Development and Application of High-Temperature Constitutive Model of HNi55-7-4-2 Alloy
Abstract
:1. Introduction
2. Theoretical Background
2.1. Effect of Friction
2.2. Method of Friction Correction
2.3. Hansel–Spittel Model
3. Development of Constitutive Model
3.1. Hot-Compression Experiment Process and Results
3.2. Friction Correction
3.3. Development of Hansel–Spittel Constitutive Model
3.3.1. Determination of m3 and m8
3.3.2. Determination of m1, m5 and m9
3.3.3. Determination of m2, m4, m7 and A
3.3.4. Obtaining Hansel–Spittel Constitutive Model
3.4. Verification of Constitutive Model
4. Application of High-Temperature Constitutive Model of HNi55-7-4-2 Alloy
4.1. Hot Precision Forging Process
4.2. Numerical Simulation of Hot Precision Forging
4.2.1. Finite Element Modelling
4.2.2. Numerical Simulation Analysis
4.3. Process Experiment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol/Acronym | Full Name | Symbol/Acronym | Full Name |
B | Barreling coefficient | m | Friction factor |
h1 | Height of deformed specimen (mm) | R1 | Average radius of deformed specimen (mm) |
RM | Maximum radius of the deformed specimen (mm) | RT | Top radius of the deformed specimen (mm) |
R0 | Initial radius of the specimen (mm) | T | Deformation temperature (°C) |
h0 | Height of the specimen (mm) | A, m1, m2, m3, m4, m5, m7, m8, m9 | Material constants (bcc) |
σ0 | Flow stresses before friction correction (MPa) | β | Brass beta-phase |
σ | Flow stresses after friction correction (MPa) | D | Addendum circle diameter (mm) |
ε | True strain | D2*d2*h2 | Billet size of plan 1 (mm) |
Strain rate (s−1) | D3*d3*h3 | Billet size of plan 2 (mm) |
References
- Ashhab, M.D.S.; Breitsprecher, T.; Wartzack, S. Neural network based modeling and optimization of deep drawing—Extrusion combined process. J. Intell. Manuf. 2012, 25, 77–84. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, S.-M.; Li, F.-Q.; Xu, C.-B. Multi-field coupling finite element analysis for determining the influence of temperature field on die service life during precision-forming process of steel synchronizer ring. J. Mech. Sci. Technol. 2017, 31, 3249–3254. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.-M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 2011, 32, 1733–1759. [Google Scholar] [CrossRef]
- Li, H.-Y.; Li, Y.-H.; Wang, X.-F.; Liu, J.-J.; Wu, Y. A comparative study on modified Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel. Mater. Des. 2013, 49, 493–501. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, W.; Cui, H.; Xu, Y. A modified Zerilli–Armstrong model for alloy IC10 over a wide range of temperatures and strain rates. Mater. Sci. Eng. A 2009, 527, 328–333. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Huang, F. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges. Model. Simul. Mater. Sci. Eng. 2012, 20, 015005. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Cabrera, J.M.; Najafizadeh, A. Modeling and Prediction of Hot Deformation Flow Curves. Metall. Mater. Trans. A 2011, 43, 108–123. [Google Scholar] [CrossRef]
- Rusinek, A.; Klepaczko, J.R. Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int. J. Plast. 2001, 17, 87–115. [Google Scholar] [CrossRef]
- Jankowiak, T.; Rusinek, A.; Wood, P. A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions. Finite Elem. Anal. Des. 2013, 65, 39–49. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Almasri, A.H. A physically based constitutive model for fcc metals with applications to dynamic hardness. Mech. Mater. 2008, 40, 549–563. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhang, J.; Zhong, J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput. Mater. Sci. 2008, 43, 752–758. [Google Scholar] [CrossRef]
- Li, S.-S.; Zhou, J.; Zhang, M.-M.; Zhou, Y.-T.; Gong-Ye, F.-J.; Long, S.; Dong, X.-G.; Liang, Q. A comparative study at the flow behavior description of 2A14 alloy using BP-ANN and strain compensated Arrhenius model. Mater. Res. Express 2020, 6, 1265h1. [Google Scholar] [CrossRef]
- Ebrahimi, G.R.; Momeni, A.; Abbasi, S.M.; Monajatizadeh, H. Constitutive analysis and processing map for hot working of a Ni-Cu alloy. Met. Mater. Int. 2013, 19, 11–17. [Google Scholar] [CrossRef]
- Wen, T.; Liu, L.-T.; Huang, Q.; Chen, X.; Fang, J.-Z. Evaluation on prediction abilities of constitutive models considering FEA application. J. Cent. South Univ. 2018, 25, 1251–1262. [Google Scholar] [CrossRef]
- Quan, G.-Z.; Wen, H.-R.; Jia, P.; Zou, Z.-Y. Construction of processing maps based on expanded data by BP-ANN and identification of optimal deforming parameters for Ti-6Al-4V alloy. Int. J. Precis. Eng. Manuf. 2016, 17, 171–180. [Google Scholar] [CrossRef]
- Liu, S.; Pan, Q.; Li, H.; Huang, Z.; Li, K.; He, X.; Li, X. Characterization of hot deformation behavior and constitutive modeling of Al–Mg–Si–Mn–Cr alloy. J. Mater. Sci. 2018, 54, 4366–4383. [Google Scholar] [CrossRef]
- Ji, G.; Qin, F.; Zhu, L.; Li, Q.; Li, L. Dynamic Recrystallization Kinetics of Cu-0.36Cr-0.03Zr Alloy during Hot Compression. J. Mater. Eng. Perform. 2017, 26, 2698–2707. [Google Scholar] [CrossRef]
- Liu, N.; Li, Z.; Li, L.; Liu, B.; Xu, G.-y. Processing map and hot deformation mechanism of novel nickel-free white copper alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 3492–3499. [Google Scholar] [CrossRef]
- Wang, M.-H.; Wei, K.; Li, X.-J.; Tu, A.-Z. Constitutive modeling for high temperature flow behavior of a high-strength manganese brass. J. Cent. South Univ. 2018, 25, 1560–1572. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Xia, Y. A constitutive description of tensile behavior for brass over a wide range of strain rates. Mater. Sci. Eng. A 2004, 372, 186–190. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Bhaduri, A.K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr–1Mo (P91) steel. Mater. Des. 2010, 31, 981–984. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, J.; Li, J.; Yan, Y.; Wang, P. A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy. J. Alloys Compd. 2017, 723, 179–187. [Google Scholar] [CrossRef]
- Martínez, H.V.; Coupard, D.; Girot, F. Constitutive model of the alloy 2117-T4 at low strain rates and temperatures. J. Mater. Process. Technol. 2006, 173, 252–259. [Google Scholar] [CrossRef]
- Chadha, K.; Shahriari, D.; Tremblay, R.; Bhattacharjee, P.P.; Jahazi, M. Deformation and Recrystallization Behavior of the Cast Structure in Large Size, High Strength Steel Ingots: Experimentation and Modeling. Metall. Mater. Trans. A 2017, 48, 4297–4313. [Google Scholar] [CrossRef]
- El Mehtedi, M.; Musharavati, F.; Spigarelli, S. Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation. Mater. Des. (1980–2015) 2014, 54, 869–873. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, X.; Li, P.; Zhang, X. Hot Deformation Behavior and Processing Map of High-Strength Nickel Brass. Metals 2020, 10, 782. [Google Scholar] [CrossRef]
- Chadha, K.; Shahriari, D.; Jahazi, M. An Approach to Develop Hansel–Spittel Constitutive Equation during Ingot Breakdown Operation of Low Alloy Steels. In Frontiers in Materials Processing, Applications, Research and Technology; Springer: Singapore, 2018; pp. 239–246. [Google Scholar]
- Roebuck, B.; Lord, J.; Brooks, M.; Loveday, M.; Sellars, C.M.; Evans, R.W. Measuring Flow Stress in Hot Axisymmetric Compression Tests. Mater. High Temp. 2006, 23, 59–83. [Google Scholar] [CrossRef]
- Luan, J.; Sun, C.; Li, X.; Zhang, Q. Constitutive model for AZ31 magnesium alloy based on isothermal compression test. Mater. Sci. Technol. 2013, 30, 211–219. [Google Scholar] [CrossRef]
- Gholamzadeh, A.; Karimi Taheri, A. The prediction of hot flow behavior of Al–6%Mg alloy. Mech. Res. Commun. 2009, 36, 252–259. [Google Scholar] [CrossRef]
- Chen, X.; Wang, N.; Ma, X.; Zhou, H. Hot deformation behaviour and Hansel-Spittel constitutive model of Cr5 alloy for heavy backup roll. Int. J. Comput. Mater. Sci. Surf. Eng. 2018, 7, 205–217. [Google Scholar] [CrossRef]
Element | Cu | Ni | Al | Si | Fe | Zn |
---|---|---|---|---|---|---|
Mass fraction (wt.%) | 55 | 7 | 4 | 2 | 0.7 | Rest |
Strain Rate/s−1 | Deformation Temperature/°C | ||||
---|---|---|---|---|---|
600 | 650 | 700 | 750 | 800 | |
0.01 | 1.212 | 1.169 | 1.188 | 1.146 | 1.154 |
0.1 | 1.233 | 1.227 | 1.195 | 1.140 | 1.173 |
1 | 1.118 | 1.147 | 1.139 | 1.190 | 1.254 |
10 | 1.182 | 1.218 | 1.137 | 1.184 | 1.220 |
Constants | A | m1 | m2 | m3 | m4 | m5 | m7 | m8 | m9 |
---|---|---|---|---|---|---|---|---|---|
Value | 2.59 × 104 | −3.36 × 10−3 | −0.268 | 0.119 | −0.016 | 1.33 × 10−3 | −0.142 | 1.57 × 10−4 | −0.752 |
Deformation Temperature/(°C) | Speed/(mm/s) | Minimum Mesh Size/mm | Friction Type | Heat Exchange with Die | Heat Exchange with Air |
---|---|---|---|---|---|
600–800 | 0.08–80 | 1.2 | Water + graphite | adiabatic | adiabatic |
Strain Rate/s−1 | Deformation Temperature/ °C | Average Absolute Relative Error (AARE)/% | Strain Rate/s−1 | Deformation Temperature/ °C | Average Absolute Relative Error (AARE)/% |
---|---|---|---|---|---|
0.01 | 600 | 4.4602 | 1 | 600 | 5.1318 |
650 | 5.1051 | 650 | 5.5802 | ||
700 | 10.8945 | 700 | 5.4778 | ||
750 | 8.7206 | 750 | 5.6437 | ||
800 | 9.2164 | 800 | 4.1703 | ||
0.1 | 600 | 5.4075 | 10 | 600 | 3.9793 |
650 | 5.4329 | 650 | 6.1080 | ||
700 | 5.0457 | 700 | 6.2872 | ||
750 | 6.3852 | 750 | 5.7393 | ||
800 | 7.7743 | 800 | 5.2238 |
Minimum Mesh Size/mm | Friction Type | Environment Temperature/(°C) | Initial Forging Temperature/(°C) | Die Temperature/(°C) | Extrusion Speed/(mm·s−1) | Heat Transfer Condition |
---|---|---|---|---|---|---|
1.2 | Water+ graphite | 50 | 700 | 250 | 50 | Weak heat transfer |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Liu, X.; Li, P.; Ding, P.; Zhang, X. Development and Application of High-Temperature Constitutive Model of HNi55-7-4-2 Alloy. Metals 2020, 10, 1250. https://doi.org/10.3390/met10091250
Liang Q, Liu X, Li P, Ding P, Zhang X. Development and Application of High-Temperature Constitutive Model of HNi55-7-4-2 Alloy. Metals. 2020; 10(9):1250. https://doi.org/10.3390/met10091250
Chicago/Turabian StyleLiang, Qiang, Xin Liu, Ping Li, Ping Ding, and Xianming Zhang. 2020. "Development and Application of High-Temperature Constitutive Model of HNi55-7-4-2 Alloy" Metals 10, no. 9: 1250. https://doi.org/10.3390/met10091250
APA StyleLiang, Q., Liu, X., Li, P., Ding, P., & Zhang, X. (2020). Development and Application of High-Temperature Constitutive Model of HNi55-7-4-2 Alloy. Metals, 10(9), 1250. https://doi.org/10.3390/met10091250