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Abstract: The effect of La addition on primary α-Al and the eutectic Si phase of Al-7Si alloy is
investigated systematically in this work. The results indicate that La addition causes a multi-refining
efficiency on the microstructure of Al-7Si alloy, including refinement of α-Al grains and secondary
dendrite arm spacing as well as eutectic Si particles. The grain size, secondary dendrite arm spacing
and area of eutectic Si particles are decreased by 26.8%, 7.7% and 26.7%, respectively, with the addition
of 0.1 wt.% La. It is also found that La-rich phases of Al2Si2La form and distribute in the vicinity of the
eutectic Si phase. The crystal structure and lattice parameter of Al2Si2La phase are determined to be
hexagonal (a = b = 0.405 nm, c = 6.944 nm) based on the TEM analysis results. The multi-refinement
effects are mainly attributed to the increased constitutional undercooling caused by the low solubility
of La in Al alloy and the growth-restricting factor caused by the Al2Si2La phase.
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1. Introduction

Al-7Si alloys have been extensively used in die casting to produce components that comply
with the mechanical performance of lightweight structures, environmental and other requirements.
The mechanical properties of hypoeutectic Al-7Si cast alloy are controlled by the casting process,
heat treatment process and physical metallurgy, such as chemical composition and microstructural
features [1–5]. Tensile properties, particularly ductility, are accepted to be mainly controlled by
microstructural features, normally the morphology and size of the α-Al primary phase, silicon particles
and other precipitate phases which may be present in the microstructure [6]. Many efficient methods
have been proposed to refine the primary α-Al phase and modify eutectic Si particles in order to
improve the mechanical properties of the alloy. Micro-alloying additions such as refinement Ti, B [7,8]
and modifier Sr, Na [9,10] have been proven to be efficient.

Recently, considerable interest has been focused on the use of rare earth elements such as La, Ce, Sc,
Yb, Er, Eu, etc., which have multiple effects including melt purification, grain refinement and eutectic
Si modification in Al-Si alloys. Many authors [11–17] have verified the refinement and modification
effects of Yb, Er, Sc and Sm elements on Al-Si alloys in corresponding research. The refinement
mechanism regarding grain size is attributed to heterogeneous nucleation. The modification effect
on eutectic Si particles is based on the widely accepted impurity-induced twinning (IIT) mechanism
theory, which has been proven by Lu and Hellawell [18]. They proposed that a growth twin was
created at the interface when the ratio (the atomic radius of the modification elements relative to that of

Metals 2020, 10, 621; doi:10.3390/met10050621 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-7740-0964
http://www.mdpi.com/2075-4701/10/5/621?type=check_update&version=1
http://dx.doi.org/10.3390/met10050621
http://www.mdpi.com/journal/metals


Metals 2020, 10, 621 2 of 10

Si) was close to 1.646. However, they also proposed that a ratio of 1.646 was the principal requirement
for a modifying agent. According to the investigation of Li et al. [19], the Yb element refined rather
than modified the eutectic Si in hypoeutectic Al-Si alloys, though Yb possessed a favorable atomic
radius ratio (rYb/rSi = 1.646) for the IIT mechanism. Li et al. also reported [20] that Eu was the only
rare earth element modifying the eutectic Si phase. Thus far, the theory used to interpret the effect of
rare earth elements on Al-7Si alloys remains controversial.

As the least expensive rare earth element, La has the potential to replace the precious elements
mentioned above. Pourbahari et al. [21] have explored the effects of different La content on the
structure and mechanical properties of Al-7Si alloy, finding that the optimal La addition content was
0.1 wt.%. However, the refinement or modification mechanism of La on microstructure remains unclear.
In addition, there is no clear explanation for the large amount of La-rich intermetallics formed in the
Al-7Si alloy.

In the present study, the influence of rare earth 0.1 wt.% La on the microstructure of cast Al-7Si
alloy was systematically investigated. Electron probe microanalysis (EPMA) and TEM measurements
were used to analyze the La-rich intermetallics and elucidate the multi-refinement mechanism of La in
terms of dendrite structure and Si particles.

2. Experimental Procedure

Commercial Al-7Si alloy was used as the base alloy for the castings. According to our former
experiment and other reports in [21–23], the optimal rare earth addition content in cast aluminum
alloys is 0.1 wt.%. The main focus of the present paper was on the Al-7Si alloy with 0.1 wt.% La
addition. The alloys studied in this work were prepared using Al-7Si alloy and Al-20La master alloy
through a low-pressure die casting process. The chemical compositions of castings were monitored by
direct reading spectrometry (Thermo ARL EasySpark, ARL, WA, USA), and the results are given in
Table 1. After casting, some castings were tested in the as-cast condition, and the rest were subjected to
T6 heat treatment. The castings were solution treated in an accurate electrical furnace at 535 ◦C for 4 h,
quenched in warm water at 80 ◦C and finally aged at 170 ◦C for 8 h.

Table 1. Chemical composition of Al-7Si-xLa casting alloy (wt.%).

Alloy Si Mg Fe La Al

Al-7Si 7.15 0.436 0.114 - Bal.
Al-7Si-0.1La 7.13 0.442 0.116 0.1 Bal.

Optical microscopy (OM), scanning electron microscopy (SEM), EPMA and TEM equipped with
an energy dispersive spectrometer (EDS) detector were employed to characterize the microstructure of
Al-7Si alloys with and without La addition. Samples for OM investigations were ground, polished and
etched using 0.5% HF solution. The same samples used for OM investigations were further analyzed
using EPMA element mapping on a JXA8230 (JEOL, Tokyo, Japan) equipped with a wavelength
dispersive spectrometer (WDS). The specimens for TEM investigations were mechanically ground,
polished and dimpled to 30 µm, then ion-beam milled using a Gatan Precision Ion Polishing System
(PIPS, Gatan Model 691, Gatan, Pleasanton, CA, USA). TEM observations were performed on a
JEOL-2100F TEM (JEOL, Tokyo, Japan) at 200 kV. Electron backscatter diffraction (EBSD) analysis
was completed on a Zeiss Auriga field emission SEM (Carl Zeiss, Yarra, Germany) fitted with an
EBSD detector. Each sample was scanned at a tilt angle of 70◦ to the detector. A step size of 5 µm at
140× magnification was used for crystallographic texture and grain morphology analyses. Finally,
the Image-Pro Plus software (IPP 6.0, IPWIN Applicaton, Inc., Rrockville, MD, USA) was used to
measure the characteristics (aspect ratio, Feret diameter and area) of eutectic Si particles and to monitor
the refinement effect of La (Figure 1).
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indicative parameters of the evolution extent of the Si particles, and the results are shown in Table 2. 
Rod-like eutectic Si particles with the Feret diameter of 7.42 μm and area of 14.47 μm2 were found in 
the Al-7Si alloy. While, for the alloy with 0.1 wt.% La, the average area of eutectic silicon decreased 
significantly to 10.61 μm2, which was about 26.7% less than the untreated alloy. However, the aspect 
ratio of eutectic Si in the Al-7Si alloy with addition was similar (about 2.5) to that of the unrefined 
alloy. All these results illustrate that the rare earth element La had the effect of refining the eutectic 
Si particles. 
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Figure 1. Schematic representation of the calculation of secondary dendrite arm spacing (SDAS) and
aspect ratio of eutectic Si particles.

3. Results and Discussion

3.1. Microstructure

Figure 2a,b shows the representative microstructures of Al-7Si alloy and Al-7Si-0.1La alloy
observed by OM, and their corresponding microstructures at the T6 heat-treated state are presented in
Figure 3. In the as-cast alloy without La (Figure 2a), the eutectic Si particles presented acicular-like
shapes with a large size, low roundness and high area. With the addition of 0.1 wt.% La, the refined
eutectic Si particles presented a fragmented shape and a slight decrease in the Si particle size was
achieved, as shown in Figure 2b. It is evident in Figure 3 that the addition of 0.1 wt.% La could refine
the eutectic Si particles. To study the effects of 0.1 wt.% La on the level of refinement observed in
the microstructures, the aspect ratio, Feret diameter and area of eutectic Si particles were chosen as
indicative parameters of the evolution extent of the Si particles, and the results are shown in Table 2.
Rod-like eutectic Si particles with the Feret diameter of 7.42 µm and area of 14.47 µm2 were found in
the Al-7Si alloy. While, for the alloy with 0.1 wt.% La, the average area of eutectic silicon decreased
significantly to 10.61 µm2, which was about 26.7% less than the untreated alloy. However, the aspect
ratio of eutectic Si in the Al-7Si alloy with addition was similar (about 2.5) to that of the unrefined
alloy. All these results illustrate that the rare earth element La had the effect of refining the eutectic
Si particles.
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Figure 3. Representative eutectic structure observed by OM taken from T6 heat-treated alloys: (a) Al-7Si
alloy; (b) Al-7Si-0.1La alloy.

Table 2. The size of eutectic Si particles.

Alloy Al-7Si Alloy Al-7Si-0.1La Alloy

Aspect ratio 2.44 ± 0.27 2.47 ± 0.37
Feret diameter (µm) 7.42 ± 1.17 4.46 ± 0.57

Area (µm2) 14.47 ± 2.45 10.61 ± 1.02

The refinement effect of La addition on α-Al grains and dendrite structure on T6 heat-treated
Al-7Si alloys is presented in Figure 4. The quantitative changes of SDAS and α-Al grain size of the
studied alloys as calculated by IPP 6.0 software are depicted in Table 3. The coarse microstructures with
large secondary dendrite arm spacing (20.26 µm) and coarse α-Al grain size (242.38 µm) are obvious in
Figure 4a,b for the Al-7Si alloy without La addition. As Figure 4c,d clearly illustrates, with a small
addition of 0.1 wt.% La, the microstructures were refined, and the SDAS and α-Al grain size were
decreased to 18.66 µm and 177.45 µm, respectively. Considering the above analysis, the rare earth
element La was a somewhat effective refiner, which presented the multi-refining effect on eutectic Si
particles, α-Al grains and dendrite structure.
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Table 3. SDAS and grain size of Al-7Si-xLa alloy.

Samples SDAS (µm) Grain Size (µm)

Al-7Si 20.26 ± 3.22 242.38 ± 21.95
Al-7Si-0.1La 18.66 ± 1.85 177.45 ± 18.32

3.2. La-Rich Phase Identification

In order to clarify the overall distribution of La in the Al-7Si alloy, EPMA equipped with WDS
was used to observe the element distribution, and the results are shown in Figure 5. The large atomic
number difference made compositional imaging possible, illustrating the brighter contrast of La-rich
intermetallics, as shown in Figure 5a. These La-rich intermetallics were found to segregate strongly
to the eutectic Si phase, and no significant enrichment of La in the primary Al phase was observed.
They are marked with round white circles in Figure 5d. The size of La-rich intermetallics was about
0.5–1 µm. To determine the crystal structure and lattice parameter of La-rich intermetallics, TEM and
EDS measurements were conducted.

As shown in the TEM analysis results in Figures 6 and 7, there were two kinds of La-rich
intermetallics: some attached to the boundary of the eutectic Si particles (Figure 6) and some
distributed in the eutectic phase (Figure 7). According to the selected electron diffraction patterns
(SADP) shown in Figures 6b and 7b, the crystal structure and lattice parameter of these La-rich
intermetallics were determined to be hexagonal (a = 0.405 nm, c = 6.944 nm), which was in very close
agreement with that of Al2Si2Yb phase [19]. All the observed La-rich intermetallics were Al2Si2La
phase based on the TEM and EDS analysis.
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3.3. TEM Observation

According to the microstructure analysis, the addition of La had the effect of refining eutectic
Si particles rather than modifying them. In order to elucidate the refinement mechanism, two kinds
of Si particles with round and rod-like shapes were observed. TEM of the Si particle tilted to the
principal twinning orientation of Si <110> was conducted to observe twining [17–20], and the results
are presented in Figure 8. Some surface artifacts caused by sample preparation were present on Si
particles. It was evident that there was no La segregation and no twinning in the eutectic Si particles
shown in Figure 8a,c. This indicates that the effect of La was different from the modification mechanism
of Sr and Na, although the rare earth element La had the perfect radius ratio to Si (1.604). It had a
similar refinement effect on eutectic Si caused by the addition of other rare earth elements (Yb, Sc, etc.)
as reported by authors in [19,20].

Metals 2020, 10, x FOR PEER REVIEW 6 of 10 

 
Figure 6. (a) TEM bright-field images; (b) corresponding SADP of La-rich intermetallic in the eutectic 
Si particles; (c) weight fraction of point A. 

 
Figure 7. (a) TEM dark-field images of nano-sized La-rich intermetallics; (b) the corresponding SADP 
in the vicinity of eutectic Si particles; (c) weight fraction of point A. 

3.3. TEM Observation 

According to the microstructure analysis, the addition of La had the effect of refining eutectic Si 
particles rather than modifying them. In order to elucidate the refinement mechanism, two kinds of 
Si particles with round and rod-like shapes were observed. TEM of the Si particle tilted to the 
principal twinning orientation of Si <110> was conducted to observe twining [17–20], and the results 
are presented in Figure 8. Some surface artifacts caused by sample preparation were present on Si 
particles. It was evident that there was no La segregation and no twinning in the eutectic Si particles 
shown in Figure 8a,c. This indicates that the effect of La was different from the modification 
mechanism of Sr and Na, although the rare earth element La had the perfect radius ratio to Si (1.604). 
It had a similar refinement effect on eutectic Si caused by the addition of other rare earth elements 
(Yb, Sc, etc.) as reported by authors in [19,20]. 

 
Figure 8. (a,c) TEM bright field images; (b,d) the corresponding SADP of the Si phase in Al-7Si-0.1La 
alloy. No clear Si twin was observed. 

Figure 8. (a,c) TEM bright field images; (b,d) the corresponding SADP of the Si phase in Al-7Si-0.1La
alloy. No clear Si twin was observed.



Metals 2020, 10, 621 7 of 10

3.4. Multi-Refinement Mechanism of La

As shown in Figure 4 and Table 3, the incorporation of 0.1 wt.% La in Al-7Si alloy caused the
reduction inα-Al grain size by 26.8%. However, it is also evident in Figure 5 that the La-rich intermetallic
Al2Si2La phase was segregated strongly to the eutectic Si phase, and no significant enrichment of
La-rich intermetallics in the primary Al was observed. In addition, during the solidification process,
the formation of a Al2Si2La phase began below the solidus temperature of Al-Si alloy [24]. Therefore,
the heterogeneous nucleation contribution of Al2Si2La phase was impossible.

It is well known that La has very limited solubility in aluminum [25]. The maximum La solid-solubility
in α-Al was found to be 0.05 at.% at 898 K (625 ◦C). In the liquid state, the alloying elements were randomly
distributed, although solute clustering may occur. During the solidification process, La was very easy
to aggregate at the solid–liquid interface, as shown in Figure 9a, thus resulting in the constitutional
undercooling in the diffusion layer. This constitutional undercooling stimulated the formation of the
Al2Si2La phase along the boundaries and retarded the growth of α-Al primary, eventually resulting in a
further reduction in grain size. Therefore, the grain refinement of La in Al-7Si alloy can be explained by
the growth-restricting factor (GRF) of the alloy, which increased when La was added to the alloy [21].

It has also been reported that the refinement of SDAS is due to the effect of rare earth elements on
the solidification process [26,27]. SDAS was determined by the following equations [17]:

λ2 = 5.5
(
Mt f
)1/3

(1)

M =
ΓD ln

(
Cm

l /C0
)

m(1− k)
(
C0 −Cm

l

) (2)

k = Cs/CL (3)

where λ2 is the value of SDAS, µm; t f is the local solidification time, s; Γ is the Gibbs–Thomson
coefficient; D is the diffusion coefficient in liquid, m2

·s−1; m is the liquid slope, K/wt.%; C0 is the initial
alloy concentration, wt.%; Cm

l = Ce the eutectic composition, wt.%; k is the distribution coefficient; and
Cs and CL are the equilibrium solubility.

According to Equation (1), λ2 was determined by M and solidification time t f . When the rare
earth element La was added into the melt as a surface-active element, La concentrated at the front of
the solid–fluid interface during the solidification process. Then, it blocked the diffusion of Si, which
increased the value of CL in the binary Al–Si system. Thus, the distribution coefficient k decreased,
leading to a decrease of M. As a result, the addition of La decreased the size of λ2 in comparison
with the unmodified alloy. Meanwhile, the concentration of Si and Mg solutes in the front liquid
interface was reduced due to the concentration of La. The mitigation of the concentration gradient
of the boundary diffusion layer resulted in a decrease in temperature gradient, which shortened the
local solidification time. Consequently, the decreased M and solidification time led to the decrease of
SDAS, as presented in Figure 4, from 20.26 µm to 18.66 µm (decreased by 7.7%) with the addition of
0.1 wt.% La.

Contrasting with a previous report on the modification mechanism [28], no twins or La-rich phase
was detected in eutectic Si particles in the Al-7Si alloy with 0.1 wt.% La addition. The partitioning
behavior and solute redistribution during the solidification process were of great importance in
clarifying this refinement mechanism on eutectic Si particles. The schematic presentation is shown in
Figure 9b. During eutectic Si growth, La and Al solute segregated ahead of the solidification interface
(kAl < 1 and kLa < 1). Thereby, an enrichment of La and Al occurred. No Al2Si2La particle was observed
within eutectic Si because no significant solute adsorption and entrapment of La atoms occurred during
eutectic Si growth. Instead, most Al2Si2La particles were observed adjacent to the Si phase, which
strongly indicated that most La atoms segregated out of eutectic Si, as presented in the schematic
in Figure 9b. La atoms distributed on Si and dendrite surfaces at the solidification interface front
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acted as obstacles. Meanwhile, the diffusion and exchange of the solutes were inhibited, resulting in
slower solute accumulation on the Si surface and the decrease of constitutional undercooling. Finally,
the growth rate of eutectic Si was slowed down, and coordinated growth between Al and Si was
achieved. In addition, the Al2Si2La phase that appeared after the formation of the Si phase also
promoted the heterogeneous nucleation of eutectic Si particles. This refinement mechanism caused by
the growth-restricting factor was different from the well-known impurity-induced twinning (IIT) and
twin plane re-entrant edge (TPRE) modification mechanisms. Therefore, it is preferable to state that
the effect of La on eutectic Si was as a refiner, rather than a modifier.
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4. Conclusions

A detailed investigation was conducted in this work to determine the effects of La on the
microstructures of Al-7Si alloys and to analyze the systematic refinement mechanism. Based on the
results obtained, the main conclusions can be summarized as follows.

(1) The addition of 0.1 wt.% La to Al-7Si alloys resulted in a very good multi-refinement effect on
primary α-Al grain size and eutectic Si particles. The α-Al grain size, secondary dendrite arm spacing
and area of eutectic Si particles were decreased by 26.8%, 7.7% and 26.7%, respectively.

(2) The multi-refinement of La on grain size, eutectic Si particles and dendrite structure was due
to the growth-restricting factor and constitutional undercooling caused by the low solubility of La in
Al alloy.

(3) The small La-rich phase distributed in the vicinity of eutectic Si particles, which was believed
to inhibit the growth of eutectic Si particles. These particles were proved to be Al2Si2La phase, and
their crystal structure and lattice parameter were hexagonal with a = b = 0.405 nm, c = 6.944 nm.
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