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Abstract: As a major sheet metal process for fabricating cup or box shapes, the deep drawing
process is commonly applied in various industrial fields, such as those involving the manufacture of
household utensils, medical equipment, electronics, and automobile parts. The limiting drawing
ratio (LDR) is the main barrier to increasing the formability and production rate as well as to decrease
production cost and time. In the present research, the multi draw radius (MDR) die was proposed
to increase LDR. The finite element method (FEM) was used as a tool to illustrate the principle of
MDR based on material flow. The results revealed that MDR die could reduce the non-axisymmetric
material flow on flange and the asymmetry of the flange during the deep drawing process. Based on
this material flow characteristic, the cup wall stretching and fracture could be delayed. Furthermore,
the cup wall thicknesses of the deep drawn parts obtained by MDR die application were more uniform
in each direction along the plane, at 45◦, and at 90◦ to the rolling direction than those obtained by
conventional die application. In the present research, a proper design for the MDR was suggested
to achieve functionality of the MDR die as related to each direction along the plane, at 45◦, and at
90◦ to the rolling direction. The larger draw radius positioned for at 45◦ to the rolling direction
and the smaller draw radius positioned for along the plane and at 90◦ to the rolling direction were
recommended. Therefore, by using proper MDR die application, the drawing ratio could be increased
to be 2.75, an increase in LDR of approximately 22.22%.
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1. Introduction

In recent years, the available sheet metal components are able to serve almost all manufacturing
industries, such as is the case for sheet metal components used in automobile and aerospace.
The fabrication of such sheet metal components by means of sheet metal die is commonly classified
according to the utilization of die bending, die deep-drawing, and die cutting processes [1]. Based on
these processes, and through the associated experiments and finite element method (FEM) techniques,
many studies have been carried out by researchers and engineers to overcome the major defects that
occur on these sheet metal components [2–6] as well as to improve the formability for each sheet
metal forming process [7–10]. In the present research, we focused on the deep drawing process.
This process is extensively applied to fabricate various consumer products such as household utensils,
medical equipment, electronics, and automobile parts. This process is also cost-effective because it is
characterized by high production rates and gives finished parts of good quality without additional
operations. Nowadays, for sheet metal components manufactured by deep drawing process, a more
complex profile and higher formability are required [11–15]. The optimization of process parameters
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to enhance the formability of AA 5182 alloy in the deep drawing of square cups by hydroforming
was carried out [11]. A bead optimization algorithm was developed to increase the efficiency of the
bead design while simultaneously considering manufacturability. The influences of the deep drawing
depth, initial specimen geometry, and bead height on formability were subsequently investigated by
means of sensitivity analysis [12]. Abe et al. proposed the technique of local work hardening with
punch indentation to improve sheet metal formability [13]. The most important process parameter
affecting thinning was the peak pressure, whereas the pressure path had the least effect on formability.
The square deep draw steel/carbon fiber reinforced plastic (CFRP) hybrid composite material was
investigated. The effects of fiber orientation on formability were also investigated [14]. In addition,
the micro deep drawn parts are also focused on [16–19]. C. J. Wang. et al. carried out the research
on the micro deep drawing process of a conical part with ultra-thin copper foil using a multi-layered
DLC film-coated die [16]. The grain size effect on multi-stage micro deep drawing of a micro cup
with domed bottom was investigated by W. T. Li et al. [17]. However, in terms of old-fashioned
cylindrical cup shapes, deep drawing is also a conventional sheet metal forming process for wide
application in industry at a very high production rate. The products of cylindrical cup shapes are also
still widely used in various sheet metal manufacturing industries. Therefore, the developments on
this process have been continuously reported in many previous studies on the basis of experimental
and FEM works [20–29]. Some previous studies were carried out to prevent major defects, such as
wrinkles, earing, and fracture defects [20–23]. In addition, as a common formability indicator of
cylindrical cup forming, the limiting drawing ratio (LDR) has been also investigated in many previous
studies [24–29]. Many techniques have been proposed to increase in LDR. A new technique for deep
drawing of elliptic cups through a conical die without blankholder or draw beads was proposed to
increase LDR [24]. The LDR of aluminum tailored friction stir welded blanks could be increased
using a modified conical tractrix die technique. By using this technique, the improvements in LDR of
approximately 27% and 14% were recorded, respectively, for the dissimilar grade and the dissimilar
gauge aluminum tailor friction stir welded blanks [26]. Bandyopadhyay, K. et al. showed that the
LDR of tailor welded blanks (TWBs) fabricated using two dissimilar material combinations of dual
phase (DP) and interstitial free (IFHS) steels could be improved with restricted weld movement by
shifting the initial weld line position [27]. However, in the previous studies, the increases in LDR
were still limited. In addition, the way to increase LDR was also complex as additional operations
were applied. In the present research, therefore, a new approach to increase in LDR is proposed and
investigated. Based on the mechanical property of plastic strain ratio (R-value), the material flow on
flange along the perpendicular differed, and the resulting cup wall stretching and fracture as well as
the drawing ratio was limited. This new technique of multi draw radius, termed MDR, is proposed
in the present research to encounter the material property of plastic strain ratio and generate the
same manner of material flow on the flange along the perpendicular. Specifically, the MDR die could
reduce the non-axisymmetric material flow on flange and the asymmetry of the flange during the
deep drawing process. Furthermore, on the basis of this technique, the deep drawing process could be
applied without additional operations, resulting in production cost and time being saved. However,
for the proper design of MDR die, we recommend that the larger draw radius be positioned at 45◦

to the rolling direction and the smaller draw radius positioned along the plane and at 90◦ to the
rolling direction. The application of the MDR was compared with the conventional die, and the results
illustrated that the LDR could be increased.

2. Proposed Multi Draw Radius (MDR) Die and Its Principle

As per the deep drawing theory [1], the LDR is the maximum ratio of initial blank diameter to
punch diameter in which the cylindrical cup could be formed without any fractures. The LDR also
depends upon the type of material used as well as relates to the mechanical property of material
being of common concern in the deep drawing process. In terms of fracture, the fracture is commonly
generated on the basis of two deep drawing characteristics [1]. Specifically, the first is that the wrinkle
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defects are generated on the flange due to the overly low blankholder pressure applied which causes
the obstacle of material flow into the die. This manner resulted in the generation of cup wall stretching
and fractures. Next, the second is that the flange is tightly clamped by applying an overly high
blankholder pressure. This manner resulted in the material not being able to be drawn into the die as
well as subsequent cup wall stretching and generation of fractures. In addition, the material properties,
especially plastic strain ratio (R-value), also affect fractures. As is well known, the R-value is the
anisotropy property of the material and depends upon the direction along the plane, at 45◦, and at 90◦

to the rolling direction. Namely, the anisotropy property of the material causes the different material
flow and formability in each direction along the plane, at 45◦, and at 90◦ to the rolling direction.
As this characteristic causes non-axisymmetric material flow on the flange during the deep drawing
process, cup wall stretching can easily be generated, as well as that flange wrinkles can be easily
formed. Based on these reasons, to prevent the fracture and increase in deep drawing formability,
the prevention of cup wall stretching and flange wrinkle should be strictly considered. As per previous
studies [11,19,20], the working process parameters on deep drawing process, i.e., blankholder pressure,
lubricant, and draw radius, were investigated. However, as aforementioned, the anisotropy property
of the material in each direction along the plane, at 45◦, and at 90◦ to the rolling direction related to
draw radius die design for reducing the non-axisymmetric material flow during deep drawing process
has not yet been investigated. In the present research, the multi draw radius die (or so-called MDR die)
is proposed to reduce the non-axisymmetric material flow during deep drawing process and prevent
fracture as well as to increase in LDR. The schematic of MDR die was shown in Figure 1. The draw
radius was designed related to the anisotropy property of the material in each direction along the plane,
at 45◦, and at 90◦ to the rolling direction to reduce the non-axisymmetric material flow during the deep
drawing process. As per deep drawing theory, the LDR should be treated as the baseline. It gives
only estimated values and does not take into account many factors. Therefore, in the present research,
to compare the formability based on the LDR between conventional die and MDR die applications,
the other process parameters affecting LDR, excluding die types, were set with the same conditions for
both cases of conventional and MDR die applications.
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Figure 1. Schematic of deep drawing model and types of deep drawing die: (a) Deep drawing model;
(b) Conventional die; (c) Multi draw-radius die.

Figure 2 shows the principle of MDR die based on the material flow characteristic. The comparison
of schematic of material flow characteristic between conventional and MDR dies was illustrated. In the
case of conventional die as shown in Figure 2a, owing to the effects of the anisotropy property of the
material in each direction along the plane, at 45◦, and at 90◦ to the rolling direction, the non-axisymmetric
material flow characteristic was formed. By contrast, to encounter these effects, the MDR die was
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proposed. The different draw radius positioned in each direction along the plane, at 45◦, and at 90◦

to the rolling direction was designed. Based on this MDR die, the non-axisymmetric material flow
characteristic due to the effects of the anisotropy property of the material could be reduced by using
a different draw radius in each direction along the plane, at 45◦, and at 90◦ to the rolling direction,
as shown in Figure 2b. Therefore, the cup wall stretching and fracture prevention could be achieved,
and the LDR could also be increased.
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die; (b) Multi draw-radius die.

3. The FEM Simulation and Experimental Procedures

In the present research, the FEM simulation was used as a tool to clarify the deep drawing
mechanism of MDR die based on the material flow. The nonlinear FEM commercial code HyperForm
14.0 with RADIOSS script (Altair Engineering Inc., Troy, MI, USA) as the solver was used for FEM
simulation of the deep drawing process. The investigated model of MDR die application is shown in
Figure 3a. In addition, to clearly understand the deep drawing mechanism of MDR die application,
the deep drawing mechanism of conventional die application was also investigated as the model
shown in Figure 3b. These 3-D deep drawing models were created by Cimatron 3 (3D Systems Inc.,
Givat Shmuel, Israel) and then imported as IGES file into HyperForm. The HyperMesh preprocessor
was used to create the mesh. The initial blank was set as elastic–plastic and meshed into finite elements
of “shell” type. The 4 node quadrilateral shape elements of approximately of 3500 elements were
generated. The adaptive remeshing was also set. After remeshing, to lead rather smooth meshes,
the combination of 4 node quadrilateral shape elements and triangular shape elements were generated.
The tool including punch, die, and blankholder were meshed with the rigid mesh type to prevent
their deformations during the deep drawing process. The blankholder pressure was set as gap type.
The gap of material thickness was applied. In the present research, the forming limit diagram (FLD)
was used to clarify the forming characteristics as well as to predict the fracture zone on deep drawn
parts. The workpiece used in this present research was medium carbon steel grade SPCC (JIS standard)
with the thickness of 0.5 mm. The material properties of flow curve equation and plastic strain
ratio (R-value) were prepared as input parameters for FEM simulation. The workpiece material was
described with an elastoplastic, power exponent, isotropic plasticity model of Hollomon power law
hardening model, with the constitutive equation determined from the stress–strain curve using the
tensile test data. The other necessary material properties, such as the Young’s modulus, Poisson’s
ratio, and ultimate tensile strength are given in Table 1. As per the literature [30–32], for the static
compression test, the friction coefficient was set to be from 0.1 to 0.3. In the present research, based on
the deep drawing process with lubricant used, the contact surface model was defined by a Coulomb
friction law, and friction coefficient (µ) of 0.10 was applied. It was applied for both cases of conventional
and MDR deep drawing processes to ignore the effect of lubricant use. Next, the diameters of punch
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and die were 40.0 and 41.0 mm, respectively, in which the clearance of 0.5 mm was set. The tool
radius for conventional die was set following deep drawing theory [1]. Namely, a punch radius of
8.0 mm and die radius of 3.5 mm were set. The MDR draw radii of 3.5–5, 3.5–7, and 3.5–9 mm were
investigated. On the basis of deep drawing theory [1], the LDR for this material was approximately
of 2.25. Three levels of initial blank diameter of 90, 110, and 115 mm in which the drawing ratios of
2.25, 2.75, and 2.88 were investigated.
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deep drawing model.

Table 1. FEM simulation and experimental conditions.

Object type Sheet material: elastic–plastic
Tool (punch, die, blankholder): rigid

Sheet material

Medium carbon steel (SPCC, JIS), thickness: 0.5 mm
Ultimate tensile strength: 317 MPa

Young’s modulus: 208 GPa
%Elongation: 51

Poisson’s ratio: 0.33

Constitutive equation σ = 554.43ε0.23 + 208

Blankholder force Gap type

Plastic strain ratio
(R value)

0◦ to rolling direction 2.1
45◦ to rolling direction 1.9
90◦ to rolling direction 2.6

Blank diameter 90, 100, 110, and 115 mm

Tool geometry

Punch radius 8 mm

Punch diameter 40 mm

Conventional die radius 3.5 mm

MDR die radius 3.5–5, 3.5–7, 3.5–9 mm

Punch velocity 5 mm/s

Clearance 0.5 mm

Friction coefficient (µ) 0.10
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The laboratory experiments were performed to validate the FEM simulation results. Figure 4 shows
the press machine, which includes a universal sheet metal testing machine (Model SAS-350D, JT Toshi
Inc., Minato-ku, Japan) and the sets of conventional die and MDR die applications. The initial blanks
were prepared using a wire electrical discharge machine (Wire-EDM) (Model AQ325L, Sodick Co.,
Ltd., Ishikawa, Japan). The obtained deep drawn parts were sectioned by wire electrical discharge
machine for cup wall thickness examination. The cup wall thickness was measured. Five samples
from each deep drawing condition were used to inspect the obtained deep drawing parts. The cup
wall thickness was calculated based on these obtained deep drawing parts and the average cup wall
thickness values were reported and compared with those analyzed by the FEM simulation.
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4. Results and Discussion

4.1. The Validation of FEM Simulation Use

The FEM simulation was used, in the present research, as a tool for characterization of the
deep drawing mechanism and prediction of the obtained deep drawn parts. Therefore, although the
commercial finite element code HyperForm was used, the accuracy of the FEM simulation results should
be again validated before starting the discussion section of FEM simulation results. As the validation of
the FEM simulation results shows in Figure 5, by comparing with the laboratory experiments, the FEM
simulation results showed the successful deep drawn parts and unsuccessful deep drawn parts which
corresponded well with the experiments. In addition, the FEM simulation results also showed the
earing defects and fracture which corresponded well with the experimental results. The unsuccessful
deep drawn part in which the fracture generated as shown in Figure 5b, the FEM simulation result
corresponded well with the experiments. On the basis of FLD, the fracture was generated on corner
zone and a circumferential character was formed which agreed well with the fracture generated on
deep drawn part obtained by experiment. The cup wall thickness was also examined. The comparisons
of cup wall thickness distribution between FEM simulation and experimental results are illustrated
in Figure 6. The FEM simulation results showed that the predicted cup wall thickness distributions
corresponded well with the experiments, in which the errors in the analyzed cup wall thickness were
approximately 3% compared with the experimental results. Finally, the deep drawing force was
also recorded during experiments to validate the deep drawing force analyzed by FEM simulation.
Figure 7 shows the comparison of deep drawing force obtained by FEM simulation and experiment.
Again, the analyzed deep drawing force by FEM simulation corresponded well with the experiment,
in which the error in the analyzed deep drawing force was approximately 1% compared with the
experimental result.
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4.2. Comparison of Material Flow Analysis between Conventional Die and MDR Die Applications

The principle of MDR die application, as aforementioned, was clearly characterized based on
the material flow obtained by FEM simulation. As shown in Figure 8, the comparison of material
flow between conventional and MDR die applications was illustrated. For the deep drawing stroke of
approximately 17 mm, the material flow showed that the same manner in both cases of conventional
and MDR die applications could be observed as shown in Figure 8a. These results corresponded
well with deep drawing theory [1]. For the deep drawing stroke of approximately 25 mm, in the
case of conventional die application as shown in Figure 8b-1, the effects of the anisotropy property
of the material on material flow were clearly illustrated. The non-axisymmetric material flow on
flange was clearly illustrated as depicted by dashed lines. These results corresponded well with deep
drawing theory [1]. By contrast, in the case of MDR die application as shown in Figure 8b-2, the effects
of the anisotropy property on material flow were compensated by multi draw radius especially on
the large draw radius zone. However, owing to that there were large radius zones formed on MDR
die, it was observed that the material flow velocity in the case of MDR die application was larger
than that in the case of conventional die application especially on the large radius zone of MDR
die. Moreover, the reduction of the non-axisymmetric material flow characteristic on flange could
be obtained and clearly illustrated as depicted by dashed lines. Next, the deep drawing stroke was
increased to approximately 37 mm, as shown in Figure 8c, and the effects of the anisotropy property
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of the material on material flow were clearly evidenced in the case of conventional die application
as shown in Figure 8c-1. It was clearly observed that the non-axisymmetric material flow on flange
was clearly illustrated as depicted by dashed lines. The flange shape was not a circular but had
become square. By contrast, in the case of MDR die application as shown in Figure 8c-2, the effects of
the anisotropy property of the material on material flow were continuously compensated by multi
draw radius. The reduction of the non-axisymmetric material flow characteristic on flange and the
asymmetry of the flange were clearly illustrated. The flange was in a more circular shape. Finally, in the
case of conventional die application, the effects of the anisotropy property of the material on material
flow were stronger as the deep drawing stroke increased as shown in Figure 8d-1. Vice versa, in the
case of MDR die application, the effects of the anisotropy property of the material on material flow were
continuously compensated by multi draw radius. The reduction of the non-axisymmetric material flow
characteristic on flange were clearly illustrated as well as that the asymmetry of the flange could be
continuously reduced and the flange was more circular in shape as shown in Figure 8d-2. These results
revealed that by using MDR die application, the effects of the anisotropy property of the material on
material flow could be compensated during the deep drawing process. The non-axisymmetric material
flow characteristic on the flange and the asymmetry of the flange could be reduced during the deep
drawing process. This resulted in preventing cup wall stretching and fracture as well as that the LDR
could be increased.Metals 2020, 10, x FOR PEER REVIEW 10 of 18 
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4.3. MDR Die Design Related to the Anisotropy Property of the Material

As mentioned in the previous section, the results illustrated that the effects of the anisotropy
property of the material on material flow were related to the draw radius. Therefore, the MDR die
should be strictly designed by relating to the anisotropy property of the material in each direction along
the plane, at 45◦, and at 90◦ to the rolling direction. Figure 9b,c show the deep drawn parts obtained
by MDR die application related to the anisotropy property of the material. Figure 9b shows the MDR
die application by designing the larger draw radius positioned for at 45◦ to the rolling direction and
the small draw radius positioned for along the plane and at 90◦ to the rolling (named MDR type I).
By contrast, Figure 9c shows the MDR die application by designing the larger draw radius positioned
for along the plane and at 90◦ to the rolling direction and the small draw radius positioned for at 45◦

to the rolling (named MDR type II). The results showed that, in the case of LDR 2.25 (initial blank
diameter of 90 mm), the deep drawn parts could be formed by conventional die application as shown
in Figure 9a-1. This result corresponded well with the deep drawing theory and literature that by
using conventional die application, the deep drawn part could be formed with LDR [1]. The results
also showed that the deep drawn parts could be formed by using MDR die application in both cases
of MDR die designs as shown in Figure 9b-1,c-1. However, it was observed that in terms of earing
defect, the MDR type II showed a larger earing defect than that of MDR type I as well as than that
of conventional die application. In addition, it was also observed that the earing defect obtained by
using MDR type I was smaller than that of conventional die application. As these results show, to deep
draw with LDR, the deep drawn parts could be achieved by using MDR die application. In addition,
the quality of deep drawn parts obtained by MDR type I in terms of earing defects was better than
that obtained by conventional die. The results illustrate that the MDR die design should be strictly
considered as related to the anisotropy property of the material in each direction along the plane,
at 45◦, and at 90◦ to the rolling direction. Next, to deep draw over LDR, the result showed that by
using conventional die application, the deep drawn part could not be achieved, and a fracture was
generated as shown in Figure 9a-2. Based on the FLD, the FEM simulation result clearly showed that
the fracture characteristic is formed as a circumferential character. This result agreed well with deep
drawing theory [1]. By contrast, in using the MDR die application, the results illustrated that the deep
drawn part could be achieved by MDR die type I application as shown in Figure 9b-2. However, using
MDR die type II, the deep drawn part could not be achieved. The six ears were also characterized
on the basis of FLD, and a fracture was also generated on the top of the deep drawn part as shown
in Figure 9c-2. Owing to the anisotropy property of the material in each direction along the plane,
at 45◦, and at 90◦ to the rolling direction related to the formability [1], therefore, the design of the larger
draw radius positioned at 45◦ to the rolling direction and the smaller draw radius positioned along the
plane and at 90◦ to the rolling direction was suggested. As shown in Figure 10, the MDR die type II
resulted in that the larger non-axisymmetric material flow on flange was formed compared with those
in the cases of conventional and MDR die type I applications. As these material flow analyses show,
as aforementioned, the non-axisymmetric material flow characteristic on flange and the asymmetry of
the flange could be increased and cup wall stretching and fracture were then easier to generate.
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4.4. Examination of Drawing Ratio with Respect to Multi Draw Radius Dies

Figure 11 shows the obtained deep drawn parts with respect to various MDR dies and drawing
ratios. The drawing ratios of 2.75 and 2.88 which were larger than LDR were investigated, as respectively
shown in Figure 11a,b. On the basis of deep drawing theory [1], the draw radius of 3.5 mm was
recommended and then it was set as a small draw radius in MDR die. Next, the large draw radius
values of 5, 7, and 9 mm were set as the large draw radius. With the drawing ratio of 2.75 as shown
in Figure 11a, the results showed that the deep drawn parts could not be achieved when the large
radius of 5 mm was set, as shown in Figure 11a-1. This result could be explained by the draw radius of
5 mm, set as the large radius, was too small to reduce the non-axisymmetric material flow characteristic
during the deep drawing process. Conversely, as the large radius was increased, the greater reduction
of non-axisymmetric material flow characteristic could be achieved, and then the deep drawn parts
could be achieved as for the large radius values set as 7 and 9 mm, as shown in Figure 11a-2,a-3,
respectively. The increases in large radius resulted in that, as aforementioned, the non-axisymmetric
material flow characteristic on the flange was reduced, and the asymmetry of flange could also be
reduced. This resulted in the more circular flange shape. However, it was also observed that owing to
the large radius of 9 mm, the non-axisymmetric material flow characteristic on the flange could be
reduced, getting a more circular flange shape than that for the large radius of 7 mm during the deep
drawing process. The earing defect in the case of large radius 9 mm was smaller than that obtained
in the case of the large radius of 7 mm. Next, with the drawing ratio of 2.88 as shown in Figure 11b,
the results showed that the deep drawn parts could not be achieved. Namely, owing to the overly
large drawing ratio (overly large initial blank diameter) applied, the non-axisymmetric material flow
on the flange could not be effectively reduced during a whole deep drawing process. These results
revealed that in the present research, the LDR could be increased by approximately 22.22% using MDR
die application. In addition to the increases in LDR, the quality of deep drawn parts in terms of cup
wall thickness and earing defects were also increased. Specifically, the earing defect could be reduced
approximately 40% compared with the use of conventional die as shown in Figures 9 and 11. Next,
the more uniform cup wall thickness in each direction along the plane, at 45◦, and at 90◦ to the rolling
direction could be obtained by comparing with the use of conventional die as shown in Figure 12.
However, the MDR die should be strictly design related to the anisotropy property of the material in
each direction along the plane, at 45◦, and at 90◦ to the rolling direction which was suggested in the
previous section.

4.5. Confirmation of MDR Die Application

To validate the accuracy of the MDR die application obtained by FEM simulation, the FEM
simulation results were compared with those obtained by experimental results, as shown in Figure 13.
The FEM simulation results showed that the predicted deep drawn parts corresponded well with the
experiments as shown in Figure 13a-1,b-1 in the cases of MDR draw radius of 3.5–7 and 3.5–9 mm,
respectively. In terms of cup wall thickness, the FEM simulation results showed that the predicted cup
wall thickness corresponded well with the experiments as shown in Figure 13a-2,b-2 in the cases of
MDR draw radius of 3.5–7 and 3.5–9 mm, in which the errors in the analyzed cup wall thickness were
approximately 3% compared with the experimental results.
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5. Conclusions

To increase the drawing ratio and overcome the LDR, the MDR die application was proposed in
the present research. First, the conceptual design of MDR die was proposed, and its principle was also
clearly elucidated in the present research by FEM simulation based on the material flow. The absolute
validation of FEM simulation use was also performed. By using MDR die application, it was revealed
that the non-axisymmetric material flow characteristic on the flange as well as the asymmetry of flange
shape could be reduced. Specifically, during deep drawing process, the MDR could compensate the
effects of the anisotropy property of the material on material flow characteristics in each direction
along the plane, at 45◦, and at 90◦ to the rolling direction as well as that the non-axisymmetric material
flow characteristic on flange could be effectively reduced and, by reducing the asymmetry of flange,
a more circular flange shape could be obtained. Therefore, wall cup stretching could be reduced as well
as the delay of fracture. Based on this principle, the LDR could be increased. However, in the present
research, the proper MDR die design related to the anisotropy property of the material in each direction
along the plane, at 45◦, and at 90◦ to the rolling direction was suggested. Specifically, the larger draw
radius positioned for at 45◦ to the rolling direction and the smaller draw radius positioned for along the
plane and at 90◦ to the rolling direction were recommended. Again, the experiments were also carried
out to validate the FEM simulation results in the case of MDR die application. The FEM simulation
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results showed that the predicted deep drawn parts corresponded well with the experimental results.
In addition, the FEM simulation results showed that the predicted cup wall thickness corresponded
well with the experiments, in which the errors in the analyzed cup wall thickness were approximately
3% compared with the experimental results. The results of the present research reveal that the LDR
could be increased approximately 22.22% using MDR die application. In addition to the increases in
LDR, in terms of quality of deep drawn part, the deep drawn parts obtained by MDR die application
showed a smaller earing defect compared with those obtained by conventional die. The decreases in
earing defect of approximately 40% could be achieved as well as the more uniform cup wall thickness
in each direction along the plane, at 45◦, and at 90◦ to the rolling direction could be obtained. However,
the MDR die should be strictly design related to the anisotropy property of the material in each
direction along the plane, at 45◦, and at 90◦ to the rolling direction as suggested in the present research.
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