Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Mechanical Properties at the Macro- and Nanoscales
2.2.1. Macroscale: Tensile and Compression Tests
2.2.2. Nanoscale: Nanoindentation Tests
2.3. Surface Assessment
3. Results and Discussion
3.1. Microstructure
3.2. Tensile and Compression Properties
- Region 1: from 0 ≤ εp (%) ≤ 1.83 (denoted as nR1);
- Region 2: from 1.83 ≤ εp (%) ≤ 9 (denoted as nR2).
3.3. Micro- and Nanomechanical Properties
3.3.1. Loading/Unloading Curve
3.3.2. Mechanical Properties of the Ti-6Al-4V Alloy from Nanoindentation
3.3.3. Anisotropy Effect
3.3.4. Deformation Mechanisms Induced by Nanoindentation
3.4. Mechanical Properties Correlation: From the Macro- to Nanometric Length Scale
4. Conclusions
- (1)
- The mechanical properties tested under different stress fields at the macroscopic length scale present different mechanical behavior, with compression being slightly higher than that obtained by tensile tests.
- (2)
- The stress–strain curves at the macroscopic length scale are strongly anisotropic depending on the testing direction, with flow stress and hardening being around 20–25% higher for the TD direction than for the LD direction.
- (3)
- The hardness, elastic modulus and flow stress values at the submicrometric length scale for the TD direction are around 25, 21 and 32% higher than those measured for the LD direction.
- (4)
- The P–h curves for the α- and α-/β-interphase indicate that the α-phase is harder, highlighting that the β-phase may be softer than the other two constituents in the Ti-6Al-4V alloy.
- (5)
- The high amount of β-phase heterogeneously distributed in the α-phase is responsible for blocking the activation and the emergence of the slip traces until reaching the surface.
- (6)
- A simple mathematical relationship can be obtained relating the flow stress determined under different stress fields as well as at different length scales, highlighting that the values reported under tensile, compression and even nanoindentation tests are governed by the pre-existing microstructure.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bettaieb, M.B.; Van Hoof, T.; Minnebo, H.; Pardoen, T.; Dufour, P.; Jacques, P.; Habraken, A.M. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors. J. Mater. Eng. Perform. 2015, 24, 1262–1278. [Google Scholar] [CrossRef] [Green Version]
- Tuninetti, V.; Habraken, A.M. Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy. Mater. Sci. Eng. A 2014, 605, 39–50. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium (Engineering Materials and Processes); Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-662-13222-7. [Google Scholar]
- Peters, M.; Kumpfert, J.; Ward, C.; Leyens, C. Titanium Alloys for Aerospace Applications. Adv. Eng. Mater. 2003, 5, 419–427. [Google Scholar] [CrossRef]
- Wei, D.; Koizumi, Y.; Chiba, A. Discontinuous yielding and microstructural evolution of Ti-40 at.% Al alloy compressed in single α-hcp phase region. J. Alloys Compd. 2017, 693, 1261–1276. [Google Scholar] [CrossRef]
- Wang, Q.; Shankar, M.R.; Liu, Z. Visco-plastic self-consistent modeling of crystallographic texture evolution related to slip systems activated during machining Ti-6AL-4V. J. Alloys Compd. 2021, 853, 157336. [Google Scholar] [CrossRef]
- Hémery, S.; Tromas, C.; Villechaise, P. Slip-stimulated grain boundary sliding in Ti-6Al-4 V at room temperature. Materialia 2019, 5, 100189. [Google Scholar] [CrossRef]
- Htwe, Y.; Kwak, K.; Kishi, D.; Mine, Y.; Ding, R.; Bowen, P.; Takashima, K. Anisotropy of <a> slip behaviour in single-colony lamellar structures of Ti–6Al–4V. Mater. Sci. Eng. A 2018, 715, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Jun, T.-S.; Sernicola, G.; Dunne, F.P.; Britton, T.B. Local deformation mechanisms of two-phase Ti alloy. Mater. Sci. Eng. A 2016, 649, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Hosford, W.F.; Caddell, R.M. Metal Forming: Mechanics and Metallurgy, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Hutchinson, B. Critical Assessment 16: Anisotropy in metals. Mater. Sci. Technol. 2015, 31, 1393–1401. [Google Scholar] [CrossRef] [Green Version]
- Tuninetti, V.; Gilles, G.; Milis, O.; Pardoen, T.; Habraken, A.-M. Anisotropy and tension–compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V. Int. J. Plast. 2015, 67, 53–68. [Google Scholar] [CrossRef]
- Gilles, G.; Hammami, W.; Libertiaux, V.; Cazacu, O.; Yoon, J.; Kuwabara, T.; Habraken, A.; Duchêne, L. Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature. Int. J. Solids Struct. 2011, 48, 1277–1289. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, H.; Song, M. Extension of Barlat’s Yield Criterion to Tension–Compression Asymmetry: Modeling and Verification. Metals 2020, 10, 713. [Google Scholar] [CrossRef]
- Amna, Z.; Olfa, D.; Gahbiche, A.; Nasri, R. Identification strategy of anisotropic behavior laws: Application to thin sheets of Aluminium A5. J. Theor. Appl. Mech. 2016, 54, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Olfa, D.; Amna, Z.; Amen, G.; Rachid, N. Identification of the anisotropic behavior of an aluminum alloy subjected to simple and cyclic shear tests. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 911–927. [Google Scholar] [CrossRef]
- Tuninetti, V.; Gilles, G.; Flores, P.; Pincheira, G.; Duchêne, L.; Habraken, A.-M. Impact of distortional hardening and the strength differential effect on the prediction of large deformation behavior of the Ti6Al4V alloy. Meccanica 2019, 54, 1823–1840. [Google Scholar] [CrossRef]
- Roa, J.; Suarez, S.; Guitar, A.; Fargas, G.; Mateo, A.M. Geometrically Necessary Dislocations on Plastic Deformation of Polycrystalline TRIP Steel. Crystals 2019, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Roa, J.; Suarez, S.; Yang, H.; Fargas, G.; Guitar, A.; Rayón, E.; Green, I.; Mateo, A. Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation. Steel Res. Int. 2019, 90, 1800425. [Google Scholar] [CrossRef]
- Roa, J.; Fargas, G.; Mateo, A.; Piqué, E.J. Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels. Mater. Sci. Eng. A 2015, 645, 188–195. [Google Scholar] [CrossRef]
- Wen, Y.; Xie, L.; Wang, Z.; Wang, L.; Lu, W.; Zhang, L.-C. Nanoindentation characterization on local plastic response of Ti-6Al-4V under high-load spherical indentation. J. Mater. Res. Technol. 2019, 8, 3434–3442. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.; Chakraborty, M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Mater. Sci. Eng. A 2008, 489, 419–425. [Google Scholar] [CrossRef]
- Jun, T.-S.; Armstrong, D.E.; Britton, T.B. A nanoindentation investigation of local strain rate sensitivity in dual-phase Ti alloys. J. Alloys Compd. 2016, 672, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Uchic, M.D.; Dimiduk, D.M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng. A 2005, 400, 268–278. [Google Scholar] [CrossRef]
- Broitman, E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribol. Lett. 2017, 65, 23. [Google Scholar] [CrossRef] [Green Version]
- Tuninetti, V.; Gilles, G.; Milis, O.; Lecarme, L.; Habraken, A.M. Compression test for plastic anisotropy characterization using optical full-field displacement measurement technique. Steel Res. Int. 2012, 1239–1242. [Google Scholar]
- Tuninetti, V.; Flores, P.; Valenzuela, M.; Pincheira, G.; Medina, C.; Duchêne, L.; Habraken, A.-M. Experimental characterization of the compressive mechanical behaviour of Ti6Al4V alloy at constant strain rates over the full elastoplastic range. Int. J. Mater. Form. 2020, 13, 709–724. [Google Scholar] [CrossRef]
- Tuninetti, V.; Gilles, G.; Péron-Lührs, V.; Habraken, A.M. Compression Test for Metal Characterization using Digital Image Correlation and Inverse Modeling. Procedia IUTAM 2012, 4, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.; Pharr, G. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Nixon, M.E.; Cazacu, O.; Lebensohn, R.A. Anisotropic response of high-purity α-titanium: Experimental characterization and constitutive modeling. Int. J. Plast. 2010, 26, 516–532. [Google Scholar] [CrossRef]
- Salem, A.A.; Kalidindi, S.R.; Doherty, R.D. Strain hardening of titanium: Role of deformation twinning. Acta Mater. 2003, 51, 4225–4237. [Google Scholar] [CrossRef]
- Hama, T.; Nagao, H.; Kobuki, A.; Fujimoto, H.; Takuda, H. Work-hardening and twinning behaviors in a commercially pure titanium sheet under various loading paths. Mater. Sci. Eng. A 2015, 620, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Hirth, J.P.; Lothe, J. Theory of Dislocations, 2nd ed.; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Kocks, U.F. A statistical theory of flow stress and work-hardening. Philos. Mag. 1966, 13, 541–566. [Google Scholar] [CrossRef]
- Kuhlmann, W.D. Theory of Plastic Deformation: -Properties of low energy dislocation structures. Mater. Sci. Eng. A 1989, A113, 1–41. [Google Scholar] [CrossRef]
- Ludwik, P. Einfluβ der Deformationsfeschwindigkeit Mit Besonderer Berücksichtigung der Nackwirkungsercheinungen. In Elemente der Technologischen Mechanik; Springer: Berlin, Germany, 1909; pp. 44–53. [Google Scholar]
- Swift, H. Plastic instability under plane stress. J. Mech. Phys. Solids 2002, 1, 1–18. [Google Scholar] [CrossRef]
- Voce, E. The relationship between stress and strain for homogeneous deformation. J. Inst. Metal. 1984, 74, 537–562. [Google Scholar]
- Kocks, U.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Taylor, G. Plastic strain in metals. J. Inst. Met. 1938, 62, 307–324. [Google Scholar]
- Estrin, Y.; Tóth, L.; Molinari, A.; Bréchet, Y. A dislocation-based model for all hardening stages in large strain deformation. Acta Mater. 1998, 46, 5509–5522. [Google Scholar] [CrossRef]
- Arsenlis, A.; Parks, D. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 1999, 47, 1597–1611. [Google Scholar] [CrossRef]
- Austin, R.A.; McDowell, D.L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast. 2011, 27, 1–24. [Google Scholar] [CrossRef]
- Matusevich, A.E.; Massa, J.C.; Mancini, R.A. Computation of Tensile Strain-Hardening Exponents through the Power-Law Relationship. J. Test. Eval. 2012, 40, 104226. [Google Scholar] [CrossRef]
- Partridge, P.G. The crystallography and deformation modes of hexagonal close-packed metals. Met. Rev. 1967, 12, 169–194. [Google Scholar] [CrossRef]
- Babu, B.S.; Srikanth, V.; Balram, Y.; Vishnuvardhan, T.; Baig, M.A.A. Numerical analysis on the indentation behavior of Ti-6Al-4V alloy. Mater. Today Proc. 2019, 19, 827–830. [Google Scholar] [CrossRef]
- Han, F.; Tang, B.; Kou, H.; Li, J.; Feng, Y. Experiments and crystal plasticity finite element simulations of nanoindentation on Ti–6Al–4V alloy. Mater. Sci. Eng. A 2015, 625, 28–35. [Google Scholar] [CrossRef]
- Li, R.; Riester, L.; Watkins, T.; Blau, P.J.; Shih, A.J. Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater. Sci. Eng. A 2008, 472, 115–124. [Google Scholar] [CrossRef]
- Cai, J.; Li, F.; Liu, T.; Chen, B. Investigation of mechanical behavior of quenched Ti–6Al–4V alloy by microindentation. Mater. Charact. 2011, 62, 287–293. [Google Scholar] [CrossRef]
- Sridharbabu, B.; Kumaraswamy, A.; AnjaneyaPrasad, B. Effect of Indentation Size and Strain Rate on Nanomechanical Behavior of Ti-6Al-4VAlloy. Trans. Indian Inst. Met. 2014, 68, 143–150. [Google Scholar] [CrossRef]
- Hay, J.C.; Bolshakov, A.; Pharr, G.M. A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 1999, 14, 2296–2305. [Google Scholar] [CrossRef] [Green Version]
- King, R. Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 1987, 23, 1657–1664. [Google Scholar] [CrossRef]
- Casals, O.; Alcalá, J. The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 2005, 53, 3545–3561. [Google Scholar] [CrossRef]
- Kumaraswamy, A.; Rao, V.V. High strain-rate plastic flow behavior of Ti–6Al–4V from dynamic indentation experiments. Mater. Sci. Eng. A 2011, 528, 1238–1241. [Google Scholar] [CrossRef]
- Dong, J.; Li, F.; Wang, C. Micromechanical behavior study of α phase with different morphologies of Ti–6Al–4V alloy by microindentation. Mater. Sci. Eng. A 2013, 580, 105–113. [Google Scholar] [CrossRef]
- Kherrouba, N.; Carron, D.; Bouabdallah, M.; Badji, R. Effect of Solution Treatment on the Microstructure, Micromechanical Properties, and Kinetic Parameters of the β → α Phase Transformation during Continuous Cooling of Ti-6Al-4V Titanium Alloy. J. Mater. Eng. Perform. 2019, 28, 6921–6930. [Google Scholar] [CrossRef]
- Hao, Y.L.; Yang, R.; Niinomi, M.; Kuroda, D.; Zhou, Y.L.; Fukunaga, K.; Suzuki, A. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Met. Mater. Trans. A 2002, 33, 3137–3144. [Google Scholar] [CrossRef]
- Ho, W.; Ju, C.; Lin, J.C. Structure and properties of cast binary Ti–Mo alloys. Biomaterials 1999, 20, 2115–2122. [Google Scholar] [CrossRef]
- Viswanathan, G.; Lee, E.; Maher, D.M.; Banerjee, S.; Fraser, H.L. Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation. Acta Mater. 2005, 53, 5101–5115. [Google Scholar] [CrossRef]
Al | V | Fe | N | O | C | Ti |
---|---|---|---|---|---|---|
6.1 | 4.0 | 0.3 | 0.05 | 0.2 | 0.08 | Bal. |
Testing Loading | Orthogonal Material Direction | Strain, Rate, S−1 | Young’s Modulus, E (GPa) | Initial Yield Strength, σ0.2% (MPa) | Ultimate Tensile Strength, UTS (MPa) | Uniform Elongation, εu | Global Hardening Exponent, n | True Fracture Strain, εf | True Stress at Fracture MPa |
---|---|---|---|---|---|---|---|---|---|
Tension | LD | 0.001 | 111 ± 1 | 927 ± 3 | 951 | 0.10 | 0.045 | 0.41 | 1241 |
TD | 0.001 | 115 ± 4 | 933 ± 1 | 982 | 0.97 | 0.043 | 0.40 | 1349 | |
Compression | LD | 0.001 | 122 ± 1 | 968 ± 3 | - | - | 0.052 | - | - |
TD | 0.001 | 128 ± 3 | 1040 ± 6 | - | - | 0.059 | - | - |
Loading Stress | Material Direction | nR1 (−) | nR2 (−) | R2R1 (−) | R2R2 (−) |
---|---|---|---|---|---|
T | LD | 2.77 × 10−2 ± 9.45 × 10−4 | 5.86 × 10−2 ± 9.03 × 10−4 | 0.966 | 0.987 |
TD | 2.81 × 10−2 ± 4.68 × 10−4 | 6.13 × 10−2 ± 3.96 × 10−4 | 0.986 | 0.993 | |
C | LD | 2.95 × 10−2 ± 2.48 × 10−4 | 7.71 × 10−2 ± 4.36 × 10−4 | 0.995 | 0.987 |
TD | 4.16 × 10−2 ± 1.08 × 10−4 | 7.99 × 10−2 ± 2.49 × 10−4 | 0.999 | 0.994 |
Material Direction | H (GPa) | E (GPa) | σfflow (GPa) |
---|---|---|---|
LD | 3.6 ± 0.2 | 125 ± 2 | 1.3 ± 0.1 |
TD | 4.5 ± 0.5 | 151 ± 9 | 1.7 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuninetti, V.; Jaramillo, A.F.; Riu, G.; Rojas-Ulloa, C.; Znaidi, A.; Medina, C.; Mateo, A.M.; Roa, J.J. Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales. Metals 2021, 11, 104. https://doi.org/10.3390/met11010104
Tuninetti V, Jaramillo AF, Riu G, Rojas-Ulloa C, Znaidi A, Medina C, Mateo AM, Roa JJ. Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales. Metals. 2021; 11(1):104. https://doi.org/10.3390/met11010104
Chicago/Turabian StyleTuninetti, Víctor, Andrés Felipe Jaramillo, Guiomar Riu, Carlos Rojas-Ulloa, Amna Znaidi, Carlos Medina, Antonio Manuel Mateo, and Joan Josep Roa. 2021. "Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales" Metals 11, no. 1: 104. https://doi.org/10.3390/met11010104
APA StyleTuninetti, V., Jaramillo, A. F., Riu, G., Rojas-Ulloa, C., Znaidi, A., Medina, C., Mateo, A. M., & Roa, J. J. (2021). Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales. Metals, 11(1), 104. https://doi.org/10.3390/met11010104