The Determination of the Limit Load Solutions for the New Pipe-Ring Specimen Using Finite Element Modeling
Abstract
:1. Introduction
2. Analytical Determination of the Stress Equation for Solid Section of Wall
3. Finite Element Elastic-Plastic Analysis
4. The Ring (R/B = 20) (Thin-Walled)
5. Determination of the Limit Load Function
6. Conclusions
- The limit load solutions of randomly chosen several different geometries, show interesting non continuous behavior depending the on the ring size, i.e., the ratio of its diameter and wall thickness, R/B, from 6 to 10.
- A plausible reason is the randomly picked diameter of the corresponding ring size ratio R/B, while in the case of more reasonable ring sizes with an increasing diameter, including dimensions taken from real pipelines, with correspondingly increasing thickness, we can expect that the LL values would slightly rise with the increasing of the ring’s size ratio R/B, for all three crack or notch depth a/W cases, as seen in Figure 13 for R/B from 12 to 20 and above, to the ratio of real-world thin-walled pipelines.
- The function we expressed to define LL in a range of different ring sizes is calculated for various crack aspect ratios from 0.45 to 0.55. We also calculated the extended range of the crack aspect ratio from 0.3 to 0.8 for one randomly chosen probe ratio R/B = 8, where the span distance between the supports is 1.8 times R, just to schematically show the calculation of the limit load if the notch or crack is not in the range of standard recommendations.
- By observing and processing all numerical results, we found spatial bending of all probes subject to the different constraint effects of limiting and spreading the yield deformation around the tip, and along the crack path. However, as we noted, stress triaxiality needs to be analyzed for a better footing to explain and completely describe the behavior of axial three-point bend ring probes.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
The general equation for calculating the limit load in dependence of the crack depth a/W from 0 to 1 and ratio of ring’s size of R/B = 8 and other ratios R/B from the a/W = 0.45 to 0.55. | ||||
Nomenclature:
| ||||
R/B | f0 | f1 | f2 | f3 |
5 | 0.3988 | 0.0835 | –0.6812 | - |
6 | –0.4321 | 3.8168 | –4.6626 | - |
7 | 1.0998 | –2.7835 | 2.1638 | - |
8 | 0.9995 | –2.5552 | 2.3803 | –0.8256 |
9 | –0.303 | 2.6802 | –3.2033 | - |
10 | 0.6145 | –0.5682 | –0.1831 | - |
12 | 1.1626 | –3.2481 | 2.7656 | - |
15 | 1.0233 | –2.585 | 1.9502 | - |
20 | 0.1511 | 1.0001 | –1.6148 | - |
Appendix B
R/B | a/W | R, mm | W, mm | B, mm | a, mm |
---|---|---|---|---|---|
5 | - | 40 | 16 | 8 | - |
0.45 | 40 | 16 | 8 | 7.2 | |
0.5 | 40 | 16 | 8 | 8 | |
0.55 | 40 | 16 | 8 | 8.8 | |
6 | - | 54 | 18 | 9 | - |
0.45 | 54 | 18 | 9 | 8.1 | |
0.5 | 54 | 18 | 9 | 9 | |
0.55 | 54 | 18 | 9 | 9.9 | |
7 | - | 98 | 28 | 14 | - |
0.45 | 98 | 28 | 14 | 12.6 | |
0.5 | 98 | 28 | 14 | 14 | |
0.55 | 98 | 28 | 14 | 15.4 | |
8.5 | - | 85 | 20 | 10 | - |
0.45 | 85 | 20 | 10 | 9 | |
0.5 | 85 | 20 | 10 | 10 | |
0.55 | 85 | 20 | 10 | 11 | |
9 | - | 72 | 16 | 8 | - |
0.45 | 72 | 16 | 8 | 7.2 | |
0.5 | 72 | 16 | 8 | 8 | |
0.55 | 72 | 16 | 8 | 8.8 | |
10 | - | 60 | 12 | 6 | - |
0.45 | 60 | 12 | 6 | 5.4 | |
0.5 | 60 | 12 | 6 | 6 | |
0.55 | 60 | 12 | 6 | 6.6 | |
12 | - | 54 | 9 | 4.5 | - |
0.45 | 54 | 9 | 4.5 | 4.05 | |
0.5 | 54 | 9 | 4.5 | 4.5 | |
0.55 | 54 | 9 | 4.5 | 4.95 | |
15 | - | 75 | 10 | 5 | - |
0.45 | 75 | 10 | 5 | 4.5 | |
0.5 | 75 | 10 | 5 | 5 | |
0.55 | 75 | 10 | 5 | 5.5 | |
20 | - | 80 | 8 | 4 | - |
0.45 | 80 | 8 | 4 | 3.6 | |
0.5 | 80 | 8 | 4 | 4 | |
0.55 | 80 | 8 | 4 | 4.4 |
References
- ASTM E-1820. Standard Test Method for Measurement of Fracture Toughness, Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2013; Available online: www.astm.org (accessed on 5 June 2020).
- British Standard Institution. BS 7448:“Fracture Mechanics Toughness Test, Part 1 Published in 1991, Part 2: Method for Determination of KIC, Critical CTOD and Critical J Values of Welds in Metallic Materials”; TWI Abingdon Hall: Cambridge, UK, 1995. [Google Scholar]
- Zerbst, U.; Schwalbe, K.-H.; Ainsworth, R.A. An overview of failure assessment methods in codes and standards. In Practical Failure Assessment Methods. Comprehensive Structural Integrity (CSI); Ainsworth, R.A., Schwalbe, K.-H., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 7, Chapter 7.01; pp. 4–48. [Google Scholar]
- Likeb, A. Primernost Obročnega Preizkušanca za Določitev Lomne Žilavosti Materiala Cevovoda. Ph.D. Thesis, Univerza v Mariboru, Maribor, Slovenia, 2015. [Google Scholar]
- Likeb, A. Suitability of Pipe-Ring Specimen for the Determination of Fracture Toughness. Ph.D. Thesis, Univerza v Mariboru, Maribor, Slovenia, 2015. [Google Scholar]
- Likeb, A.; Gubeljak, N.; Matvienko, Y.G. Stress Intensity factor and Limit Load Solutions for New Specimen with Axial Cracks. In Proceedings of the 20th European Conference on Fracture (ECF20), Trondheim, Norway, 30 June–4 July 2014. [Google Scholar]
- Likeb, A.; Gubeljak, N.; Matvienko, Y.G. Rešitev za Faktor Intenzitete Napetosti in Mejno Obremenitev za Obroč z Aksialno Razpoko; Zbornik del, Kuhljevi dnevi: Slovenian Mechanics Association: Maribor, Slovenia, 2014. [Google Scholar]
- Likeb, A.; Gubeljak, N.; Matvienko, Y. Analiza Napetostno Deformacijskega Stanja Upogibno Obremenjenega Obroča; Zbornik del, Kuhljevi dnevi: Slovenian Mechanics Association: Rogaška Slatina, Slovenia, 2013. [Google Scholar]
- Gubeljak, N.; Likeb, A.; Matvienko, Y.G. Determination of Limit Load for New Pipe-ring Specimen. In High Strength Steels for Hydropower Plants Design Concepts-Pressure Conduits, Proceedings of the 3rd International Conference, Graz, Austria, 18–20 September 2013; Verlag der Technischen Universität Graz: Graz, Austria, 2013. [Google Scholar]
- SINTAP: Structural Integrity Assessment Procedure for European Industry. In Final Procedure, Brittle-Euram Project No. Be95-1426; British Steel: Brussels, Belgium, 1999.
- FITNET: European Fitness for Service Network, Proposal No. GTC1-202-43049, Contact No. GIRT-CT-2002-05071. Available online: http://www.eurofitnet.org (accessed on 17 December 2014).
- Sattari-Far, I. Finite element analysis of Limit loads for surface cracks in plates. Int. J. Press. Vessel. Pip. 1994, 57, 237–243. [Google Scholar] [CrossRef]
- Lei, Y. Use of local and global limit load solutions for plates with surface cracks under tension. Int. J. Press. Vessel. Pip. 2007, 84, 545–559. [Google Scholar] [CrossRef]
- British Energy Generation Ltd (BEGL). R6: Assessment of the Integrity of Structures Containing Defects. Nuclear Electric Procedure R/H/R6, Revision 4; Barnwood: Gloucester, UK, 2001. [Google Scholar]
- British Standard Institution. BS 7910: Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures; British Standards Institution: London, UK, 2000. [Google Scholar]
- Sterpin Valic, G.; Cukor, G.; Jurkovic, Z.; Brezocnik, M. Multi-Criteria Optimization of Turning of Martensitic Stainless Steel for Sustainability. Int. J. Simul. Model. 2019, 18, 632–642. [Google Scholar] [CrossRef]
- Miodrag, A.; Srđan, B.; Simon, S.; Brane, V.; Zoran, S. Repair of Crack Detected in Cast Components of Vertical Kaplan Turbine Rotor HUB. Struct. Integr. Life 2019, 19, 243–250. [Google Scholar]
- Đorđe, Đ.; Nina, A.; Vesna, M.; Taško, M.; Marko, R.; Andrijana, Đ. Influence of Encastering on Thin-walled Cantilever Beams with U and Z profiles on the Magnitude of Equivalent Stress and Deformation. Struct. Integr. Life 2019, 19, 251–254. [Google Scholar]
- Marko, K.; Dražan, K.; Ivan, G.; Darko, D. Corrosion fatigue failure of steam turbine moving blades: A case study. Eng. Fail. Anal. 2019, 106. [Google Scholar] [CrossRef]
- Živković, M.; Vuković, M.; Lazić, V.; Milovanović, V.; Dunić, V.; Kozak, D.; Rakić, D. Experimental and FE Modeling Investigation of Spot Welded Thin Steel Sheets. Tech. Vjesn. 2019, 26, 217–221. [Google Scholar] [CrossRef]
- Li, Z.; Tang, F.; Chen, Y.; Tang, Y.; Chen, G. Elastic and inelastic buckling of thin-walled steel liners encased in circular host pipes under external pressure and thermal effects. Thin-Walled Struct. 2019, 137, 213–223. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; Wang, R. Effect of grounding voids on the elastic buckling of confined pipe liners subjected to uniform pressure. Thin-Walled Struct. 2019, 105, 1141–1153. [Google Scholar] [CrossRef]
- Li, Z.; Tang, F.; Chen, Y.; Zou, X. Stability of the pipe-liner system with a grounting vodi surrounded by the saturated soil. Eng. Struct. 2019, 196, 109284. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likeb, A.; Gubeljak, N. The Determination of the Limit Load Solutions for the New Pipe-Ring Specimen Using Finite Element Modeling. Metals 2020, 10, 749. https://doi.org/10.3390/met10060749
Likeb A, Gubeljak N. The Determination of the Limit Load Solutions for the New Pipe-Ring Specimen Using Finite Element Modeling. Metals. 2020; 10(6):749. https://doi.org/10.3390/met10060749
Chicago/Turabian StyleLikeb, Andrej, and Nenad Gubeljak. 2020. "The Determination of the Limit Load Solutions for the New Pipe-Ring Specimen Using Finite Element Modeling" Metals 10, no. 6: 749. https://doi.org/10.3390/met10060749
APA StyleLikeb, A., & Gubeljak, N. (2020). The Determination of the Limit Load Solutions for the New Pipe-Ring Specimen Using Finite Element Modeling. Metals, 10(6), 749. https://doi.org/10.3390/met10060749