Distribution Behavior of Phosphorus in 2CaO·SiO2-3CaO·P2O5 Solid Solution Phase and Liquid Slag Phase
Abstract
:1. Introduction
2. Experiment
3. Results
3.1. Definition of the Phosphorus Distribution Ratio and Phosphorus Activity Coefficient
3.2. Test and Calculation Results
3.3. Composition Distribution Characteristics of the Solid Solution Phase and Liquid Slag Phase
4. Discussions
4.1. Effect of Slag Compositions on LP
4.2. Effect of Slag Composition on the Activity Coefficient of Phosphorus
4.3. n in the nC2S-C3P Solid Solution
5. Conclusions
- (1)
- When the FeO content in the liquid slag increased from 32.21% to 50.31%, the LP in the liquid slag phase increased by 3.34 times. When the binary basicity in the liquid slag increased from 1.08 to 1.64, the LP in the liquid slag phase decreased by 94.21%.
- (2)
- When the binary basicity increased from 2.0 to 3.5, the LP decreased by 70.07%. When FeO content increased from 38.00% to 51.92%, the LP increased by 6.15 times. When P2O5 content increased from 3.00% to 9.00%, the LP increased by 10.67 times.
- (3)
- When the FeO content in the liquid slag increased from 32.21% to 50.31%, increased by 54.33 times. When the binary basicity in the liquid slag increased from 1.08 to 1.64, decreased by 99.38%.
- (4)
- When the binary basicity increased from 2.0 to 3.5, in the solid solution phase decreased by 98.85%. When P2O5 content increased from 3.00% to 9.00%, increased by 1.14 times.
- (5)
- When the binary basicity decreased from 3.5 to 2.0, n decreased from 0.438 to 0.404. When the FeO content increased from 38.00% to 51.92%, n decreased from 0.477 to 0.319. When the P2O5 content increased from 3.00% to 9.00%, n decreased from 0.432 to 0.164. The decrease of basicity and the increase of FeO and P2O5 content in the initial slag can enrich more phosphorus in the solid solution phase.
Author Contributions
Funding
Conflicts of Interest
References
- Assis, N.A.; Tayeb, M.A.; Sridhar, S.; Fruehan, R.J. Phosphorus equilibrium between liquid iron and CaO-SiO2-MgO-Al2O3-FeO-P2O5 Slags: EAF slags, the effect of alumina and new correlation. J. Met. 2019, 9, 116. [Google Scholar]
- Du, C.M.; Lv, N.N.; Su, C.; Liu, W.M.; Yang, J.X.; Wang, H.C. Distribution of P2O5 between solid solution and liquid phase in dephosphorization slag of CaO–SiO2–FeO–P2O5–Na2O system. J. Iron Steel Res. Int. 2019, 26, 1162–1170. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Guo, H.; Guo, J.; Duan, S.; Sun, W. A phosphorus distribution prediction model for CaO-SiO2-MgO-FeO-Fe2O3-Al2O3-P2O5 slags based on the IMCT. Ironmak. Steelmak. 2019, 1–10. [Google Scholar] [CrossRef]
- Lin, L.; Bao, Y.P.; Gu, C.; Wu, W.; Zeng, J.Q. Distribution of P2O5 between P-rich phase and matrix phase in P-bearing steelmaking slag. J. High Temp. Mater. Process. 2018, 37, 655–663. [Google Scholar] [CrossRef]
- Drain, P.B.; Monaghan, B.J.; Longbottom, R.J.; Chapman, M.W.; Zhang, G.; Chew, S.J. Phosphorus partition and phosphate capacity of basic oxygen steelmaking slags. ISIJ Int. 2018, 58, 1965–1971. [Google Scholar] [CrossRef]
- Drain, P.B.; Monaghan, B.J.; Zhang, G.; Longbottom, R.J.; Chapman, M.W.; Chew, S.J. A review of phosphorus partition relations for use in basic oxygen steelmaking. Ironmak. Steelmak. 2017, 44, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Li, J.; Zhou, C.G.; Shi, C.B.; Zheng, D.L.; Zhang, Z.M. Study on mineralogical structure of dephosphorisation slag at the first deslagging in BOF steelmaking process. Ironmak. Steelmak. 2017, 44, 262–268. [Google Scholar] [CrossRef]
- Assis, A.N.; Tayeb, M.A.; Sridhar, S.; Fruehan, R.J. Phosphorus equilibrium between liquid iron and CaO-SiO2-MgO-Al2O3-FeO-P2O5 slag part 1: Literature review, methodology, and BOF slags. Met. Mater. Trans. B 2015, 46, 2255–2263. [Google Scholar] [CrossRef]
- Ito, K.; Yanagisawa, M.; Sano, N. Phosphorus distribution between solid 2CaO·SiO2 and molten CaO-SiO2-FeO-Fe2O3 Slags. J. Tetsu Hagané 1982, 68, 150–152. [Google Scholar]
- Fix, W.; Heymann, H.; Heinke, R. Subsolidus relations in the system 2CaO·SiO2-3CaO·P2O5. J. Am. Ceram. Soc. 1969, 52, 342–346. [Google Scholar] [CrossRef]
- Inoue, R.; Suito, H. Phosphorous partition between 2CaO·SiO2 particles and CaO-SiO2-FetO slags. J. ISIJ Int. 2006, 46, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Suito, H. Mechanism of dephosphorization with CaO-SiO2-FetO slags containing mesoscopic scale 2CaO·SiO2 particles. J. ISIJ Int. 2006, 46, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Fukagai, S.; Hamano, T.; Tsukihashi, F. Formation reaction of phosphate compound on multiphase flux at 1573K. J. ISIJ Int. 2007, 47, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Shimauchi, K.; Kitamura, S.; Shibata, H. Distribution of P2O5 between solid dicalcium silicate and liquid phases in CaO-SiO2-Fe2O3 system. J. ISIJ Int. 2009, 49, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Pahlevani, F.; Kitamura, S.Y.; Shibata, H.; Maruoka, N. Distribution of P2O5 between solid solution of 2CaO·SiO2 and 3CaO·P2O5 and liquid phase. J. ISIJ Int. 2010, 50, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, S.Y.; Saito, S.; Utagawa, K.; Shibata, H.; Robertson, D.G. Mass transfer of P2O5 between liquid slag and solid solution of 2CaO·SiO2 and 3CaO·P2O5. J. ISIJ Int. 2009, 49, 1838–1844. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Suito, H. Behavior of phosphorus transfer from CaO-FetO-P2O5 (-SiO2) slag to CaO particles. J. ISIJ Int. 2006, 46, 180–187. [Google Scholar]
- Son, P.K.; Kashiwaya, Y. Phosphorus partition in dephosphorization slag occurring with crystallization at intial stage of solidification. J. ISIJ Int. 2008, 48, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
No. | (%CaO)/(%SiO2) | CaO | SiO2 | FeO | P2O5 |
---|---|---|---|---|---|
1 | 2.0 | 31.67 | 15.83 | 47.50 | 5.00 |
2 | 2.5 | 33.93 | 13.57 | 47.50 | 5.00 |
3 | 3.0 | 35.63 | 11.88 | 47.50 | 5.00 |
4 | 3.5 | 36.94 | 10.56 | 47.50 | 5.00 |
5 | 2.0 | 38.00 | 19.00 | 38.00 | 5.00 |
6 | 2.0 | 34.83 | 17.42 | 42.75 | 5.00 |
7 | 2.0 | 28.68 | 14.34 | 51.98 | 5.00 |
8 | 2.0 | 33.00 | 16.50 | 47.50 | 3.00 |
9 | 2.0 | 30.33 | 15.17 | 47.50 | 7.00 |
10 | 2.0 | 29.00 | 14.50 | 47.50 | 9.00 |
No. | Phase | CaO | SiO2 | FeO | MgO | P2O5 | A/% | LP |
---|---|---|---|---|---|---|---|---|
1 | Solid solution phase | 58.12 | 23.75 | 5.08 | 0.56 | 12.50 | 46.97 | 9.22 |
Liquid slag phase | 28.64 | 20.5 | 47.2 | 2.46 | 1.20 | 53.03 | ||
2 | Solid solution phase | 58.88 | 25.57 | 1.82 | 1.00 | 12.73 | 49.98 | 5.63 |
Liquid slag phase | 31.21 | 24.36 | 40.93 | 1.24 | 2.26 | 50.02 | ||
3 | Solid solution phase | 61.06 | 23.04 | 3.27 | 1.08 | 11.55 | 56.39 | 3.44 |
Liquid slag phase | 34.08 | 24.51 | 35.16 | 1.91 | 4.34 | 43.61 | ||
4 | Solid solution phase | 64 | 21.11 | 4.22 | 0.85 | 9.82 | 58.55 | 2.76 |
Liquid slag phase | 36.42 | 24.98 | 32.21 | 1.36 | 5.03 | 41.45 | ||
5 | Solid solution phase | 62.87 | 26.39 | 2.39 | 1.06 | 7.29 | - | 1.50 |
Liquid slag phase | 36.24 | 22.15 | 34.23 | 2.53 | 4.85 | - | ||
6 | Solid solution phase | 59.70 | 25.21 | 4.27 | 1.13 | 9.69 | 42.78 | 2.93 |
Liquid slag phase | 31.21 | 21.12 | 42.23 | 2.97 | 2.47 | 57.22 | ||
7 | Solid solution phase | 57.42 | 17.95 | 2.57 | 1.23 | 20.83 | 42.00 | 9.92 |
Liquid slag phase | 25.77 | 19.35 | 50.31 | 3.05 | 1.52 | 58.00 | ||
8 | Solid solution phase | 59.68 | 24.96 | 4.22 | 0.60 | 10.54 | 33.80 | 2.43 |
Liquid slag phase | 29.23 | 19.22 | 45.9 | 2.71 | 2.94 | 49.83 | ||
RO phase | 3.01 | - | 78.19 | 18.8 | - | 16.37 | ||
9 | Solid solution phase | 54.36 | 15.48 | 5.06 | 1.07 | 24.03 | 58.18 | 15.69 |
Liquid slag phase | 25.86 | 21.34 | 49.49 | 1.18 | 2.13 | 41.82 | ||
10 | Solid solution phase | 51.41 | 9.69 | 4.79 | 0.79 | 33.32 | 68.84 | 25.92 |
Liquid slag phase | 23.9 | 22.05 | 50.27 | 1.24 | 2.84 | 31.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Zhu, M.; Luo, J.; Dou, X.; Wang, Y.; Jiang, H.; Xie, B. Distribution Behavior of Phosphorus in 2CaO·SiO2-3CaO·P2O5 Solid Solution Phase and Liquid Slag Phase. Metals 2020, 10, 1103. https://doi.org/10.3390/met10081103
Zhu B, Zhu M, Luo J, Dou X, Wang Y, Jiang H, Xie B. Distribution Behavior of Phosphorus in 2CaO·SiO2-3CaO·P2O5 Solid Solution Phase and Liquid Slag Phase. Metals. 2020; 10(8):1103. https://doi.org/10.3390/met10081103
Chicago/Turabian StyleZhu, Bin, Mingmei Zhu, Jie Luo, Xiaofei Dou, Yu Wang, Haijun Jiang, and Bing Xie. 2020. "Distribution Behavior of Phosphorus in 2CaO·SiO2-3CaO·P2O5 Solid Solution Phase and Liquid Slag Phase" Metals 10, no. 8: 1103. https://doi.org/10.3390/met10081103
APA StyleZhu, B., Zhu, M., Luo, J., Dou, X., Wang, Y., Jiang, H., & Xie, B. (2020). Distribution Behavior of Phosphorus in 2CaO·SiO2-3CaO·P2O5 Solid Solution Phase and Liquid Slag Phase. Metals, 10(8), 1103. https://doi.org/10.3390/met10081103