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Abstract: Nanoscale bainite is a remarkable microstructure that exhibits a very promising combination
of high strength with good ductility and toughness. The development of these types of microstructures
has been focused on wrought materials, and very little information is available for steel castings.
In this work, a specially designed cast steel with 0.76 wt % C was fabricated, and the heat treatment
cycles to develop bainitic nanostructures were determined by studying the kinetics of the bainitic
transformation using high-resolution dilatometry. The effects of isothermal holding temperature and
time on the final microstructure and mechanical properties were thoroughly characterized in order to
evaluate a future industrial implementation of the process in an effort to contribute to enhance and
widen the potential applications for cast steels.
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1. Introduction

Nanoscale bainite is an outstanding microstructure that exhibits a very promising combination
of mechanical properties [1-6]. This microstructure is usually obtained by isothermal heat treatment
above the martensite start temperature, Ms, in steels that must contain at least 1.5 mass %Si, which is
an element indispensable if the precipitation of carbides during the bainitic reaction is to be avoided.
The final microstructure thus obtained is an elegant mixture of interwoven plates of bainitic ferrite (ot)
and thin films of C-enriched retained austenite (y¢), both with tens of nm in thickness [7].

As bainitic transformation has a displacive nature, one of the most efficient ways of controlling the
size scale of the final microstructure is by increasing the strength of the parent austenite. This is achieved
by increasing the C concentration [8], alloying with strong austenite solid solution strengtheners, as Mn,
Si, and Cr, as well as allowing for the transformation to take place at the lowest possible temperatures,
between Ms and the bainite start temperatures, Bs [7,8]. By following these concepts, the strength of
the final bainitic microstructure can be controlled and improved.

During the last couple of decades, the vast majority of the research on the development of
nanoscale bainitic microstructures in steels has been focused on wrought materials [9-13]. For example,
in steels with 0.7-1.0 wt % C, nanosized structures consisting of a matrix of bainitic plates with
20—40 nm in size separated by slightly thicker films of C-enriched retained austenite have been
produced using an isothermal treatment of several hours at temperatures around 200 °C [9,14-17].
This microstructure confers to steels high ultimate tensile strengths, UTS, above 2.0 GPa, high yield
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strength, YS, above 1.5 GPa, accompanied by very reasonable ductility, 5-20% total elongation, and good
fracture toughness 45-90 MPa/m?/2 [14,16,18,19]. More recently, such microstructures are gaining
interest as substitutes for conventional alloys in applications where good rolling/sliding wear is
required, outperforming conventional alloys and microstructures [20,21], with better hardenability and
lower production costs [11,17]. Therefore, nowadays, they have potential applications in the railway,
defense, and mining industries, among others.

A wider niche of applications is foreseen if the same microstructural concept is transferred to cast
steels, which are extensively used in applications where obtaining near finished or finished parts with
complex geometries, and these geometries cannot be achieved easily by plastic deformation such as
rolling or forging, which is a limitation. The closest and few studies related to the subject deal with
high-silicon bainitic steels, which are commonly called austempered high-silicon cast steels [22-26].

In the 1990s, Voigt et al. published one of the first and most complete research studies about
austempered high-silicon cast steels containing 0.6-1.2 C and 1.4-2.4 Si in wt %. After an isothermal
heat treatment at temperatures ranging from 320 to 400 °C for 0.5 to 10 h, they have studied their
mechanical behavior by tensile, impact, and wear testing. They found that depending on the chemical
composition and temperature, these treatments can provide high wear resistance together with UTS
between 1.0 and 1.6 GPa, YS between 0.7 and 1.3 GPa, elongation to failure between 7% and 20% and
impact toughness between 6 and 28 J [22]. A few years later, Putatunda evaluated the effect of the
austenitizing temperature on the mechanical properties of an austempered high C, high Si, high Mn
cast steel. He found lower values for both UTS (600-800 MPa) and elongation to failure (up to 1.5%)
were associated with the presence of graphite nodules within the microstructure [23]. In order to refine
the grain size of high-silicon austempered cast steel, Chen et al. included vanadium and titanium in the
alloy. After an isothermal treatment for 1 h at several temperatures, they reported UTS and YS as high
as 2.1 GPa and 1.8 GPa, respectively [24]. Finally, Son et al. have reported for austempered high-silicon
cast steels (0.9 C-2.3 5i-0.3 Mn all in wt %) values for the UTS ranging from 1.4 to 2.2 GPa and elongation
to failure between 25% and 5% after isothermal heat treatments at temperatures between 240 and
400 °C for 0.5 to 2 h [25].

Another important issue, not yet addressed, is the stability of the microstructure and its mechanical
response when isothermal treatments are performed for times longer than strictly necessary. Due to the
continuous character of the feeding process, this situation can be common when austenitized samples
are transferred to the isothermal baths, where there are pieces that would withstand longer times
than intended.

In summary, the reviewed research still only offers a limited picture on the microstructural
and mechanical characterization of nanostructured bainitic cast steels. This work is aimed to
offer more data on the microstructural characterization of a cast steel of composition (in wt %)
0.76C-2.085i-0.74Mn-0.79Cr after isothermal treatments that leads to the bainitic transformation.
The effect of holding temperature and time on the microstructure and mechanical properties were
evaluated to advance the development of nanobainitic microstructure in these materials for future
industrial applications.

2. Materials and Methods

The alloy for this study was obtained in a 50 KW induction furnace at the casting laboratory
of the Universidad de Antioquia, Medellin-Colombia. Low-carbon steel scrap, low-sulfur graphite,
ferrosilicon, and ferrochromium were used to prepare the alloy. After melting, the steel was deoxidized
with 0.1 wt % Al and poured at 1600-1620 °C into chemical bonded silica sand molds to obtain
Y-blocks that were 25 mm thick. The final chemical composition of the alloy determined by optical
emission spectroscopy (OES) using a Bruker Q8 Magellan (Bruker, Karlsruhe, Germany) was (in wt %)
0.76C-2.085i-0.74Mn-0.79Cr. This material has high C and more than 1.5 wt % Si to increase the strength
of the parent austenite and to promote the development of a carbide-free nanoscale microstructure
composed mainly by a bainitic ferrite matrix and retained austenite, during bainitic transformation at
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low isothermal temperatures. Finally, Mn and Cr were added to further increase the solid solution
strengthening of the parent austenite and to provide the alloy with enough hardenability. After shaking
out, the cast steel was homogenized at 1100 °C during 48 h in vacuum.

A BAHR 805A high-resolution dilatometer (TA Instruments, Wetzlar, Germany) was used to
determine the heat treatment parameters and to study the kinetics of the bainitic transformation
in cylindrical specimens with 4 mm diameter and 10 mm length, which were machined from the
homogenized alloy. This equipment uses an induction heating coil and blowing He to control the
temperature during the test with the help of a type K thermocouple welded to the central part of
the sample surface. The longitudinal changes in length during the thermal cycle were measured by
fused silica push-rods in direct contact with the sample. Two set of experiments were performed to
achieve the objective of this work: firstly, it the critical processing temperatures Ac; and Acs were
determined as in ref. [27] and the Ms temperature was determined as in ref [28]. The Bs temperature
was calculated according with ref. [29]. A second set of experiments, after determination of the optimal
heat treatment conditions, allowed studying the kinetics of the bainitic transformation at different
isothermal temperatures, Tjgo, from where the end of the bainitic transformation, tf, was determined as
described in ref. [30] with a threshold of zero.

Tensile and impact toughness (Charpy V-notch) specimens of the cast steel were cut and machined
by a computer numerical control machine, according to the standard ASTM [31,32]. Then, the specimens
were thermally treated, together with a coupon sample for microstructural characterization in order to
develop the desired microstructures, following the parameters given later in this paper. Austenitization
performed in vacuum with an electrical furnace was followed by immersion in isothermal salt baths
(50% NaNO; + 50% KNO3) at temperatures selected for the bainitic transformation.

A tension test was carried out at room temperature using an INSTRON 5984 machine with 150 kN
(Instron, Germany) loading capacity and a cross-head speed of 3 s—1. An extensometer set to a gauge
length of 25 mm was used for strain measurement in 6 mm thick rectangular subsized specimens.
At least three specimens were tested for each condition, and the average and standard deviation
were calculated. True stress, 04, and true strain, ¢;, data were used to calculate the incremental work
hardening exponent, n = dlog(o;)/dlog(¢¢), during the tensile test as a function of ¢; for each heat
treatment condition. Impact toughness was evaluated by using a Karl Frank GMBH-300] Charpy testing
machine (Karl Frank GmbH, Weinheim-Birkenau, Germany), at room temperature; three V-notch
specimens were tested for each heat treatment condition. Rockwell C Hardness measurements were
made using a Harterprufer-Swiss MAX 300 hardness testing machine (Gnehm Hartepriifer AG, Thalwil,
Switzerland), at least five indents were made on each sample, and the average values were taken.

Specimens for microstructural characterization were sectioned and polished following a
conventional metallographic technique, and the microstructure was revealed by etching with Nital
2%. The revealed microstructure was analyzed with an optical and a scanning electron microscope
—SEM- (Nikon M100 from Niko Instrument Inc, Melville, NY, USA and JEOL-JSM 6490LV, from JEOL
Ltd, Tokyo, Japan, respectively). For each of the tested conditions, the methodology described in
refs. [33,34] was used to determine the thickness of bainitic ferrite and the size of retained austenite
from SEM images.

Microstructural evolution during isothermal treatments was also followed by X-ray diffraction
(XRD) measurements conducted with Co K radiation (A = 1.78901 A) in a Panalytical Empyrean
2012 (PANanalytical B.V., Almelo, The Netherland) diffractometer working at 40 KV and 100 mA.
Conventional 0-20 scans were performed over 20 ranging from 30° to 110° at a rate of 0.6 min~'.
XRD sample preparation included conventional metallographic techniques, followed by a final set of
cycles of etching and polishing to remove the plastically deformed surface layer introduced during the
grinding step.

Quantitative phase analysis from XRD patterns was performed with the version 4.2 of the
Rietveld analysis program DIFFRACplus TOPAS (Bruker AXS GmbH, Karlsruhe, Germany) and the
crystallographic information of ferrite and austenite. Besides, this refinement included explicitly other
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microstructural parameters such as lattice parameters, crystallite size, and microstrain. As the unit-cell
parameters of austenite are defined by the amount of carbon in solid solution, the concentration of this
element in this phase was calculated using Dyson and Holmes’ equation [35]. Finally, the crystallite
size, D, and lattice strain, ¢, were determined simultaneously from line broadening using the double
Voigt approach [36]. For this analysis, the instrumental contribution to peak broadening was removed
using the diffraction pattern of a LaBg standard. It must be pointed out that the value of the domain size
and strain parameters calculated from this procedure present large standard deviations (up to 20%).

3. Results and Analysis

3.1. Establishing Heat Treatment Conditions

A first set of dilatometric measurements using specific heating and cooling rates, determined
from previous experiences in steels with similar compositions [11,15,17], were performed to obtain the
critical transformation temperatures and to establish the austenitizing conditions and cooling rate to
Tiso. Figure 1 shows the relative change in length (RCL) of the dilatometric sample as a function of
temperature, during a thermal cycle that consisted of heating at 5 °C/s to 1000 °C, holding for 10 min,
and cooling down at 35 °C/s to room temperature. From this figure, we determined values of 803 and
837 °C for Acy and Acg, respectively. Notice that during cooling from the austenitization temperature,
only the beginning of the martensitic transformation was detected at 227 °C. The absence of changes
on the cooling curve before this temperature indicates that no intermediate transformations that can
interfere with the bainitic reaction can take place at the chosen cooling rate. Additionally, the Bs
temperature was calculated as 447 °C using the equation given in ref. [29].

1.6

Acl=803°C ——=
<— Ac3=837°C

0.8 A

RCL, %

0.0 ~

Ms=227°C
-04 T T T T T

0 200 400 600 800 1000 1200

Figure 1. Results of high-resolution dilatometry testing to establish the austenitizing temperature
and Ms.

An austenitization T-t of 900 °C for 10 min followed by cooling at 35 °C/s down to Tjs, were selected
for the study of the bainitic transformation considering the previous results. The chosen Tjso (Ms < Tigo
< Bs) values were 250 and 300 °C, and the holding time was adapted according to previous experiences
in wrought steels as 8 and 4 h respectively, to ensure that the transformation finished [11,15,17]. Notice
that the selected Tjg, values were close to Ms in order to promote the refinement of the microstructure.
The RCL curves of Figure 2a show the typical sigmoidal shape, with a first part corresponding to the
incubation period, where no transformation takes place or it is undetectable (RCL approximately 0),
of 120 and 80 s for the isothermal treatments at 250 and 300 °C, respectively. Then, the curve shows
a characteristic steady increase in RCL, which indicates the continuous decomposition of the parent
austenite into bainitic ferrite. Finally, a steady state is reached (RLC approximately constant), indicating
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that no further transformation is occurring. The time for the end of the transformation, t;, must be
contained within such a steady region, and it has been determined from the normalized first derivative
of RCL curves, NdRCL, as the time where the transformation rate reached a value of zero [30].

The dilatometric results shown in Figure 2 are completely aligned with the displacive and
difussionless theory that describes bainitic transformation [7]; i.e., when Tjs, decreases, a higher
fraction of bainitic ferrite is formed (>RCL), but the kinetic of the transformation is slower. As no
martensite was detected on the cooling curve after isothermal transformation under any of the
conditions, the expected final microstructure should be composed mainly by bainitic ferrite and
dispersed retained austenite. Figure 2b shows NdRCL at 250 °C and 300 °C and the corresponding t;
at 14,200 and 3500 s, respectively. Vertical dotted lines indicate t; in Figure 2a,b.

0.7 ; | —250°C —300°C |
(@ | |
0.6 - | |
! |
| |
0.5 - : i
| |
| |
x 0.4 ! !
4 ! ! 0.4
g 0.3 - i i - Incubation period
| IR
1 | —30.2
0.2 A | .~
: l 0.1
| | P
0.1 4 | i 0.0 "
: : 0 200 400 600
: : Time, s
0.0 - T T - T T T | 2
0 5,000 10,000 15,000 20,000 25,000 30,000
Time, s
12 ; | —250°C —300°C |
(b) | :
I |
1.0 - i i
| |
| |
| |
| |
0.8 A i i
| |
X : :
- | |
O 0.6 A | |
o | |
© | |
z i i
0.4 i |
| i
) | trso=14,200s
0.2 A i
|
0'0 J' AaAA M HAMI vy I.A.I‘A_nn.lm T
0 5,000 10,000 15,000 20,000 25,000 30,000

Time, s

Figure 2. High-resolution dilatometry testing to study the bainitic transformation of the cast steel:
(a) relative change in length (RCL); (b) normalized first derivative of RCL curves (NdRCL).

At this point, it has to be remarked that the obtained results show that the kinetics of the
transformation are far faster for the studied cast steel than for similar reported wrought steels in
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similar treatment conditions, see for example ref. [10]. Although it is not the aim of this paper, it is
speculated that such acceleration could be associated with local variations on chemical composition
associated to microsegregation during casting solidification, which have been previously reported [37],
favoring a fast transformation in certain regions and generating a concomitant catalytic effect on the
overall bainitic reaction. In addition, the presence of a greater amount of non-metallic inclusion in cast
steels would increase the number of site for the heterogeneous nucleation of bainitic ferrite in other
places than austenite grain boundaries [38—41]. However, further research to explain this issue would
be required.

As already mentioned, to test the robustness of the process, two different times were chosen for
the isothermal bainitic transformation: one corresponding approximately to t; and the other twice its
value (2 X tf). Thus, specimens for microstructural characterization, tensile, and charpy tests were then
austenitized at 900 °C during 45 min and isothermally treated according to the parameters given in the
next section.

3.2. Microstructural Characterization

Microstructural characterization after isothermal transformation at 250 °C for 4 h (tf) and 8 h
(2 x t¢) and at 300 °C for 1 h (tf) and 2 h (2 X tf) confirms the dilatometric results previously reported.
As shown in Figure 3, the microstructure consist of a bainitic ferrite (o) matrix that included some
films of C-enriched retained austenite (yf). There are also some blocks (yp) of retained austenite
(few microns) between the bainitic sheaves. With the characterization techniques used in this work,
the presence of cementite has not been detected in any of the studied cases, and as pointed out earlier,
its presence should be restricted due to the high Si concentration in the alloy.

Figure 3. SE-SEM micrographs of samples isothermally treated at: (a) 250 °C-4 h, (b) 250 °C-8 h,
(c) 300 °C-1 h, and (d) 300 °C-2 h. y¢: austenite films, y},: austenite blocks, oy,: bainitic ferrite.
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A decrease of the holding temperature, Tjs,, used for the bainitic transformation produces finer
microstructures with a higher volume fraction of bainitic ferrite. Figure 4 shows the distribution
histograms of the thickness of bainitic ferrite and the size of retained austenite. The average thickness
and size of the phases are included in Figure 4 and show that both isothermal temperatures lead to
nanoscale microstructures. The accumulated frequency curves show that in all cases, more than 80% of
the bainitic ferrite is thinner than 120 nm and 100% is thinner than 300 nm. Regarding retained austenite,
80% or more is smaller than 120 nm, while less than 4% is larger than 300 nm. Although a higher
isothermal temperature should produce coarser bainitic ferrite and austenite plates, these figures does
not always show this trend. A limited reliability on the plate thickness of both phases can be inferred
from the large standard deviation observed, which may be attributed to the inherent microsegregation
present in cast alloys.
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Figure 4. Size distributions: (a) Bainitic ferrite thickness at 250 °C, (b) retained austenite size at 250 °C,
(c) bainitic ferrite thickness at 300 °C, and (d) retained austenite size at 300 °C.

The results of the Rietveld refinement performed on XRD patterns obtained after isothermal
treatments at 250 and 300 °C are summarized in Table 1. Figure 5 displays the representative XRD
peak profile for selected isothermal conditions at 300 °C and 250 °C. The results in Table 1 show
that the increase of the holding time beyond that strictly necessary to complete the transformation
(2 x tf) has a very limited effect on the final microstructure, as revealed in Figures 3 and 4. On the
other hand, we observed a lower amount of «y, in the sample treated at 300 °C, which is in agreement
with the dilatometric results in Figure 2a previously discussed. As recently reported, bainitic ferrite
presents a tetragonal crystal structure that is associated with a higher content of carbon in solid solution
than those expected by the paraequilibrium phase boundaries [42]. The c/a ratio of bainitic ferrite
is maintained upon the holding time and decreases slightly at 300 °C, which is in accordance with
previous results [43]. Table 1 also shows the presence of two populations of austenite characterized
by a different C concentration, of which one should correspond to the v}, and the other should
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correspond to the y¢ between bainitic ferrite subunits. Although it is expected, according to the bainitic
transformation theory, that a higher austenite C enrichment is attained as the treatment temperature is
lowered, this is not the case. At 300 °C, it can be seen that the level of enrichment is slightly higher
than that obtained at 250 °C. This behavior has been previously observed and has been justified by a
greater presence of dislocations at lower temperatures that act as traps for the C atoms that migrate
from the C supersaturated ferrite to the austenite [42].

Peak broadening analysis of austenite could be associated only to microstrain for the C poor
austenite (yp) and to the crystallite size effects for the C-enriched austenite (yf). As shown in Table 1,
the value for microstrain in bainitic ferrite and retained austenite almost is not dependent on the
holding time, and they are slightly lower at 300 °C. In addition, the microstrain is larger for austenite,
indicating that this phase can accommodate a larger amount of the plastic deformation induced by the
bainitic transformation [7]. This table also includes the value of the crystallite size for the austenite
films. Although the crystallite size and phase thickness may be equivalent, in low-temperature bainitic
microstructures, the structural effect of plastic deformation generated during the transformation,
such as the dislocations network, stacking faults and twins, may subdivide the thickness of both
austenite and bainitic ferrite into coherent domains smaller in size, which do not induce any observable
contrast in SEM or transmission electron microscopy (TEM) observations [33].

Table 1. Results of the Rietveld refinement of XRD patterns.

Tiso, °C 250 300
Time, h 4 (t) 8 (2 X tf) 1 (t) 2(2Xtg)
Tetragonality, c/a 1.0088 1.0085 1.0083 1.0077
Bainitic ferrite, oy, Volume %, + 3% 86.2 87.3 83.6 85.5
Microstrain, €, % 0.0022 0.0023 0.0022 0.0021
Lattice parameter, A 3.610 3.613 3.616 3.620
- %
Blocks of austenite, v, Carbon COECST{;ZUOH/ e 0.54 1.03 112 1.24
Volume %, + 3% 6.8 5.1 7.7 6.6
Microstrain, €, % 0.0031 0.0029 0.0021 0.0020
Lattice parameter, A 3.632 3.631 3.633 3.632
Austentte flme, v, Carbon Cozc(;r{tzroe/:’tion, wt %, 1.60 157 1.63 1.60
Volume %, + 3% 7.0 7.6 8.7 7.9
Crystallite size, Dy, nm 8 8 11 12

—300°C-1h —250°C-4h

0lla

111 \
Y 002y 002¢ 022y 190"\

Y N

30 40 50 60 70 80 90 100 110
2 Theta, ®

Intensity

Figure 5. XRD peak profile for microstructures obtained after isothermal transformation at 300 °C-1 h
and 250 °C-4 h.
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3.3. Mechanical Properties

Table 2 lists hardness, tensile properties, and impact toughness as a function of isothermal
heat treatment conditions. Considering the standard deviation associated to these values, it can be
concluded that the mechanical properties depend on the isothermal temperature but not on the holding
time. This behavior was expected due to the very subtle differences found in the microstructures as
the treatment time changed from tf to 2 X t¢, highlighting again the robustness of the process. It is
evident that a higher fraction of bainitic ferrite and the higher value for the microstain in the austenite
observed in Table 1 for the samples treated at 250 °C lead to higher values for HRC, YS, and UTS,
but to lower elongation to failure and impact toughness. The higher ductility and impact toughness
found in the samples treated at 300 °C is associated to a higher amount of retained austenite with a
better capacity of accommodating plastic deformation than bainitic ferrite, as shown in Table 1.

Table 2. Hardness, ultimate tensile strength (UTS), yield strength (YS), total elongation (TE), and impact
toughness (IT) of nanobainitic cast steels.

Tiso, °C Time, h Hardness, HRC UTS, MPa YS, MPa TE, % IT,J
250 4 (tf) 552 +0.7 1897 + 83 1807 + 47 3x1 9.8+17
8 (2 X ty) 554 + 0.4 1918 + 121 1859 + 85 2+1 8.6 0.6
300 1 () 51.6 £ 0.3 1786 + 18 1618 + 3 7+2 17.7 + 0.6
2(2xtg) 515+ 0.3 1749 £ 6 1629 + 12 9+3 174 +£2.1

Figure 6 reveals examples of representative engineering stress—strain curves, which are characterized
by a continuous yielding typical of microstructures containing mobile dislocations, in this particular
case introduced during the isothermal transformation to bainite [7,15,44]. From the same figure, it is
also evident that a good portion of plastic deformation is uniformly distributed along the gauge length
of the samples, showing little or no necking; in other words, most or all of the total elongation achieved
is uniform elongation.

2500

250°C-8h
2000 - 250°C-4h

300°C-1h

300°C-2h

& 1500 A

8’ M

3
© 1000 A

500 A

0 T T T T
0 0.02 0.04 0.06 0.08 0.1

8eng

Figure 6. Representative engineering stress (0eng) vs. strain (€eng) curves.

Figure 7 shows the work hardening rate as a function of true strain. According to Considere’s
instability criterion, necking in uniaxial tensile test starts when the corresponding true plastic strain
is equal to the work hardening exponent, n. As observed in Figure 7, the condition of necking is
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only reached in the samples isothermally treated at 300 °C, and therefore, the samples treated at
250 °C failed in a brittle way without the onset of necking. For the four conditions tested, it can be
observed in Figure 7 that strain-hardening is characterized by a sharp decrease in #, but only in the
samples treated at 300 °C was there found an inflection at about 0.03 true strain, which leads to an
increase in n up to failure. This work-hardening behavior is common observed in low stacking fault
energy (SFE) alloys that exhibit secondary deformation mechanisms such as mechanical twinning or
martensitic transformation (transformation or twinning-induced plasticity, TWIP or TRIP effect) [45].
As austenite is often characterized by a low value of SFE, plasticity can be achieved by either of those
two deformation mechanisms [46]. When these strain-induced features are preferentially formed
during deformation at a certain position of the tensile sample, it produced an intensive local strain
hardening of this region that delays the occurrence of the onset of necking and results in larger
uniform elongations.

Thus, the higher plasticity found in samples isothermally treated at 300 °C can be effectively
argued by the strain-hardening capability of the microstructure, which is twofold, the TRIP effect
and the composite-like nature of the microstructures [47]. The TRIP effect, i.e., retained austenite
resistance to transform to martensite when subjected to an external mechanical load, is strongly related
to its mechanical stability, and intrinsic features of the phase such as the chemical composition, size,
and morphology of the features, and the presence of defects in the crystallographic lattice, controls
it. It is clear from Table 1 that C in vy}, is one of the main differences between the 250 and 300 °C
microstructures, and it is by far the element with the strongest influence in enhancing the mechanical
stability of austenite [48-50].

Related to the composite-type nature of the microstructure, properties depending on both the
bainitic ferrite matrix and the retained austenite, such as the relative mechanical properties of the phases
and the geometry of the composite-type material, have a strong influence on the strain-hardening
response, since it influences the way strain/stress partitions between the phases [51-53]. It is known that
in this type of microstructures, where the bainitic ferrite matrix is harder than the retained austenite [54],
a small mechanical mismatch between the phases is also behind the improved ductility [19-55]. In this
particular case, there seems to be, on one hand, a tendency to reduce the strength of the bainitic ferrite
as the treatment temperature increases from 250 to 300 °C, which can be justified by a lower C content,
i.e., smaller tetragonality, and a lower content of defects, microstrain. On the other hand, the higher
observed C content of retained austenite as the treatment temperature increases might contribute to
enhance its strength, which becomes closer to the bainitic ferrite values [56].

0.30
——250°C-4h
----- 250 °C-8h
0.25 1 —300°C-1h
----- 300 °C-2h
0.20 4 —— Inestability criterion
c 0.15 A
0.10 A
0.05 A
0.00 T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12

True strain

Figure 7. Incremental work hardening exponent, 1, vs. true strain.
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Finally, it is worth noticing that although the reported YS and impact toughness values in this
work fit well with those obtained in similar wrought steels [10,57], the UTS and ductility values are
lower, which is most probably due to microsegregation and non-metallic inclusions that can affect the
mechanical response. Moreover, the mechanical response of the nanostructured bainite obtained in
this study is comparable, or better, than those found in similar austempered high-silicon cast steels,
ie., 0.6-0.9 C-2.3 Si and 0.3 Mo (in wt %) [22] and 0.9 C-2.3 5i and 0.3 Mn (in wt %) [25], which helps
understanding the advantage of searching for nanometric structures in bainitic steels (see Figure 8).

AUTS, Similar Cast Steels Ref [22] A UTS, Present Study

A UTS, Similar Wrought Steels Ref [10, 57] & UTS, Similar Cast Steels Ref [25]

QYS, Similar Cast Steels Ref [22] @ YS, Present Study

©YS, Similar Wrought Steels Ref [10, 57]

2200 7 F 2200
A N A
A
© oA -
Q- A A
A A o
= 1700 A ® - 1700 S
~ ﬁ [ ]
[7,) ~
[ %
O A A
1200 { © oo L 1200
O
0o
Ref [22): 0.6-0.9C - 2.3 Si and 0.3 Mo (in wt. %). Ref [25]:0.9C - 2.3 Si and 0.3 Mn (in wt. %)
Ref [10, 57]: 0.8 C - 1.6 Si- 2.0 Mn - 0.24 Mo - 1.0 Cr (in wt. %).
700 T T T T T 700

0 5 10 15 20 25 30
Total Elongation, %

Figure 8. Comparison between tensile properties of similar wrought steels data from [10,57] and cast
steels data from [22,25] with those reported in this study.

4. Conclusions

In this work, it is shown how, in a specially designed cast steel, it has been possible to select the
optimum heat treatment parameters to achieve a nano-bainitic microstructure. The microstructures
obtained at the two selected low isothermal temperatures are essentially identical to those widely
characterized in wrought steels, and the differences in properties that have been detected could
be explained in terms of the inherent microsegregation of castings. Moreover, in the forecast of
future industrial implementations of this type of heat treatment in cast steels, the robustness of the
microstructure and its properties, when submitted to a treatment twice as long as that strictly necessary
has been evaluated, and it can be concluded that the extension of the treatment has not introduced
significant changes.
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