compared to other rolling temperature.
- (2)
- The {001}<110> component was easily obtained after room temperature rolling. The γ-fiber texture is the dominant texture in rolled samples. With the increase of rolling temperature, {223}<110> component gradually changed to {112}<110> component, and the {001}<110> component gradually disappeared.
- (3)
- An increase in the rolling temperature initially presented a decreased and subsequent increase in the unfavorable texture {001}<110> strength in the annealing sheet. The maximum was measured at 550 °C based on the increase of dissolved carbon in the matrix, which was a result of the dissolution of the chromium-based carbides. By contrast, the intensity of the γ-fiber and {554}<225> component remained relatively high and was deemed the weaker {001}<110> component in the annealed sheet after a rolling temperature of 450 °C.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghosh, P.; Ray, R.K. Deep drawable steels. Automot. Steels 2017, 5, 113–143. [Google Scholar]
- Zhao, J.Z.; De, A.K.; Cooman, B.C.D. Formation of the cottrell atmosphere during strain aging of bake-hardenable steels. Metall. Mater. Trans. A 2001, 32, 417–423. [Google Scholar] [CrossRef]
- Zhao, Z.Z.; Wang, Z.G.; Zhao, A.M. Microstructure, properties and work hardening behavior of high strength cold rolled dual-phase steel. Adv. Mater. Res. 2011, 618, 182–188. [Google Scholar] [CrossRef]
- Han, S.-H.; Choi, S.-H.; Choi, J.-K.; Seong, H.-G.; Kim, I.-B. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels. Mater. Sci. Eng. A 2010, 527, 1686–1694. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Zhao, A.; Zhao, Z.-Z.; Ye, J.-Y.; Chen, J.-J.; He, J.-G. Precipitation behavior and textural evolution of cold-rolled high strength deep drawing Dual-Phase Steels. J. Iron Steel Res. Int. 2013, 20, 61–68. [Google Scholar] [CrossRef]
- Barnett, M.R. Influence of Warm Rolling Temperature on Ferrite Recrystallization in Low C and IF Steels; McGill University; National Library of Canada: Ottawa, ON, Canada, 1996; pp. 57–76. [Google Scholar]
- Jonas, J.J. Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process. Tech. 2001, 117, 293–299. [Google Scholar] [CrossRef]
- Romani, N.; Humphreys, A.O.; Jonas, J.J. Effect of chromium addition on the warm rolling behaviour of low carbon steels. Can. Metall. Q. 2006, 45, 451–457. [Google Scholar] [CrossRef]
- Nagesha, A.; Kannan, R.; Srinivasan, V.S.; Sandhya, R.; Choudhary, B.K.; Laha, K. Dynamic strain aging and oxidation effects on the thermomechanical fatigue deformation of reduced activation ferritic-martensitic steel. Metall. Mater. Trans. A 2016, 47, 1110–1127. [Google Scholar] [CrossRef]
- Zhou, H.; Bai, F.; Yang, L.; Wei, H.; Chen, Y.; Peng, G.; He, Y. Mechanism of dynamic strain aging in a niobium-stabilized austenitic stainless steel. Metall. Mater. Trans. A 2018, 49, 1202–1210. [Google Scholar] [CrossRef]
- Mohammad, R.T.; Fakhraddin, A.; Abbas, N. Effect of rolling temperature on the deformation and recrystallization textures of warm-rolled steels. Metall. Mater. Trans. A 2003, 34, 1163–1174. [Google Scholar]
- Cuddy, L.J.; Leslie, W.C. Some aspects of serrated yielding in substitutional solid solutions of iron. Acta Metall. Sin. Engl. 1972, 20, 1157–1167. [Google Scholar] [CrossRef]
- Storozheva, L.M.; Burko, D.A.; Grinberg, E.; Rodionova, Y.E.; Bode, R.; Esher, K. Effect of niobium on recrystallization of ultralowcarbon cold-rolled automobile sheet steel. Met. Sci. Heat Treat. 2000, 42, 267–271. [Google Scholar] [CrossRef]
- Song, X.L.; Peng, K.; Yuan, Z.X.; Zhu, W.W.; Jia, J.; Deng, Z.J. Effect of Micro-Alloying Elements of Ti, Nb and B on Recrystallization Behavior of Cold-Rolled Interstitial-Free Steel Sheets. Mater. Sci. Forum 2013, 753, 207–212. [Google Scholar] [CrossRef]
- Anijdan, S.H.M.; Hoseini, M.; Yue, S. Texture development in cool deformed microalloyed steels. Mater. Sci. Eng. A 2011, 528, 6788–6793. [Google Scholar] [CrossRef]
- Gao, W.; Leng, Y.; Fu, D.; Teng, J. Effects of niobium and heat treatment on microstructure and mechanical properties of low carbon cast steels. Mater. Des. 2016, 105, 114–123. [Google Scholar] [CrossRef]
- Chen, R.C.; Wang, Z.G.; Zhu, F.S.; Zhao, H.J.; Qin, J.; Zhong, L.Q. Effects of rare-earth micro-alloying on microstructures, carbides, and internal friction of 51CrV4 steels. J. Alloy. Compd. 2020, 824, 153849. [Google Scholar] [CrossRef]
- Fan, X.-G.; Zeng, X.; Yang, H.; Gao, P.; Meng, M.; Zuo, R.; Lei, P.-H. Deformation banding in β working of two-phase TA15 titanium alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 2390–2399. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Yuan, Q.Q.; Ye, J.Y.; Weng, X.; Wang, Z. Effect of cold rolling reduction on microstructure, mechanical properties, and texture of deep drawing dual-phase (DP) steel. Mater. Res. Express. 2019, 6, 125802. [Google Scholar] [CrossRef]
- Ahmer, W.M.; Hunt, G.W.; Peletier, M.A. Kink band instability in layered structures. J. Mech. Phys. Solids 2004, 52, 1071–1091. [Google Scholar]
- Guo, N.; Song, B.; Luan, B.; Chen, Z.; Liu, Q. Deformation bands in fully pearlitic steel during wire drawing. Sci. China Ser. E: Technol. Sci. 2014, 57, 796–803. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, C.; Tieu, A.K.; Pei, L.; Zhang, L.; Su, L.; Zhan, L. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation. Mater. Sci. Eng. A 2017, 687, 343–351. [Google Scholar] [CrossRef]
- Aboulfadl, H.; Deges, J.; Choi, P.; Raabe, D. Dynamic strain aging studied at the atomic scale. Acta Mater. 2015, 86, 34–42. [Google Scholar] [CrossRef]
- Cizek, P.; Wynne, B.; Hong, L.; Parker, B. Deformation banding in (001)[110] textured aluminium sheet deformed in tension. Mater. Sci. Eng. A 1996, 219, 44–55. [Google Scholar] [CrossRef]
- Cheng, L.; Cai, Q.-W.; Lv, J.; Yu, W.; Miura, H. Superdense microbands strengthening of textured low alloy ferritic steel. J. Alloy. Compd. 2018, 746, 482–489. [Google Scholar] [CrossRef]
- Park, J.T.; Szpunar, J.A. Evolution of recrystallization texture in nonoriented electrical steels. Acta Mater. 2003, 51, 3037–3051. [Google Scholar] [CrossRef]
- Li, X.; Yang, P.; Meng, L. Formation of the {111<112> and {111<110> recrystallization texture in deep drawing low carbon steel. Adv. Mater. Res. 2012, 535–537, 687–691. [Google Scholar] [CrossRef]
- Boumaiza, A.; Rouag, N.; Baudin, T.; Larouk, Z.; Penelle, R. Characterisation of transgranular crack propagation by EBSD in a soft steel. JPCS 2010, 240, 012036. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Nb | Cr | Al | N | RE |
---|---|---|---|---|---|---|---|---|---|
0.034 | 0.39 | 1.3 | 0.044 | 0.007 | 0.052 | 0.044 | <0.01 | 0.003 | 0.014 |
Texture Factor/Temperature | RT | 250 °C | 350 °C | 450 °C | 550 °C |
---|---|---|---|---|---|
Warm-rolled sheet | 0.759 | 0.813 | 0.898 | 1.103 | 0.417 |
Annealed sheet | 0.578 | 0.575 | 0.643 | 1.006 | 0.685 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Wang, Z.; Zhang, Y.; Ye, J.; Huang, Y.; Huang, A. Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel. Metals 2020, 10, 566. https://doi.org/10.3390/met10050566
Yuan Q, Wang Z, Zhang Y, Ye J, Huang Y, Huang A. Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel. Metals. 2020; 10(5):566. https://doi.org/10.3390/met10050566
Chicago/Turabian StyleYuan, Qiangqiang, Zhigang Wang, Yinghui Zhang, Jieyun Ye, Yao Huang, and Ankang Huang. 2020. "Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel" Metals 10, no. 5: 566. https://doi.org/10.3390/met10050566
APA StyleYuan, Q., Wang, Z., Zhang, Y., Ye, J., Huang, Y., & Huang, A. (2020). Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel. Metals, 10(5), 566. https://doi.org/10.3390/met10050566