Recovery of Cerium Oxide Abrasive from an Abrasive–Glass Polishing Waste through Alkaline Roasting Followed by Water Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Alkaline Roasting
3.1.1. Effect of Roasting Temperature
3.1.2. Effect of Mass Ratio of Polishing Waste to NaOH
3.1.3. Effect of Roasting Time
3.2. Water Leaching
3.2.1. Effect of Water Leaching pH
3.2.2. Effect of Leaching Temperature
3.2.3. Effect of Liquid–Solid Ratio
3.3. Characterization of Recovered Cerium Oxide Abrasive
3.4. Economic Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janos, P.; Petrak, M. Preparation of ceria-based polishing powders from carbonates. J. Mater. Sci. 1991, 26, 4062–4066. [Google Scholar] [CrossRef]
- Horrigan, R.V. Rare Earth Polishing Compounds, Industrial Applications of Rare Earth Elements. ACS Symp. Ser. 1981, 164, 95–100. [Google Scholar]
- Gambogi, J. USGS 2014 Minerals Yearbook: Rare Earths; USGS: Reston, VA, USA, 2016.
- Argus Media Analyzing the Changing Global Rare Earths Supply and Demand Outlook. Available online: http://www.argusmedia.jp/~/media/files/pdfs/regional-specific/jp/downloads/argus-metalpages-forum082016-rareearths.pdf/?la=en (accessed on 16 February 2017).
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1466576383. [Google Scholar]
- Tercero Espinoza, L.; Hummen, T.; Brunot, A.; Hovestad, A.; Peña Garay, I.; Velte, D.; Smuk, L.; Todorovic, J.; Van Der Eijk, C.; Joce, C. Critical Raw Materials Substitution Profiles; CRM InnoNet: Karlsruhe, Germany, 2015. [Google Scholar]
- Borra, C.R.; Vlugt, T.J.H.; Yang, Y.; Offerman, S.E. Recovery of Cerium from Glass Polishing Waste: A Critical Review. Metals 2018, 8, 801. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Machida, K.; Adachi, G. Extraction and mutual separation of rare earths from used polishes by chemical vapor transport. Metall. Mater. Trans. B 1999, 30, 45–51. [Google Scholar] [CrossRef]
- Ozaki, T.; Machida, K.; Adachi, G. Recovery of rare earths from used polishes by chemical vapor transport process. Mater. Sci. Forum 1999, 315–317, 297–305. [Google Scholar] [CrossRef]
- Um, N.; Hirato, T. A hydrometallurgical method of energy saving type for separation of rare earth elements from rare earth polishing powder wastes with middle fraction of ceria. J. Rare Earths 2016, 34, 536–542. [Google Scholar] [CrossRef]
- Um, N.; Hirato, T. Dissolution Behavior of La2O3, Pr2O3, Nd2O3, CaO and Al2O3 in Sulfuric Acid Solutions and Study of Cerium Recovery from Rare Earth Polishing Powder Waste via Two-Stage Sulfuric Acid Leaching. Mater. Trans. 2013, 54, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Terziev, A.L.; Minkova, N.L.; Todorovsky, D.S. Regeneration of waste rare earth oxides based polishing materials. Bulg. Chem. Commun. 1996, 29, 274–284. [Google Scholar]
- Yoon, H.; Kim, C.; Kim, S.; Lee, J.; Cho, S.; Kim, J. Separation of Rare Earth and Aluminum from the Dried Powder of Waste Cerium Polishing Slurry. J. Korean Inst. Resour. Recycl. 2003, 12, 10–15. [Google Scholar]
- Kim, J.Y.; Kim, U.S.; Byeon, M.S.; Kang, W.K.; Hwang, K.T.; Cho, W.S. Recovery of cerium from glass polishing slurry. J. Rare Earths 2011, 29, 1075–1078. [Google Scholar] [CrossRef]
- Byeon, M.S.; Kim, J.Y.; Hwang, K.T.; Kim, U.; Cho, W.S.; Kang, W.K. Recovery and purification of cerium from glass polishing slurry. In Proceedings of the 18th International Conference on Composite Materials, Jeju, Korea, 21–26 August 2011. [Google Scholar]
- Tanaka, M.; Oki, T.; Koyama, K.; Narita, H.; Oishi, T. Recycling of Rare Earths from Scrap, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 43, ISBN 9780444595362. [Google Scholar]
- Wang, L.P.; Chen, Y.J.; Jiang, Y.H.; Tso, Y.C. Separation of ultrafine ceria-based abrasive particles from glass polishing powder waste through liquid–liquid–powder extraction. Sep. Purif. Technol. 2019, 211, 63–70. [Google Scholar] [CrossRef]
- Wang, L.P.; Chen, Y.J.; Tso, Y.C.; Jiang, Y.H. Separation of cerium oxide abrasive from glass polishing waste by two–liquid flotation for recovery. In Proceedings of the EARTH 2019: 15th Int. Symposium on East Asian Resources Recycling Technology, Pyeongchang, Gangwon-do, Korea, 13–17 October 2019; S5-R1-10. pp. 241–244. [Google Scholar]
- Kato, K.; Yoshioka, T.; Okuwaki, A. Study for recycling of ceria-based glass polishing powder. Ind. Eng. Res. 2000, 39, 943–947. [Google Scholar] [CrossRef]
- Kato, K.; Yoshioka, T.; Okuwaki, A. Recycle of Ceria-Based Glass Polishing Powder Using NaOH Solution. Nippon Kagaku Kaishi 2000, 10, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Harada, D.; Takeuchi, M. Method for Recovery of Cerium Oxide. U.S. Patent 20130152483A1, 20 June 2013. [Google Scholar]
- Moon, W.-J.; Na, S.-O.; Oh, H.-Y. Method for Recycling Cerium Oxide Abrasive. U.S. Patent 20110219704A1, 15 September 2011. [Google Scholar]
- Gu, F.; Zhang, Y.; Peng, Z.; Su, Z.; Tang, H.; Tian, W.; Liang, G.; Lee, J.; Rao, M.; Li, G.; et al. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. J. Hazard. Mater. 2019, 374, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, H.; Xie, B. Effective chromium extraction from chromium-containing vanadium slag by sodium roasting and water leaching. ISIJ Int. 2012, 52, 1958–1965. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Chu, J.; Liu, Y.; Li, J.; Xue, T.; Wang, W.; Qi, T. Novel process for titanium dioxide production from titanium slag: NaOH-KOH binary molten salt roasting and water leaching. Ind. Eng. Chem. Res. 2013, 52, 15756–15762. [Google Scholar] [CrossRef]
- Li, H.; Fang, H.; Wang, K.; Zhou, W.; Yang, Z.; Yan, X.; Ge, W.; Li, Q.; Xie, B. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching. Hydrometallurgy 2015, 156, 124–135. [Google Scholar] [CrossRef]
- Sanchez-Segado, S.; Makanyire, T.; Escudero-Castejon, L.; Hara, Y.; Jha, A. Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching—An improved approach to process engineering. Green Chem. 2015, 17, 2059–2080. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Spooren, J.; Broos, K.; Horckmans, L.; Quaghebeur, M.; Vrancken, K.C. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching. Hydrometallurgy 2015, 158, 139–148. [Google Scholar] [CrossRef]
- Parirenyatwa, S.; Escudero-Castejon, L.; Sanchez-Segado, S.; Hara, Y.; Jha, A. Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy 2016, 165, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, Y.; Tsubouchi, N. Upgrading Low-Grade Iron Ore through Gangue Removal by a Combined Alkali Roasting and Hydrothermal Treatment. ACS Omega 2019, 4, 19723–19734. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Power Company, Brief Rate Schedules. Available online: https://www.taipower.com.tw/upload/317/2017120900461354896.pdf (accessed on 28 May 2020).
- Taiwan Water Corporation, Water Fee Trial Query. Available online: https://www.water.gov.tw/eservice/03online/WaterPiCa_en.aspx?mp=en (accessed on 28 May 2020).
Element | Recovered Cerium Oxide Abrasive | Original Cerium Oxide Abrasive | Abrasive–Glass Polishing Waste |
---|---|---|---|
Ce | 67.3 | 66.4 | 56.3 |
La | 20.4 | 21.2 | 16.1 |
Zn | 4.08 | 4.34 | 4.66 |
Ni | 3.98 | 4.43 | 1.64 |
Ag | 2.74 | 1.86 | 1.39 |
Zr | 1.50 | 1.77 | 1.41 |
Si | N.D. | N.D. | 18.5 |
Item | Consumed Amount (a) | Unit Price (b) | Price (a × b) | Total Cost |
---|---|---|---|---|
Electricity | ||||
Alkaline roasting (1) | 0.065 kWh | 2.5 NT$/kWh | NT$0.163 | |
Water leaching (2) | 0.006 kWh | 2.5 NT$/kWh | NT$0.015 | |
Total price (1) + (2) | 0.178 NT$/g | |||
178 NT$/kg | ||||
Water | 25 mL | |||
36 NT$/kg | ||||
Chemical reagents | ||||
Granular NaOH (3) | 1 g | 700 NT$/kg | NT$0.7 | |
Concentrated HCl (4) | 3 mL | 1100 NT$/2.5 L | NT$1.32 | |
1 M NaOH solution (5) | 2.5 mL | 800 NT$/L | NT$2.0 | |
Total price (3) + (4) + (5) | 4.02 NT$/g | |||
4020 NT$/kg | ||||
Total cost | 4234 NT$/kg |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-P.; Liu, P.-H.; Chen, Y.-J. Recovery of Cerium Oxide Abrasive from an Abrasive–Glass Polishing Waste through Alkaline Roasting Followed by Water Leaching. Metals 2020, 10, 752. https://doi.org/10.3390/met10060752
Wang L-P, Liu P-H, Chen Y-J. Recovery of Cerium Oxide Abrasive from an Abrasive–Glass Polishing Waste through Alkaline Roasting Followed by Water Leaching. Metals. 2020; 10(6):752. https://doi.org/10.3390/met10060752
Chicago/Turabian StyleWang, Li-Pang, Pei-Hsin Liu, and Yan-Jhang Chen. 2020. "Recovery of Cerium Oxide Abrasive from an Abrasive–Glass Polishing Waste through Alkaline Roasting Followed by Water Leaching" Metals 10, no. 6: 752. https://doi.org/10.3390/met10060752
APA StyleWang, L. -P., Liu, P. -H., & Chen, Y. -J. (2020). Recovery of Cerium Oxide Abrasive from an Abrasive–Glass Polishing Waste through Alkaline Roasting Followed by Water Leaching. Metals, 10(6), 752. https://doi.org/10.3390/met10060752