A Constitutive Model for Yield Strength and Work Hardening Behaviour of Aluminium Alloys during Artificial Ageing
Abstract
:1. Introduction
2. Constitutive Model
2.1. Artificial Ageing Process
2.1.1. Microstructures
2.1.2. Yield Strength
2.2. Work Hardening Behaviour
3. Detailed Data and Model Calibration for Artificial Ageing of Aluminium Alloys
4. Modelling Results and Discussion
4.1. AA6063
4.2. AA2198
5. Conclusions
- (1)
- The dimensions of all the main types of precipitates (sphere, plate, rod) in various aluminium alloys have been generated by a primary dimension and aspect ratio, with which, a general form of equation has been developed for modelling of different precipitate types during ageing of heat treatable aluminium alloys.
- (2)
- The effects of key microstructural variables, including precipitates (radius, aspect ratio, volume fraction) and solid solutes, on the yield strength during artificial ageing has been modelled, based on which, a set of equations has been further proposed to consider and include the effect of these microstructural variables on the work-hardening behaviour of the aged alloys. A whole set of unified constitutive model by combining these two sets of equations then has been developed, which can be used to concurrently predict both microstructures and macro-properties (yield strength and work hardening) for long-term aged aluminium alloys.
- (3)
- The model has been successfully applied to predict the microstructures, yield strength and work hardening behaviour of two representative aluminium alloys (AA6063 and AA2198) after artificial ageing process from 0 h to up to 500 h. The highly interacted effects among microstructures, yield strength and work hardening levels have been well predicted. It is believed that the model has the capability to be used for ageing of other heat treatable aluminium alloys with sphere, plate or rod-shaped precipitates.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miao, W.; Laughlin, D. Precipitation hardening in aluminum alloy 6022. Scr. Mater. 1999, 40, 873–878. [Google Scholar] [CrossRef]
- Kaufman, J.G. Introduction to Aluminum Alloys and Tempers; ASM International: Cleveland, OH, USA, 2000. [Google Scholar]
- Poole, W.; Lloyd, D.; Embury, J. The effect of natural ageing on the evolution of yield strength during artificial ageing for Al-Mg-Si-Cu alloys. Mater. Sci. Eng. A 1997, 234, 306–309. [Google Scholar] [CrossRef]
- Proton, V.; Alexis, J.; Andrieu, E.; Delfosse, J.; Deschamps, A.; De Geuser, F.; Lafont, M.C.; Blanc, C. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium–copper–lithium alloy. Corros. Sci. 2014, 80, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shi, Z.; Lin, J.; Yang, Y.L.; Saillard, P.; Said, R. Effect of machining-induced residual stress on springback of creep age formed AA2050 plates with asymmetric creep-ageing behaviour. Int. J. Mach. Tools Manuf. 2018, 132, 113–122. [Google Scholar] [CrossRef]
- Marceau, R.K.; Sha, G.; Ferragut, R.; Dupasquier, A.; Ringer, S.P. Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing. Acta Mater. 2010, 58, 4923–4939. [Google Scholar] [CrossRef]
- Wang, S.; Starink, M.; Gao, N. Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 2006, 54, 287–291. [Google Scholar] [CrossRef]
- Alexopoulos, N.D.; Velonaki, Z.; Stergiou, C.I.; Kourkoulis, S.K. Effect of ageing on precipitation kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy. Mater. Sci. Eng. A 2017, 700, 457–467. [Google Scholar] [CrossRef]
- Deschamps, A.; Livet, F.; Brechet, Y. Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 1998, 47, 281–292. [Google Scholar] [CrossRef]
- Stiller, K.; Warren, P.J.; Hansen, V.; Angenete, J.; Gjønnes, J. Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 and 150 °C. Mater. Sci. Eng. A 1999, 270, 55–63. [Google Scholar] [CrossRef]
- Sha, G.; Cerezo, A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Cai, M.; Field, D.; Lorimer, G. A systematic comparison of static and dynamic ageing of two Al–Mg–Si alloys. Mater. Sci. Eng. A 2004, 373, 65–71. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.; Poole, W. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111. Acta Mater. 2003, 51, 3467–3481. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J. Mater. Process. Technol. 2003, 143, 281–285. [Google Scholar] [CrossRef]
- Shercliff, H.; Ashby, M. A process model for age hardening of aluminium alloys—I. The model. Acta Metall. Mater. 1990, 38, 1789–1802. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.; Poole, W. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater. 2003, 51, 2243–2257. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.J.; Ding, X.D.; Sun, J.; Chen, K.H. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates. Mater. Sci. Eng. A 2003, 344, 113–124. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lin, J.; Yang, Y.-L.; Rong, Q. Extended application of a unified creep-ageing constitutive model to multistep heat treatment of aluminium alloys. Mater. Des. 2017, 122, 422–432. [Google Scholar] [CrossRef]
- Starink, M.; Wang, S. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 2003, 51, 5131–5150. [Google Scholar] [CrossRef] [Green Version]
- Kocks, U. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. 1976, 98, 76–85. [Google Scholar] [CrossRef]
- Deschamps, A.; Brechet, Y.; Necker, C.J.; Saimoto, S.; Embury, J.D. Study of large strain deformation of dilute solid solutions of Al-Cu using channel-die compression. Mater. Sci. Eng. A 1996, 207, 143–152. [Google Scholar] [CrossRef]
- Kaneko, K.; Oyamada, T. A viscoplastic constitutive model with effect of aging. Int. J. Plast. 2000, 16, 337–357. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lin, J. Experimental investigation and modelling of yield strength and work hardening behaviour of artificially aged Al-Cu-Li alloy. Mater. Des. 2019, 183, 108121. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.Q.; Liu, G.; Qin, S. Modeling the two-stage creep-aging behaviors of an Al-Cu-Mg alloy. Mater. Res. Express 2018, 5, 096514. [Google Scholar] [CrossRef]
- Nayan, N.; Mahesh, S.; Prasad, M.J.; Murthy, S.V.; Samajdar, I. A phenomenological hardening model for an aluminium-lithium alloy. Int. J. Plast. 2019, 118, 215–232. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lin, J.; Yang, Y.L.; Huang, B.M.; Chung, T.F.; Yang, J.R. Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers. Mater. Sci. Eng. A 2016, 657, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.; Lin, J.; Dean, T.A.; Huang, M. Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions. Int. J. Mech. Sci. 2011, 53, 595–605. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lin, J.; Yang, Y.L.; Rong, Q.; Huang, B.M.; Chung, T.F.; Tsao, C.S.; Yang, J.R.; Balint, D.S. A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy. Int. J. Plast. 2017, 89, 130–149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Deng, Y.; Zhang, X. Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates. Mater. Sci. Eng. A 2013, 563, 8–15. [Google Scholar] [CrossRef]
- Wu, L.; Ferguson, W.G. Modelling of precipitation hardening in casting aluminium alloys. Mater. Sci. Forum 2009, 618–619, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.H.; Lin, J.; Lee, J.; Pan, R.; Li, C.; Davies, C.M. A novel constitutive model for multi-step stress relaxation ageing of a pre-strained 7xxx series alloy. Int. J. Plast. 2018, 106, 31–47. [Google Scholar] [CrossRef]
- Kocks, U.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Khadyko, M.; Myhr, O.; Hopperstad, O. Work hardening and plastic anisotropy of naturally and artificially aged aluminium alloy AA6063. Mech. Mater. 2019, 136, 103069. [Google Scholar] [CrossRef]
- Deschamps, A.; Decreus, B.; De Geuser, F.; Dorin, T.; Weyland, M. The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 2013, 61, 4010–4021. [Google Scholar] [CrossRef]
- Decreus, B.; Deschamps, A.; De Geuser, F.; Donnadieu, P.; Sigli, C.; Weyland, M. The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 2013, 61, 2207–2218. [Google Scholar] [CrossRef]
Microstructural Models | Yield Strength Models | Work Hardening Models |
---|---|---|
Microstructural Models | Yield Strength Models | Work Hardening Models |
---|---|---|
0 | 1 | 0 | 57 | 0.12 | 2 | 1.6 | 0.9 | 1e-5 | 5 | 0.55 |
0.28 | 0.3 | 1400 | 1.2 | 0.21 | 0.67 | 57 | 6.8 | 1.17 | 0.46 | 115 |
0 | 1 | 0.91 | 0 | 52 | 205 | 0.138 | 1.0 | 0.45 | 0.9 |
1e-6 | 16 | 0.2355 | 0.05 | 0.045 | 0.32 | 0.35 | 72.3 | 0.2 | 8.21 |
- | - | ||||||||
52 | 2 | 0.67 | 205 | 1.75 | 2.6 | 0.35 | 425 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, K.; Li, G.; Sun, Y.; Xu, J.; Chen, H.; Chen, K.; Zhu, Y.; Li, Y. A Constitutive Model for Yield Strength and Work Hardening Behaviour of Aluminium Alloys during Artificial Ageing. Metals 2020, 10, 1094. https://doi.org/10.3390/met10081094
Ji K, Li G, Sun Y, Xu J, Chen H, Chen K, Zhu Y, Li Y. A Constitutive Model for Yield Strength and Work Hardening Behaviour of Aluminium Alloys during Artificial Ageing. Metals. 2020; 10(8):1094. https://doi.org/10.3390/met10081094
Chicago/Turabian StyleJi, Kang, Guanfeng Li, Yongbao Sun, Jia Xu, Hui Chen, Kaiyan Chen, Yan Zhu, and Yong Li. 2020. "A Constitutive Model for Yield Strength and Work Hardening Behaviour of Aluminium Alloys during Artificial Ageing" Metals 10, no. 8: 1094. https://doi.org/10.3390/met10081094
APA StyleJi, K., Li, G., Sun, Y., Xu, J., Chen, H., Chen, K., Zhu, Y., & Li, Y. (2020). A Constitutive Model for Yield Strength and Work Hardening Behaviour of Aluminium Alloys during Artificial Ageing. Metals, 10(8), 1094. https://doi.org/10.3390/met10081094