Investigation on the Dynamic Behavior of Weld Pool and Weld Microstructure during DP-GMAW for Austenitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment System
2.2. Algorithm to Extract Characteristics of Pool Oscillation, Droplet Transfer and Arc Profile
2.3. Calculation of Cooling Rate, Growth Rate and Thermal Gradient
2.4. Sample Fabrication
3. Results and Discussion
3.1. Effect of Arc and Droplet Transfer on Weld Pool
3.2. The Behavior Characteristics of Weld Pool in Double-Pulsed GMAW
3.3. Effect of Process Parameters on Microstructures
4. Conclusions
- (1)
- In contrast with P-GMAW, the length and the oscillation amplitude of the weld pool show periodic changes within one thermal pulse of DP-GMAW. The thermal pulse led to remelting and resolidification of the weld bead near the pool trailing edge which shrank and separated from the solidified bead boundary of the weld during switching from Tp to Tb.
- (2)
- Welding pool oscillation caused by the thermal pulse enhances the weld pool convection, which can help dendrite fragmentation, thus providing sufficient crystal nucleus for liquid metal crystallizing. The convection can reduce the temperature gradient of the weld pool and increase constitutional supercooling of the weld pool to promote equiaxed grains surviving and growing.
- (3)
- The size of HAZ in the weld joint mainly depends on the heat input rate. Thermal pulse of DP-GMAW has an insignificant effect on the grain size of HAZ.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dos Santos, E.B.F.; Pistor, R.; Gerlich, A.P. Pulse profile and metal transfer in pulsed gas metal arc welding: Droplet formation, detachment and velocity. Sci. Technol. Weld. Join. 2017, 22, 627–641. [Google Scholar] [CrossRef]
- Liu, A.; Tang, X.; Lu, F. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding. Mater. Des. 2013, 50, 149–155. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Curado, T.M.; Zeng, Z. Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater. Des. 2020, 189, 108505. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Curado, T.M.; Zeng, Z. Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods. J. Mater. Process. Technol. 2019, 271, 93–100. [Google Scholar] [CrossRef]
- da Silva, C.L.M.; Scotti, A. The influence of double pulse on porosity formation in aluminum GMAW. J. Mater. Process. Technol. 2006, 171, 366–372. [Google Scholar] [CrossRef]
- Sen, M.; Mukherjee, M.; Singh, S.K.; Pal, T.K. Effect of double-pulsed gas metal arc welding (DP-GMAW) process variables on microstructural constituents and hardness of low carbon steel weld deposits. J. Manuf. Process. 2018, 31, 424–439. [Google Scholar] [CrossRef]
- Wang, L.L.; Wei, H.L.; Xue, J.X.; DebRoy, T. Special features of double pulsed gas metal arc welding. J. Mater. Process. Technol. 2017. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, S.; Shen, J.; Ma, L.; Yin, F. Microstructures and mechanical properties of 30Cr-4Mo ferritic stainless steel joints produced by double-pulsed gas metal arc welding. Int. J. Adv. Manuf. Technol. 2015, 80, 1975–1983. [Google Scholar] [CrossRef]
- Mathivanan, A.; Senthilkumar, A.; Devakumaran, K. Pulsed current and dual pulse gas metal arc welding of grade AISI: 310S austenitic stainless steel. Def. Technol. 2015, 11, 269–274. [Google Scholar] [CrossRef]
- Yao, P.; Zhou, K.; Tang, H. Effects of Operational Parameters on the Characteristics of Ripples in Double-Pulsed GMAW Process. Materials 2019, 12, 2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, P.; Zhou, K.; Lin, H.; Xu, Z.; Yue, S. Exploration of Weld Bead Forming Rule during Double-Pulsed GMAW Process Based on Grey Relational Analysis. Materials 2019, 12, 3662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, P.; Zhou, K.; Huang, S. Process and Parameter Optimization of the Double-Pulsed GMAW Process. Metals 2019, 9, 1009. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.L.; Wei, H.L.; Xue, J.X.; DebRoy, T. A pathway to microstructural refinement through double pulsed gas metal arc welding. Scri. Mater. 2017, 134, 61–65. [Google Scholar] [CrossRef]
- Wang, L.; Jin, L.; Huang, W.; Xu, M.; Xu, J. Effect of thermal frequency on AA6061 aluminum alloy double pulsed gas metal arc welding. Mater. Manuf. Process. 2016, 31, 2152–2157. [Google Scholar] [CrossRef]
- Liu, A.; Tang, X.; Lu, F. Weld pool profile characteristics of Al alloy in double-pulsed GMAW. Int. J. Adv. Manuf. Technol. 2013, 68, 2015–2023. [Google Scholar] [CrossRef]
- Pang, J.; Hu, S.; Shen, J.-Q.; Wang, P. Arc characteristics and metal transfer behavior of CMT+P welding process. J. Mater. Process. Technol. 2016, 238, 212–217. [Google Scholar] [CrossRef]
- Yokomizu, Y.; Matsumura, T.; Sun, W.Y.; Lowke, J.J. Electrode sheath voltages for helium arcs between non-thermionic electrodes of iron, copper and titanium. J. Phys. D Appl. Phys. 1998, 31, 880–883. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Dorn, L.; Kulkarni, S.; Hofmann, F. Arc characteristics and behavior of metal transfer in pulsed current GMA welding of stainless steel. J. Mater. Process. Technol. 2009, 209, 1262–1274. [Google Scholar] [CrossRef]
- Murphy, A.B. The effects of metal vapour in arc welding. J. Phys. D Appl. Phys. 2010, 43, 434001. [Google Scholar] [CrossRef]
- Yudodibroto, B.Y.B.; Hermans, M.J.M.; den Ouden, G.; Richardson, I.M. Observations on droplet and arc behavior during pulsed GMAW. Weld. World 2009, 53, R171–R180. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q.; Liu, Y.; Zhen, Z.; Sun, Q.; Feng, J. Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel. J. Manuf. Process. 2020, 50, 629–637. [Google Scholar] [CrossRef]
- Yuan, T.; Luo, Z.; Kou, S. Grain refining of magnesium welds by arc oscillation. Acta Mater. 2016, 116, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Verma, J.; Taiwade, R.V. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review. J. Manuf. Process. 2017, 25, 134–152. [Google Scholar] [CrossRef]
Materials | C | Si | Mn | Cr | Ni | S | P | N | Mo |
---|---|---|---|---|---|---|---|---|---|
304 | ≤0.08 | ≤1 | ≤2 | 18–20 | 8–10.5 | ≤0.03 | ≤0.03 | ≤0.1 | - |
316L | ≤0.03 | ≤1 | ≤2 | 16–18 | 10–14 | ≤0.03 | ≤0.045 | - | 2–3 |
No. | Process | ITp (A) | ITb (A) | TPF (Hz) | ΔI (A) | DTp (%) | V | Speed (mm/s) | Penetration |
---|---|---|---|---|---|---|---|---|---|
1 | DP | 130 | 90 | 0.5 | 40 | 50 | 22.5 | 20 | Full |
2 | DP | 130 | 90 | 1 | 40 | 50 | 22.5 | 20 | Full |
3 | DP | 130 | 90 | 2 | 40 | 50 | 22.5 | 20 | Full |
4 | DP | 130 | 90 | 3 | 40 | 50 | 22.5 | 20 | Full |
5 | DP | 130 | 90 | 2 | 40 | 20 | 22.5 | 20 | Full |
6 | DP | 130 | 90 | 2 | 40 | 35 | 22.5 | 20 | Full |
7 | DP | 130 | 90 | 2 | 40 | 70 | 22.5 | 20 | Full |
8 | DP | 130 | 105 | 2 | 25 | 50 | 22.5 | 20 | Full |
9 | DP | 130 | 75 | 2 | 55 | 50 | 22.5 | 20 | Full |
10 | DP | 130 | 60 | 2 | 70 | 50 | 22.5 | 20 | Full |
11 | P | 90 | - | - | - | 22.5 | 20 | Full | |
12 | P | 110 | - | - | - | 22.5 | 20 | Full | |
13 | P | 130 | - | - | - | 22.5 | 20 | Full |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tp | 68.2 | 72.5 | 66.2 | 68.7 | 71.5 | 66.7 | 71.8 | 82 | 60.6 | 52.1 | - | - | - |
Tb | 137 | 134.9 | 136 | 133.8 | 135.6 | 133.8 | 135.7 | 133 | 133 | 133 | - | - | - |
Avg. | 102.6 | 103.7 | 101 | 101.2 | 84.3 | 90.2 | 116.5 | 107 | 96.8 | 92.6 | 71 | 102.2 | 142 |
GTp | 67.3 | 59.6 | 71.4 | 66.3 | 61.2 | 70.4 | 60.7 | 46.5 | 85.2 | 115.2 | 62 | 30.4 | 15.5 |
GTb | 16.7 | 17.2 | 16.9 | 17.5 | 17.0 | 17.5 | 17.0 | 17.8 | 17.7 | 17.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Xue, S.; Zhang, P.; Wang, B.; Zhai, P.; Long, W. Investigation on the Dynamic Behavior of Weld Pool and Weld Microstructure during DP-GMAW for Austenitic Stainless Steel. Metals 2020, 10, 754. https://doi.org/10.3390/met10060754
Chen T, Xue S, Zhang P, Wang B, Zhai P, Long W. Investigation on the Dynamic Behavior of Weld Pool and Weld Microstructure during DP-GMAW for Austenitic Stainless Steel. Metals. 2020; 10(6):754. https://doi.org/10.3390/met10060754
Chicago/Turabian StyleChen, Tao, Songbai Xue, Peng Zhang, Bo Wang, Peizhuo Zhai, and Weimin Long. 2020. "Investigation on the Dynamic Behavior of Weld Pool and Weld Microstructure during DP-GMAW for Austenitic Stainless Steel" Metals 10, no. 6: 754. https://doi.org/10.3390/met10060754
APA StyleChen, T., Xue, S., Zhang, P., Wang, B., Zhai, P., & Long, W. (2020). Investigation on the Dynamic Behavior of Weld Pool and Weld Microstructure during DP-GMAW for Austenitic Stainless Steel. Metals, 10(6), 754. https://doi.org/10.3390/met10060754