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Abstract: This study investigated the effects of hot isostatic pressing (HIP) on the microstructures
and mechanical properties of Ti6Al4V fabricated by electron beam melting (EBM). The differences
of surface morphologies, internal defects, relative density, microstructures, textures, mechanical
properties and tensile fracture between the as-built and HIPed samples were observed using various
characterization methods including optical metallography microscopy, scanning electron microscopy
(SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) and
tensile tests. It was found that the main effects of HIP on microstructures include—the increase of
average grain size from 7.96 ± 1.21 µm to 11.34 ± 1.89 µm, the increase of α lamellar thickness from
0.71 ± 0.15 µm to 2.49 ± 1.29 µm and the increase of β phase ratio from 4.7% to 10.5% in terms of
area fraction on the transversal section. The combinatorial effects including densification, increase of
grain size, α lamellar thickness, β phase ratio, reduction of dislocation density and transformation of
dislocation patterns contributed to the improvement of elongation and ductility of EBM-fabricated
Ti6Al4V. Meanwhile, these effects also resulted in a slight reduction of the yield strength and UTS
mainly due to the coarsening effect of HIP.
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1. Introduction

Ti6Al4V is an important titanium alloy that has been widely used in aerospace engineering and
biomedical engineering due to its high specific strength and excellent biocompatibility [1–3]. However,
it has been a great challenge to process Ti6Al4V parts with complex geometries using conventional
processing technologies such as machining and forging processes due to its limited machinability and
deformation capacity [4]. With the development of various metal additive manufacturing technologies
such as selective laser melting (SLM) and electron beam melting (EBM), complex Ti6Al4V parts can be
easily fabricated in a convenient way [5].

In comparison with SLM, EBM has some unique advantages such as larger building speed, vacuum
environment, higher preheating temperature, reduced residual stress and diversity of processable
materials [6]. Therefore, additive manufacturing of Ti6Al4V by EBM has been extensively investigated
by many research groups [5]. As for the microstructures of EBM-fabricated Ti6Al4V, it was found
that transformed Widmanstätten-like α + βmicrostructures with acicular α-plate was formed within
the epitaxillay grown columnar β grain [5,7–9]. Meanwhile, the microstructures of EBM-fabricated
Ti6Al4V can be influenced by many factors including powder specifications [10–12], processing
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parameters [13–18], part size, shape and geometry et al [19–21]. As a result, the reported mechanical
properties of EBM-fabricated Ti6Al4V fluctuated in a certain range with the ultimate tensile strength
(UTS) ranging from 800 MPa to 1400 MPa [5]. On average, the yield strength and UTS EBM-fabricated
Ti6Al4V samples are usually comparable to wrought alloys, but the elongation is usually slightly
lower [7].

However, the relatively poor fatigue strength of as-built parts due to the internal and surface
defects has been the main limiting factor for its applications in critical fields [22]. There are three
possible ways to improve the fatigue strength [23]—(1) removing surface defects by machining or
polishing, (2) relieving residual stress by heat treatment and (3) reducing internal defects by hot isostatic
pressing (HIP). Among the three methods, HIP was proven to be the most effective way. HIP is a
process that uses high pressure inert gas and high temperature to close internal pores and voids and
finally obtain a more densified part. During this process, the microstructures and internal defects
might go through a series of changes. These changes have important effects on its microstructures
and mechanical properties. Lu et al., studied the microstructures and mechanical properties of
EBM-fabricated long Ti6Al4V rods out of a deep powder bed (ϕ12 mm × 300 mm) and the effect of
subsequent HIP [24]. They compared the differences between as-built and HIPed samples taken from
three positions of the long rod including top, middle and bottom. Lu et al., further investigated the
texture change induced by HIP and its effect on tensile properties for EBM-fabricated plate-shape
samples (220 mm × 45 mm × 5 mm) [25]. Samuel et al., studied the effectiveness of HIP for closing
porosity in EBM-fabricated Ti6Al4V with X-ray computed tomography (XCT) to track the pore closure
during HIP. It was found that the internal porosity was able to shrunk to a level below the resolution
limit of XCT (~5 µm) after HIP [26]. Wang et al., fabricated two types of Ti6Al4V samples including
horizontally-built and vertically-built strips (180 mm × 42 mm × 3 mm) with EBM [27]. The mechanical
properties of as-built and HIPed samples were compared. Hernández-Nava et al., demonstrated
a method to combine EBM and HIP to produce Ti6Al4V with more equiaxed microstructures and
isotropic properties [28]. They used EBM to generate a thin hollow preform and then filled it with
sintered powder. Finally, HIP was used to densify the part to full density. Persenot et al., studied the
effect of HIP and chemical etching post-treatment as well as combination of both on the mechanical
properties of EBM-fabricated thin Ti6Al4V parts with complex geometries [29]. Other post-treatment
procedures such as ultrasonic vibration was also explored [30]. Although there have been several
studies on the effect of HIP on EBM-fabricated Ti6Al4V, there still need a study on detailed differences
between as-built and HIPed samples.

In this study, cylindrical samples with the size of ϕ15 mm × 86 mm were fabricated via EBM.
HIP process was applied to densify the samples. Then the differences of surface morphologies,
internal defects, relative density, microstructures, textures and mechanical properties between as-built
and HIPed sampled were investigated with various characterization methods. The effect of HIP on
EBM-fabricated Ti6Al4V was revealed.

2. Materials and Methods

2.1. Materials and Fabrication Methods

Ti6Al4V powder with the size of 45–105 µm was purchased from AP&C, Saint-Eustache, QC,
Canada and the nominal chemical compositions are shown in Table 1. ϕ15 mm × 86 mm cylindrical
samples were fabricated using an EBM machine (Q20, Arcam, Gothenburg, Sweden) with the cylinder
perpendicular to the building plate. The major process parameters are—accelerating voltage 60 KV,
beam current 30 mA, line spacing 0.22 mm, scanning speed 24 m/s, layer thickness 0.09 mm and
preheating temperature 700 ◦C. The fabrication process was performed under a vacuum environment
with a vacuum degree of below 8 × 10−6 mbar. HIP treatment process was carried out at a temperature
of 920 ◦C for 2 hours with a pressure of 120 Mpa.
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Table 1. Chemical compositions of Ti6Al4V powder.

Element Ti Al V Fe C O H N

Composition (wt.%) Balance 6.42 4.13 0.18 0.01 0.09 0.003 0.02

2.2. Characterization

The surface morphology and surface roughness of as-built and HIPed samples were measured
with a laser confocal microscope (Keygence, VK-250, Osaka, Japan). Then the samples for characterizing
pores and voids were prepared and polished. The internal defects were observed using an optical
microscope (Keygence, VHX-5000, Osaka, Japan). Relative density was measured using Archimedes
method (MAY-Entirs120, Sartorious, Gottingen, Germany). After that, the polished sections were
etched using a Kroll’s agent (2 mL HF, 4 mL HNO3, and 94 mL H2O). Then the microstructures of
both longitudinal (along the building direction) and transversal section (perpendicular to the building
direction) were characterized using optical microscope (Keygence, VHX-5000, Osaka, Japan) and
scanning electron microscopy (SEM) (FEI, Quanta 450FEG, Hillsboro, OH, USA). The internal defects
especially dislocations were observed and phases were identified by selected-area electron diffraction
(SAED) with a transmission electron microscopy (TEM) machine (FEI, Tecnai G2 F20, Hillsboro, OH,
USA). Electron backscattered diffraction (EBSD) was conducted on well-polished transversal sections
using a Nova NanoSEM 230 (FEI, Hillsboro, OH, USA) with a step size of 200 nm. Tensile test specimens
were cut from the cylindrical samples with wire cutting and then surface were polished after wire
cutting. Mechanical properties including UTS, yield strength and elongation were measured along the
building direction using an electronic universal material testing machine (Z050TEW, ZwickRoell, Berlin,
Germany). The fracture surface was observed by SEM. Finally, the effect of HIP on the microstructures
and mechanical properties of EBM-fabricated Ti6Al4V was discussed.

3. Results

The fabricated samples and its surface morphologies are shown in Figure 1. The surface roughness
of as-built and HIPed samples was Ra 16.56 µm and Ra 18.32 µm respectively. These values indicated
that EBM-fabricated Ti6Al4V parts typically had a relatively coarser surface and HIP had little effects
on the surface roughness. Figure 2 shows the defects observed on well-polished transversal section of
as-built and HIPed samples. It can be seen clearly that pores are the main defects for as-built samples
(as shown in Figure 2a). After HIP, most of the pores were eliminated (as shown in Figure 2b) and
nearly full dense samples were obtained. To measure the relative density, five specimens of both
as-built and HIPed samples were prepared and each specimen was tested five time to calculate the
average relative density and errors. Results showed that relative density increased from (98.98 ± 0.03)%
to (99.73 ± 0.04)%.

Figure 1. Cylindrical samples and surface morphology: (a) electron beam melting (EBM)-fabricated
cylindrical samples; (b) surface morphologies of as-built sample; (c) surface morphologies of hot
isostatic pressed (HIPed) sample.
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Figure 2. Defects observed on transversal section: (a) as-built sample; (b) HIPed sample.

The microstructures of longitudinal section along the building direction of as-build and HIPed
samples are shown in Figure 3a,b. It can be seen that both samples had a typical columnar prior
β grain with continuous α phase at the grain boundary of prior β and transformed α + β dual
phase within the prior β grain. Basketweave microstructures with acicular α-lamellar were observed.
The microstructures also demonstrated a preferred epitaxial growth along the building direction
resulted from the maximum thermal gradient along this direction and the height of prior β grain was
5–10 times of layer thickness. Comparing the longitudinal microstructures of the as-built and HIPed
samples, it can be seen that HIP did not alter the fundamental features of its microstructures. However,
from the transversal microstructures of the as-built and HIPed samples shown in Figure 3c,d, we can
tell that the major microstructural differences between as-built and HIPed samples were the thickness
of α lamellar and the proportion of α and β phase. To compute the average α lamellar thickness,
10 measures of each sample were conducted. As we calculated, the average α lamellar thickness of
as-built and HIPed samples was 0.71 ± 0.15 µm and 2.49 ± 1.29 µm. As for the proportion of α and β
phase, it is quite difficult to calculate the precise values. Using an image processing method, the ratio
of β phase was roughly evaluated. The ratio of β phase for as-built and HIPed sample was around
4.7% and 10.5% respectively. Therefore, the major effects of HIP on microstructures of EBM-fabricated
Ti6Al4V include the increase of α lamellar thickness and β phase ratio due to the heat treatment at
high temperature.

Figure 4 shows the TEM characterization of as-built and HIPed samples. The comparison of TEM
morphology between as-built and HIPed samples (shown in Figure 4b,e) indicated that the α lamellar
thickness of HIPed samples was larger than that of as-built sample. This was in accordance with the
results observed with SEM. The electron diffraction patterns of α phase and β phase were obtained
by selected area electron diffraction. It can be seen that β phase existed between α lamellars and the
thickness of β phase was between ten of nanometers to hundreds of nanometers. The morphologies
of dislocations between as-built and HIPed samples were also quite different. Bended dislocation
networks were found in the as-built sample (shown in Figure 4a). While for the HIPed sample,
much shorter dislocations with directions parallel to each other were observed (Figure 4d). The as-built
sample also had a much larger dislocation density than HIPed sample that was resulted from the large
cooling rate during the fabrication process. While for the HIPed sample, the cooling rate during the
HIP process was much smaller, therefore, dislocation density was greatly reduced.
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Figure 3. Microstructures of as-built and HIPed sample: (a) microstructures of longitudinal section of
as-built sample; (b) microstructures of longitudinal section of HIPed sample; (c) microstructures of
transversal section of as-built sample, the inset represent a magnified image; (d) microstructures of
transversal section of HIPed sample.

Figure 4. Transmission electron microscopy (TEM) characterization of as-built and HIPed samples,
(a) dislocation of as-built sample, (b) TEM image of as-built sample, (c) electron diffraction pattern of
β phase, (d) dislocations of HIPed sample, (e) TEM image of HIPed sample, (f) electron diffraction
pattern of α phase.

Figure 5 shows the EBSD analysis of as-built and HIPed samples. Figure 5a–f illustrates the grain
orientation mapping, phase indexing and grain size distribution of the as-built and HIPed sample
respectively. From these data, it can be seen that the β phase fraction of HIPed samples was much
larger than that of as-built sample. To be noted, the thickness of a certain portion of β phase was less
than 100 nm. As a result, only part of the β phase was able to be indexed due to limited step size of
200 nm. Therefore, the fraction of β phase for both samples could only be qualitatively evaluated.
However, it is evident that the fraction of β phase increased a lot after HIP and this was in accordance
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with the previous evaluation from the SEM metallography. The grain size distribution in terms of area
fraction observed on the transversal section was calculated. The grain size values were exported to
compute the average grain size and errors. The average grain size of as-built and HIPed samples was
7.96 ± 1.21 µm and 11.34 ± 1.89 µm respectively. Therefore, the grain size increased roughly 42.5%
after HIP. The pole figures of α phase and β phase are shown in Figure 5g,h. Apparently, both α
phase and β phase showed a certain degree of texture with <0001> and <001> that was parallel to the
building direction and β phase showed a stronger texture intensity. This texture might lead to the
anisotropy of mechanical properties. It was also found that HIP did not alter the texture characteristics
of microstructures.

Figure 5. Electron backscattered diffraction (EBSD) analysis of as-built and HIPed samples: (a) grain
orientation mapping of as-built sample on the transversal section; (b) phase indexing of as-built sample
(black represents α phase); (c) grain size distribution of as-built sample; (d) IPF of HIPed sample;
(e) phase indexing of HIPed sample; (f) grain size distribution of HIPed sample; (g) pole figure of α
phase; (h) pole figure of β phase.

Figure 6 shows the mechanical properties of the as-built and HIPed samples. Five tensile specimens
were prepared for both as-built and HIPed samples. The average yield strength, UTS and elongation
of the as-built samples was (939.3 ± 8.3) MPa, (986.9 ± 4.4) MPa and (11.1 ± 4.3)% respectively. As for
the HIPed sample, the values were (887.9 ± 3.1) MPa, (945.6 ± 7.5) MPa and (18.8 ± 4.6)% respectively.
It can be seen that yield strength and UTS slightly decreased and elongation greatly increased after HIP.
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Figure 6. Tensile mechanical properties of as-built and HIPed samples.

Figure 7 shows the SEM characterization of the tensile fracture surface of the as-built and HIPed
sample. It can be seen that both samples demonstrated a ductile fracture surface featured with clear
necking and dimples on the fracture surface. However, the necking of the HIPed sample was more
evident than the as-built sample and the dimple depth and size was also larger. This clearly showed
that HIPed samples had larger ductility than the as-built sample.

Figure 7. Scanning electron microscopy (SEM) characterization of the tensile fracture surface, (a) and (b)
tensile fracture surface of the as-built sample, (c) and (d) tensile fracture surface of the HIPed sample.

4. Discussion

The above section describes the surface morphologies, internal defects, microstructures,
grain orientation, phase distribution, grain size distribution, texture strength, dislocation, mechanical
properties and tensile fracture surface analysis of the as-built and HIPed EBM-fabricated Ti6Al4V
samples. By comparing the differences between the two types of samples, the effects of HIP on
EBM-fabricated Ti6Al4V include—(1) HIP had little influence on its surface morphologies; (2) HIP
greatly reduced the internal defects especially pores and voids and thereby increased the relative
density from (98.98 ± 0.03)% to (99.73 ± 0.04)%; (3) HIP did not alter the fundamental features of
microstructures. Epitaxillay grown columnar β grain with continuous α at the prior β grain boundary
and α+β dual phase within prior β grain was maintained after HIP process; (4) HIP increased the α
lamellar thickness from 0.71 ± 0.15 µm to 2.49 ± 1.29 µm, the average grain size from 7.96 ± 1.21 µm to
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11.34 ± 1.89 µm in terms of area fraction on the transversal section and β phase ratio from 4.7% to 10.5%
due to the high temperature process; (5) HIP process did not alter the texture characteristics of the
as-built Ti6Al4V and a certain degree of texture strength of both α phase and β phase was observed for
as-built and HIPed samples; (6) HIP altered the dislocation morphologies and reduced the dislocation
length and density.

The above effects of HIP on EBM-fabricated Ti6Al4V finally led to the changes of mechanical
properties, including—(1) the yield strength reduced from (939.3 ± 8.3) MPa to (887.9 ± 3.1) MPa; (2) the
ultimate strength reduced from (986.9 ± 4.4) MPa to (945.6 ± 7.5) MPa; (3) the elongation increased from
(11.1 ± 4.3)% to (18.8 ± 4.6)%. Although slight reduction of both yield strength and ultimate strength
was observed, the increase of ductility can ultimately lead to better overall mechanical performance.
These values are similar to the values reported in references. For example, Persenot et al., reported
50 MPa decrease of yield strength and 44% increase of elongation after HIP [29]. Lu et al., found that
the α lamellar thickness grew from less than 1 µm to roughly 5 µm and the β phase ratio increased
from 4.8% to 9.5% after HIP. The yield strength and ultimate strength decreased from ~920 MPa to
~810 MPa and ~1000 MPa to ~910 MPa along with the elongation increased from ~13% to ~17.7% [24].
In our study, the yield strength, ultimate strength and elongation is slightly higher than reported values
possibly due to the difference of shapes and geometries of test specimens.
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