Review of the Recent Development in Metallic Glass and Its Composites
Abstract
:1. Introduction
2. Biocompatible Metallic Glass and Their Composites
2.1. Ti-Based Biomaterial Metallic Glass
2.2. Zr-Based Biomaterial Metallic Glass
2.3. Magnesium-Based Biomedical Metallic Glass
2.4. Fe- and Sr-Based Metallic Glass Biomedical Metallic Glass
2.5. Summary
3. Fiber-Reinforced Metallic Glasses Composites
Summary
4. Metallic Glass/Polymer Composites
Summary
5. Ex Situ Metallic Glass Composites
6. In Situ Metallic Glass Composites
6.1. Crystalline/Nanocrystalline Metallic Glass Composites
Chemical Composition | Preparation Method | Yield Strength (MPa) | Ultimate Tensile | Plastic Strain | Reference |
---|---|---|---|---|---|
Ti31.2Zr28.7Ni5Cu8.5Be21.6Mo5 | Melt Spinning/quenching | 1410 | 1625 | 3.6% | [157] |
Zr52.5Cu17.9Al10Ni14.6Ti5 | High-Pressure Torsion | 1793 | 2023 | 0.4% | [158] |
Ti50Ni47Fe3 | Arc melting/annealing | 1700 | 2250 | 5.5% | [160] |
Zr48Cu36Al8Ag8/Fe65.4C7.1Si3.3B5.5P8.7Cr8Al2 (nanocrystalline) | hot-pressing method | – | – | 3.4 ± 0.1 | [168] |
Cu85Zr10Al5 | arc melter | 1800 | 2160 | 1.3 | [174] |
W/Ni59Zr20Ti16Si2Sn3 | Milling/spark plasma sintering | 1730 | 2409 | 2.6 | [176] |
Ti44Zr20Nb12Cu5Be19 | Arc melting/annealing | 1438 | – | 8.6 | [181] |
MgxZrxCux | Sputtering | 1700 | – | 52% | [183] |
Ti-40Nb (Ti74.4Nb25.6) | Copper mold casting/melt spinning method | 544 ± 66 | – | 28 ± 7 | [184] |
6.2. Dendritic and Quasicrystal Metallic Glass Composite
Chemical Composition | Preparation Method | Yield Strength (MPa) | Ultimate Tensile Strength | Plasticity | Reference |
---|---|---|---|---|---|
Ti48Zr20Nb12Cu5Be15 metallic glass | cold crucible levitation melting/copper mold casting | 1160 | 1310 | 10.7% | [199] |
BT80 | copper mold casting | 1046 ± 17 | 1326 ± 15 | 9.1 ± 0.3 | [200] |
(Ti51Zr38Nb11)71Cu9Be20 | suction casting method | 2053 | – | 8.06 | [201] |
Ti68Cu13.2Pd5.6Sn1.2Nb12 | suction casting | 1300 | – | 23.7 | [202] |
Zr54Co35Al11 (Z1) | Suction cast/Quenching | 1323 ± 10 | – | 28.7± 0.1 | [203] |
Zr54Co35Al11 (Z5) | Suction cast/Quenching | 1950 ± 10 | – | 3.0 ± 0.1 | [203] |
Ni90Hf10 | arc-melting | 1910 | – | 34.4 | [204] |
Ti16.6Nb6Co5.1Cu6.5Al | Arc melting/Casting | 1230 ± 50 | – | 11 ± 1% | [205] |
Ti48Zr20Nb12Cu5Be15 | arc-melting/copper casting | 1599 | – | 34% | [206] |
Ti56Zr6Cu19.8Pd8.4Sn1.8Nb8 | Suction casting/copper molding | 1690 | 2680 | 20 | [207] |
(Ti0.425Cu0.425Ni0.075Zr0.075)1−xSix | melt-spinning/suction casting | 1497 ± 50 | – | 10.3 ± 0.1 | [208] |
Ti38.8Zr28.8Cu6.2Be16.2Nb10(Ta0.5 (VF)) | Melt Spinning/Copper-mold suction casting | 1517 | 2610 | 20.3 | [209] |
Ti68.8Nb13.6Cr5.1Co6Al6.5 | Melt spinning/Casting method | 1100 ± 20 | 1290 ± 50 | 21 ± 3 | [212] |
Zr60.0Ti14.7Nb5.3Cu5.6−Ni4.4Be10.0 (at%) | Arc melting/the semisolid treatment plus Bridgman solidification | 1260 | 2050 | 16.7 | [215] |
cast Cu47.5Zr47.5Al5 (series 130) | Arc melter/copper mold suction casting | 1311 | 1628 | 13.94 | [216] |
Chemical Composition | Preparation Method | Yield Strength (MPa) | Fracture Strength (MPa) | Plastic Strain | Reference |
---|---|---|---|---|---|
Mg66Zn29Ca4Y | Semi-solid processing | 850 | 870 | 0.6% | [218] |
Summary
7. Conclusions and Prospects for the Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klement, W.; Willens, R.H.; Duwez, P. Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nat. Cell Biol. 1960, 187, 869–870. [Google Scholar] [CrossRef]
- Ruhl, R.C. Cooling rates in splat cooling. Mater. Sci. Eng. 1967, 1, 313–320. [Google Scholar] [CrossRef]
- Chen, H.; Turnbull, D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Met. 1969, 17, 1021–1031. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method. Mater. Trans. JIM 1990, 31, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.C.; Johnson, W.L. A two-dimensional phase separation on the spherical surface of the metallic glass Au55Pb22.5Sb22.5. Appl. Phys. Lett. 1982, 41, 1054–1056. [Google Scholar] [CrossRef]
- Drehman, A.J.; Greer, A.L. Kinetics of crystal nucleation and growth in Pd40Ni40P20 glass. Acta Met. 1984, 32, 323–332. [Google Scholar] [CrossRef]
- Budhani, R.C.; Goel, T.C.; Chopra, K.L. Melt-spinning technique for preparation of metallic glasses. Bull. Mater. Sci. 1982, 4, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana, C.; Inoue, A. Bulk Metallic Glasses, 2nd ed.; Routledge: London, UK, 2011; ISBN 9781420085976. [Google Scholar]
- Sohrabi, N.; Panikar, R.S.; Jhabvala, J.; Buch, A.R.; Mischler, S.; Logé, R.E. Laser coating of a Zr-based metallic glass on an aluminum substrate. Surf. Coat. Technol. 2020, 400, 126223. [Google Scholar] [CrossRef]
- Marattukalam, J.J.; Pacheco, V.; Karlsson, D.; Riekehr, L.; Lindwall, J.; Forsberg, F.; Jansson, U.; Sahlberg, M.; Hjörvarsson, B. Development of process parameters for selective laser melting of a Zr-based bulk metallic glass. Addit. Manuf. 2020, 33, 101124. [Google Scholar] [CrossRef]
- Hu, L.; Liu, X.; Chen, T.; Le, G.; Li, J.; Qu, F.; Zhou, Y.; Qi, L.; Wang, D. Characterization of laser cladded Zr–Cu–Ni–Al in-situ metallic glass matrix composite coatings with enhanced corrosion-resistance. Vacuum 2021, 185, 1–7. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.J.; Cheng, J.L.; Li, F.; Zhao, W.; Chen, G. Investigation of the effects of Al on the glass forming ability of Zr-Cu-Ni-Al alloys through their solidification characteristics. Intermetallics 2019, 109, 105–109. [Google Scholar] [CrossRef]
- Hubert, B.; Yiu, P.; Hu, C.-C.; Chu, J.P. Fe-based thin film metallic glass as an activator of peroxymonosulfate for azo dye degradation. Surf. Coat. Technol. 2021, 412, 127031. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, H.; Yang, X. Efficient degradation of orange II dye using Fe-based metallic glass powders prepared by commercial raw materials. Intermetallics 2021, 129, 107030. [Google Scholar] [CrossRef]
- Tsui, H.-P.; Lee, P.-H.; Yeh, C.-C.; Hung, J.-C. Ultrasonic vibration-assisted electrical discharge machining on Fe-based metallic glass by adding conductive powder. Procedia CIRP 2020, 95, 425–430. [Google Scholar] [CrossRef]
- Fan, J.T.; Zhang, Z.F.; Mao, S.X.; Shen, B.L.; Inoue, A. Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites. Intermetallics 2009, 17, 445–452. [Google Scholar] [CrossRef]
- Schnabel, V.; Köhler, M.; Evertz, S.; Gamcova, J.; Bednarcik, J.; Music, D.; Raabe, D.; Schneider, J.M. Revealing the relationships between chemistry, topology and stiffness of ultrastrong Co-based metallic glass thin films: A combinatorial approach. Acta Mater. 2016, 107, 213–219. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, J.; Li, G.; Fuh, J.Y.H.; Jiang, H.; Gou, P.; Zhang, L.; Liu, W.; Zhao, J. Ultrasonic additive manufacturing of bulk Ni-based metallic glass. J. Non-Cryst. Solids 2019, 506, 1–5. [Google Scholar] [CrossRef]
- Bahrami, F.; Amini, R.; Taghvaei, A.H. Microstructure and corrosion behavior of electrodeposited Ni-based nanocomposite coatings reinforced with Ni 60 Cr 10 Ta 10 P 16 B 4 metallic glass particles. J. Alloys Compd. 2017, 714, 530–536. [Google Scholar] [CrossRef]
- Ma, X.; Ma, J.; Bian, X.; Tong, X.; Han, D.; Jia, Y.; Wu, S.; Zhang, N.; Geng, C.; Li, P.; et al. The role of nano-scale elastic heterogeneity in mechanical and tribological behaviors of a Cu–Zr based metallic glass thin films. Intermetallics 2021, 133, 107159. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Park, G.-H.; Kim, H.-A.; Lee, A.-Y.; Oh, H.-R.; Lee, C.-W.; Lee, M.-H. Micro-deposition of Cu-based metallic glass wire by direct laser melting process. Mater. Lett. 2017, 202, 1–4. [Google Scholar] [CrossRef]
- Yang, C.; Lu, L.-M.; Zhao, Z.-W.; Li, J.-H.; Gong, F.; Ma, J. Micro thermoplastic forming of a Pd-based metallic glass: Theory and applications. J. Iron Steel Res. Int. 2017, 24, 378–384. [Google Scholar] [CrossRef]
- Pineda, E.; Serrano, J.; Bruna, P.; Crespo, D. Fragility measurement of Pd-based metallic glass by dynamic mechanical analysis. J. Alloys Compd. 2010, 504, S215–S218. [Google Scholar] [CrossRef]
- Wang, Y.B.; Xie, X.H.; Li, H.F.; Wang, X.L.; Zhao, M.Z.; Zhang, E.W.; Bai, Y.J.; Zheng, Y.F.; Qin, L. Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomater. 2011, 7, 3196–3208. [Google Scholar] [CrossRef]
- Khan, M.M.; Nemati, A.; Rahman, Z.U.; Shah, U.H.; Asgar, H.; Haider, W. Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2018, 43, 233–268. [Google Scholar] [CrossRef]
- Kumar, G.P.; Tavakoli, R.; Cui, F.; Jafary-Zadeh, M. Feasibility of using bulk metallic glass for self-expandable stent applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 105, 1874–1882. [Google Scholar] [CrossRef]
- Phan, T.A.; Hara, M.; Oguchi, H.; Kuwano, H. Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron. Eng. 2015, 135, 28–31. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Tsai, Y.-C.; Ono, T.; Liu, P.; Esashi, M.; Gessner, T.; Chen, M. Metallic Glass as a Mechanical Material for Microscanners. Adv. Funct. Mater. 2015, 25, 5677–5682. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Shi, J.-A.; Wang, Z.; Song, C.; Wang, X.; Lu, S.; Zhou, X.; Gu, L.; Louzguine-Luzgin, D.; et al. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nat. Commun. 2016, 7, 13497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasannaeimi, V.; Mukherjee, S. Noble-Metal based Metallic Glasses as Highly Catalytic Materials for Hydrogen Oxidation Reaction in Fuel Cells. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Monfared, A.; Vali, H.; Faghihi, S. Biocorrosion and biocompatibility of Zr-Cu-Fe-Al bulk metallic glasses. Surf. Interface Anal. 2013, 45, 1714–1720. [Google Scholar] [CrossRef]
- Filipecka-Szymczyk, K.; Pawlik, P.; Filipecki, J. The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr-Fe-B-W metallic glasses. J. Alloys Compd. 2017, 694, 228–234. [Google Scholar] [CrossRef]
- Wang, Z.; Georgarakis, K.; Nakayama, K.S.; Li, Y.; Tsarkov, A.A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D.V.; Yavari, A.R. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.A.; Aucote, J.; Hull, J.B. Amorphous Nickel produced by Splat Quenching. Nat. Phys. Sci. 1973, 246, 13–14. [Google Scholar] [CrossRef]
- Ding, S.; Liu, Y.; Li, Y.; Liu, Z.; Sohn, S.; Walker, F.J.; Schroers, J. Combinatorial development of bulk metallic glasses. Nat. Mater. 2014, 13, 494–500. [Google Scholar] [CrossRef]
- Lin, C.-J. Fe-B glasses formed by picosecond pulsed laser quenching. Appl. Phys. Lett. 1982, 41, 721. [Google Scholar] [CrossRef]
- Fan, G.J.; Fu, L.F.; Qiao, D.C.; Choo, H.; Liaw, P.K.; Browning, N.D.; Löffler, J.F. Effect of microalloying on the glass-forming ability of Cu60Zr30Ti10 bulk metallic glass. J. Non-Cryst. Solids 2007, 353, 4218–4222. [Google Scholar] [CrossRef]
- Mukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.-K. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 2004, 52, 3689–3695. [Google Scholar] [CrossRef]
- Park, E.S.; Na, J.H.; Kim, D.H. Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Appl. Phys. Lett. 2007, 91, 1–4. [Google Scholar] [CrossRef]
- Bordeenithikasem, P.; Liu, J.; Kube, S.A.; Li, Y.; Ma, T.; Scanley, B.E.; Broadbridge, C.C.; Vlassak, J.J.; Singer, J.P.; Schroers, J. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hildal, K.; Sekido, N.; Perepezko, J.H. Critical cooling rate for Fe48Cr15Mo14Y2C15B6 bulk metallic glass formation. Intermetallics 2006, 14, 898–902. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A 2001, 304-306, 446–451. [Google Scholar] [CrossRef]
- Busch, R.; Kim, Y.J.; Johnson, W.L. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 1995, 77, 4039–4043. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Ma, T.; Liao, C.; Liu, G.; Mota, R.M.O.; Liu, J.; Sohn, S.; Kube, S.; Zhao, S.; Singer, J.P.; et al. Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys. Sci. Rep. 2021, 11, 3903. [Google Scholar] [CrossRef]
- Yodoshi, N.; Yamada, R.; Kawasaki, A.; Makino, A. Evaluation of critical cooling rate of Fe76Si9B10P5 metallic glass by containerless solidification process. J. Alloys Compd. 2015, 643, S2–S7. [Google Scholar] [CrossRef]
- Nishiyama, N.; Inoue, A. Supercooling investigation and critical cooling rate for glass formation in Pd–Cu–Ni–P alloy. Acta Mater. 1999, 47, 1487–1495. [Google Scholar] [CrossRef]
- Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F. In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry. Appl. Phys. Lett. 2014, 104, 251908. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, Y.; Tsai, H.-L. Evolution of crystalline phase during laser processing of Zr-based metallic glass. J. Non-Cryst. Solids 2018, 481, 299–305. [Google Scholar] [CrossRef]
- Castellero, A.; Fiore, G.; Van Steenberge, N.; Battezzati, L. Processing a Fe67Mo4.5Cr2.3Al2Si3C7P8.7B5.5 metallic glass: Experimental and computed TTT and CCT curves. J. Alloys Compd. 2020, 843, 156061. [Google Scholar] [CrossRef]
- Liao, J.P.; Yang, B.J.; Zhang, Y.; Lu, W.Y.; Gu, X.J.; Wang, J.Q. Evaluation of glass formation and critical casting diameter in Al-based metallic glasses. Mater. Des. 2015, 88, 222–226. [Google Scholar] [CrossRef]
- Ashby, M.F.; Greer, A.L. Metallic glasses as structural materials. Scr. Mater. 2006, 54, 321–326. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic glasses…on the threshold. Mater. Today 2009, 12, 14–22. [Google Scholar] [CrossRef]
- Fornell, J.; Van Steenberge, N.; Varea, A.; Rossinyol, E.; Pellicer, E.; Suriñach, S.; Baró, M.D.; Sort, J. Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J. Mech. Behav. Biomed. Mater. 2011, 4, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Peter, W.H.; Buchanan, R.A.; Liu, C.T.; Liaw, P.K.; Morrison, M.L.; Horton, J.A.; Carmichael, C.A.; Wright, J.L. Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 2002, 10, 1157–1162. [Google Scholar] [CrossRef]
- Madge, S.V.; Caron, A.; Gralla, R.; Wilde, G.; Mishra, S.K. Novel W-based metallic glass with high hardness and wear resistance. Intermetallics 2014, 47, 6–10. [Google Scholar] [CrossRef]
- Wang, W.H. Bulk Metallic Glasses with Functional Physical Properties. Adv. Mater. 2009, 21, 4524–4544. [Google Scholar] [CrossRef]
- Sharma, P.; Kaushik, N.; Kimura, H.; Saotome, Y.; Inoue, A. Nano-fabrication with metallic glass—An exotic material for nano-electromechanical systems. Nanotechnology 2007, 18, 035302. [Google Scholar] [CrossRef]
- Nieh, T.G.; Wadsworth, J.; Liu, C.T.; Ohkubo, T.; Hirotsu, Y. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater. 2001, 49, 2887–2896. [Google Scholar] [CrossRef]
- Qiao, J.W.; Zhang, Y.A.; Jia, H.L.; Yang, H.J.; Liaw, P.K.; Xu, B.S. Tensile softening of metallic-glass-matrix composites in the supercooled liquid region. Appl. Phys. Lett. 2012, 100, 9–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Greer, A.L. Correlations for predicting plasticity or brittleness of metallic glasses. J. Alloys Compd. 2007, 434-435, 2–5. [Google Scholar] [CrossRef]
- Khonik, V.A. Understanding of the Structural Relaxation of Metallic Glasses within the Framework of the Interstitialcy Theory. Metals 2015, 5, 504–529. [Google Scholar] [CrossRef] [Green Version]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Dyre, J.C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 2006, 78, 953–972. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-B.; Shen, X.; Wang, Z.; Gu, L.; Wang, W.H.; Bai, H.Y. Tensile Plasticity in Metallic Glasses with PronouncedβRelaxations. Phys. Rev. Lett. 2012, 108, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.S. Shear-transformation-zone theory of plastic deformation near the glass transition. Phys. Rev. E 2008, 77, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, A.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R: Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Maaß, R.; Klaumünzer, D.; Preiß, E.I.; Derlet, P.M.; Löffler, J.F. Single shear-band plasticity in a bulk metallic glass at cryogenic temperatures. Scr. Mater. 2012, 66, 231–234. [Google Scholar] [CrossRef]
- Meduri, C.; Hasan, M.; Adam, S.; Kumar, G. Effect of temperature on shear bands and bending plasticity of metallic glasses. J. Alloys Compd. 2018, 732, 922–927. [Google Scholar] [CrossRef]
- Shuai, C.; Li, S.; Peng, S.; Feng, P.; Lai, Y.; Gao, C. Biodegradable metallic bone implants. Mater. Chem. Front. 2019, 3, 544–562. [Google Scholar] [CrossRef]
- Li, H.F.; Zheng, Y.F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016, 36, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.H.; Lin, Y.Z.; Li, J.B.; Jian, S.R.; Jang, J.S.C.; Li, C.; Chu, J.P.; Huang, J.C.C. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics 2012, 31, 127–131. [Google Scholar] [CrossRef]
- Huang, L.; Pu, C.; Fisher, R.K.; Mountain, D.J.H.; Gao, Y.; Liaw, P.K.; Zhang, W.; He, W. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater. 2015, 25, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, A.A.A.; Abdul-Rani, A.M.; Ginta, T.L.; Prakash, C.; Axinte, E.; Fua-Nizan, R. Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application. Malays. J. Fundam. Appl. Sci. 2017, 13, 523–528. [Google Scholar] [CrossRef]
- Wu, Z.; Du, P.; Xiang, T.; Li, K.; Xie, G. Ti-based bulk metallic glass implantable biomaterial with adjustable porosity produced by a novel pressure regulation method in spark plasma sintering. Intermetallics 2021, 131, 107105. [Google Scholar] [CrossRef]
- Xie, G.; Kanetaka, H.; Kato, H.; Qin, F.; Wang, W. Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility. Intermetallics 2019, 105, 153–162. [Google Scholar] [CrossRef]
- Wu, H.; Liang, L.; Lan, X.; Yin, Y.; Song, M.; Li, R.; Liu, Y.; Yang, H.; Liu, L.; Cai, A.; et al. Tribological and biological behaviors of laser cladded Ti-based metallic glass composite coatings. Appl. Surf. Sci. 2020, 507, 145104. [Google Scholar] [CrossRef]
- Rajan, S.T.; Das, M.; Kumar, P.S.; Arockiarajan, A.; Subramanian, B. Biological performance of metal metalloid (TiCuZrPd:B) TFMG fabricated by pulsed laser deposition. Colloids Surf. B: Biointerfaces 2021, 202, 111684. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, C.-H.; Huang, Y.S.; Huang, C.H.; Huang, J.C.; Jang, J.S.C.; Lin, Y.S. In vivo investigations and cytotoxicity tests on Ti/Zr-based metallic glasses with various Cu contents. Mater. Sci. Eng. C 2017, 77, 308–317. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.-J.; Pang, S.-J.; Zhang, T. Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials. Rare Met. 2020, 39, 688–694. [Google Scholar] [CrossRef]
- Li, P.; Meng, L.; Wang, S.; Wang, K.; Sui, Q.; Liu, L.; Zhang, Y.; Yin, X.; Zhang, Q.; Wang, L. In Situ Formation of Ti47Cu38Zr7.5Fe2.5Sn2Si1Nb2 Amorphous Coating by Laser Surface Remelting. Materials 2019, 12, 3660. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.-M.; Liu, Y.; Pang, S.-J.; Zhang, T. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Met. 2018, 37, 831–837. [Google Scholar] [CrossRef]
- Liens, A.; Etiemble, A.; Rivory, P.; Balvay, S.; Pelletier, J.-M.; Cardinal, S.; Fabrègue, D.; Kato, H.; Steyer, P.; Munhoz, T.; et al. On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti40Zr10Cu36Pd14. Materials 2018, 11, 249. [Google Scholar] [CrossRef] [Green Version]
- Abdi, S.; Oswald, S.; Gostin, P.-F.; Helth, A.; Sort, J.; Baró, M.D.; Calin, M.; Schultz, L.; Eckert, J.; Gebert, A. Designing new biocompatible glass-forming Ti75−xZr10NbxSi15 (x = 0, 15) alloys: Corrosion, passivity, and apatite formation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 104, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Li, H.F.; Cheng, Y.F.; Zheng, Y.; Ruan, L.Q. In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material. Mater. Sci. Eng. C 2013, 33, 3489–3497. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Shi, X.; Witte, R.; Nakayama, K.S.; Ohmura, K.; Wu, H.; Takeuchi, A.; Hahn, H.; Esashi, M.; Gleiter, H.; et al. A novel Ti-based nanoglass composite with submicron–nanometer-sized hierarchical structures to modulate osteoblast behaviors. J. Mater. Chem. B 2013, 1, 2568–2574. [Google Scholar] [CrossRef] [PubMed]
- Meagher, P.; O’Cearbhaill, E.D.; Byrne, J.H.; Browne, D.J. Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools. Adv. Mater. 2016, 28, 5755–5762. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, V.; Tao, X.; Dong, H.; Dashtbozorg, B.; Li, X.; Sammons, R.; Dong, H.-S. Improving the Tribological Properties and Biocompatibility of Zr-Based Bulk Metallic Glass for Potential Biomedical Applications. Materials 2020, 13, 1960. [Google Scholar] [CrossRef]
- Abdul-Rani, A.M.; Aliyu, A.A.A.; Hastuty, S.; Ginta, T.L.; Rao, T.V.V.L.N.; Ali, S. Enhancing surface quality of Zr-Cu-Ni-Ti-Be through hydroxyapatite mixed EDM for potential orthopedic application. AIP Conf. Proc. 2018, 2035, 080010. [Google Scholar] [CrossRef]
- Hua, N.; Chen, W.; Wang, W.; Lu, H.; Ye, X.; Li, G.; Lin, C.; Huang, X. Tribological behavior of a Ni-free Zr-based bulk metallic glass with potential for biomedical applications. Mater. Sci. Eng. C 2016, 66, 268–277. [Google Scholar] [CrossRef]
- Subramanian, B.; Maruthamuthu, S.; Rajan, S.T. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels. Int. J. Nanomed. 2015, 10, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhu, C.; Muntele, C.I.; Zhang, T.; Liaw, P.K.; He, W. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation. Mater. Sci. Eng. C 2015, 47, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Hua, N.; Huang, L.; Chen, W.; He, W.; Zhang, T. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications. Mater. Sci. Eng. C 2014, 44, 400–410. [Google Scholar] [CrossRef]
- Espallargas, N.; Aune, R.E.; Torres, C.; Papageorgiou, N.; Muñoz, A.I. Bulk metallic glasses (BMG) for biomedical applications—A tribocorrosion investigation of Zr55Cu30Ni5Al10 in simulated body fluid. Wear 2013, 301, 271–279. [Google Scholar] [CrossRef]
- Hua, N.; Huang, L.; He, W.; Pang, S.; Zhang, T. A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility. J. Non-Cryst. Solids 2013, 376, 133–138. [Google Scholar] [CrossRef]
- Huang, L.; Cao, Z.; Meyer, H.M.; Liaw, P.K.; Garlea, E.; Dunlap, J.R.; Zhang, T.; He, W. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness. Acta Biomater. 2011, 7, 395–405. [Google Scholar] [CrossRef]
- Sharma, A.; Kopylov, A.; Zadorozhnyy, M.; Stepashkin, A.; Kudelkina, V.; Wang, J.-Q.; Ketov, S.; Churyukanova, M.; Louzguine-Luzgin, D.; Sarac, B.; et al. Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. Metals 2020, 10, 867. [Google Scholar] [CrossRef]
- Abisegapriyan, K.S.; Rajeshwari, A.; Kundu, S.; Subramanian, B. Magnesium glassy alloy laminated nanofibrous polymer as biodegradable scaffolds. J. Non-Cryst. Solids 2018, 502, 210–217. [Google Scholar] [CrossRef]
- Monfared, A.; Ghaee, A.; Ebrahimibarough, S. Preparation and characterization of crystallized and relaxed amorphous Mg-Zn-Ca alloy ribbons for nerve regeneration application. J. Non-Cryst. Solids 2018, 489, 71–76. [Google Scholar] [CrossRef]
- Hua, N.; Chen, W.; Wang, Q.; Guo, Q.; Huang, Y.; Zhang, T. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J. Alloys Compd. 2018, 745, 111–120. [Google Scholar] [CrossRef]
- Baulin, O.; Fabrègue, D.; Kato, H.; Liens, A.; Wada, T.; Pelletier, J.-M. A new, toxic element-free Mg-based metallic glass for biomedical applications. J. Non-Cryst. Solids 2018, 481, 397–402. [Google Scholar] [CrossRef]
- Li, H.; He, W.; Pang, S.; Liaw, P.K.; Zhang, T. In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Mater. Sci. Eng. C 2016, 68, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Pang, S.; Liu, Y.; Liaw, P.K.; Zhang, T. In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J. Non-Cryst. Solids 2015, 427, 134–138. [Google Scholar] [CrossRef]
- Li, H.; Pang, S.; Liu, Y.; Sun, L.; Liaw, P.K.; Zhang, T. Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater. Des. 2015, 67, 9–19. [Google Scholar] [CrossRef]
- Yu, H.-J.; Wang, J.-Q.; Shi, X.-T.; Louzguine-Luzgin, D.V.; Wu, H.-K.; Perepezko, J.H. Ductile Biodegradable Mg-Based Metallic Glasses with Excellent Biocompatibility. Adv. Funct. Mater. 2013, 23, 4793–4800. [Google Scholar] [CrossRef]
- Wang, J.; Huang, S.; Li, Y.; Wei, Y.; Xi, X.; Cai, K. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg–Zn–Ca bulk metallic glass composites. Mater. Sci. Eng. C 2013, 33, 3832–3838. [Google Scholar] [CrossRef]
- Esmaeili, A.; Ghaffari, S.A.; Nikkhah, M.; Ghaini, F.M.; Farzan, F.; Mohammadi, S. Biocompatibility assessments of 316L stainless steel substrates coated by Fe-based bulk metallic glass through electro-spark deposition method. Colloids Surf. B: Biointerfaces 2021, 198, 111469. [Google Scholar] [CrossRef]
- Li, S.; Wei, Q.; Li, Q.; Jiang, B.; Chen, Y.; Sun, Y. Development of Fe-based bulk metallic glasses as potential biomaterials. Mater. Sci. Eng. C 2015, 52, 235–241. [Google Scholar] [CrossRef]
- Yang, C.; Bian, X.; Qin, J.; Guo, T.; Zhao, S. Fabrication and hyperthermia effect of magnetic functional fluids based on amorphous particles. Appl. Surf. Sci. 2015, 330, 216–220. [Google Scholar] [CrossRef]
- Zohdi, H.; Shahverdi, H.R.; Hadavi, S.M.M. Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer’s solution for biomedical applications. Electrochem. Commun. 2011, 13, 840–843. [Google Scholar] [CrossRef]
- Zhao, K.; Jiao, W.; Ma, J.; Gao, X.Q.; Wang, W.H. Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature. J. Mater. Res. 2012, 27, 2593–2600. [Google Scholar] [CrossRef]
- Lee, M.; Choi, Y.; Sugio, K.; Matsugi, K.; Sasaki, G. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process. Compos. Sci. Technol. 2014, 97, 1–5. [Google Scholar] [CrossRef]
- Yin, H.L.; Liu, S.Q.; Zhao, L.C.; Cui, C.X.; Wang, X. Vacuum infiltration molding and mechanical property of short carbon fiber reinforced Ti-based metallic glass matrix composite. J. Mater. Process. Technol. 2021, 295, 117151. [Google Scholar] [CrossRef]
- Zhang, Z.; Kong, J.; Liu, X.; Song, X.; Dong, K. Preparation, microstructure and mechanical properties of tungsten fiber reinforced LaAlCuNi metallic glass matrix composites. Intermetallics 2021, 132, 107139. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.Q.; Zhang, L.; Fu, H.M.; Li, Z.K.; Zhu, Z.W.; Li, H.; Zhang, H.W.; Wang, A.M.; Wang, Y.D. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites. Compos. Part B Eng. 2020, 199, 108219. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Wang, H.; Liu, X.; Jiang, S.; Wang, X.; Lu, Z. Work-hardenable Zr-based bulk metallic glass composites reinforced with ex-situ TiNi fibers. J. Alloys Compd. 2019, 806, 1497–1508. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, H.; Zhang, H.; Mu, J.; Wang, M. Synthesis and property of short tungsten fibre/Zr-based metallic glass composite. Mater. Sci. Technol. 2019, 35, 1347–1354. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Fu, H.M.; Li, Z.K.; Zhu, Z.W.; Li, H.; Zhang, H.W.; Wang, A.M.; Wang, Y.D.; Zhang, H.F. Compressive mechanical properties and failure modes of Zr-based bulk metallic glass composites containing tungsten springs. Mater. Des. 2018, 160, 652–660. [Google Scholar] [CrossRef]
- Hamill, L.; Nutt, S. Adhesion of metallic glass and epoxy in composite-metal bonding. Compos. Part B: Eng. 2018, 134, 186–192. [Google Scholar] [CrossRef]
- Chen, G.; Hao, Y.; Chen, X.; Hao, H. Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures. Int. J. Impact Eng. 2017, 106, 110–119. [Google Scholar] [CrossRef]
- Shamlaye, K.F.; Laws, K.J.; Ferry, M. Supercooled liquid fusion of carbon fibre-bulk metallic glass composites with superplastic forming properties. Scr. Mater. 2016, 111, 127–130. [Google Scholar] [CrossRef]
- Wang, Z.; Scudino, S.; Stoica, M.; Zhang, W.; Eckert, J. Al-based matrix composites reinforced with short Fe-based metallic glassy fiber. J. Alloys Compd. 2015, 651, 170–175. [Google Scholar] [CrossRef]
- Li, Z.K.; Fu, H.M.; Sha, P.F.; Zhu, Z.W.; Wang, A.M.; Li, H.; Zhang, H.W.; Zhang, H.F.; Hu, Z.Q. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites. Sci. Rep. 2015, 5, 8967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.H.; Chen, Y.; Jiang, M.Q.; Chen, X.W.; Zhang, H.F.; Dai, L.H. On the compressive failure of tungsten fiber reinforced Zr-based bulk metallic glass composite. Int. J. Solids Struct. 2015, 69-70, 428–441. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, Y.; Jiang, M.Q.; Chen, X.W.; Zhang, H.F.; Dai, L.H. Dynamic shear punch behavior of tungsten fiber reinforced Zr-based bulk metallic glass matrix composites. Int. J. Impact Eng. 2015, 79, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Fu, H.; Li, Z.; Zhu, Z.; Zhang, H.; Hu, Z. Anisotropic tensile properties of tungsten fiber reinforced Zr based metallic glass composites. Mater. Sci. Eng. A 2014, 619, 165–170. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, Y.; Jiang, M.Q.; Chen, X.W.; Fu, H.M.; Zhang, H.F.; Dai, L.H. Direct Observation on the Evolution of Shear Banding and Buckling in Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite. Met. Mater. Trans. A 2014, 45, 5397–5408. [Google Scholar] [CrossRef] [Green Version]
- Khademian, N.; Gholamipour, R. Study on microstructure and fracture behavior of tungsten wire reinforced Cu-based and Zr-based bulk metallic glass matrix composites. J. Non-Cryst. Solids 2013, 365, 75–84. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Chen, X.H.; Wang, S.S.; Lin, D.Y.; Hui, X.D. High strength tungsten wire reinforced Zr-based bulk metallic glass matrix composites prepared by continuous infiltration process. Mater. Lett. 2013, 93, 210–214. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Li, Y. Quasi-Static and Dynamic Compressive Characteristics of Tungsten Fiber/Zr-Based Bulk Metallic Glass Matrix Composites. J. Comput. Theor. Nanosci. 2012, 9, 1427–1430. [Google Scholar] [CrossRef]
- Rong, G.; Huang, D.W.; Yang, M.C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers. Theor. Appl. Fract. Mech. 2012, 58, 21–27. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, G.; Wang, Z.; Cao, Y.; Cheng, J.; Chen, G. Mechanical Properties of Tungsten Fiber Reinforced (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100-xNbx Bulk Metallic Glass Composites. Rare Met. Mater. Eng. 2011, 40, 206–208. [Google Scholar] [CrossRef]
- Deng, S.T.; Diao, H.; Chen, Y.L.; Yan, C.; Zhang, H.F.; Wang, A.M.; Hu, Z.Q. Metallic glass fiber-reinforced Zr-based bulk metallic glass. Scr. Mater. 2011, 64, 85–88. [Google Scholar] [CrossRef]
- Hyeon, D.Y.; Nam, C.; Ham, S.S.; Hwang, G.T.; Yi, S.; Kim, K.T.; Park, K. Enhanced Energy Conversion Performance of a Magneto–Mechano–Electric Generator Using a Laminate Composite Made of Piezoelectric Polymer and Metallic Glass. Adv. Electron. Mater. 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.; Churyukanova, M.; Stepashkin, A.; Zadorozhnyy, M.; Sharma, A.; Moskovskikh, D.; Wang, J.; Shabanova, E.; Ketov, S.; Louzguine-Luzgin, D.; et al. Structure and Thermal Properties of an Al-Based Metallic Glass-Polymer Composite. Metals 2018, 8, 1037. [Google Scholar] [CrossRef] [Green Version]
- Zadorozhnyy, V.Y.; Gorshenkov, M.V.; Churyukanova, M.N.; Zadorozhnyy, M.Y.; Stepashkin, A.A.; Moskovskikh, D.O.; Ketov, S.V.; Zinnurova, L.K.; Sharma, A.; Louzguine-Luzgin, D.V.; et al. Investigation of structure and thermal properties in composite materials based on metallic glasses with small addition of polytetrafluoroethylene. J. Alloys Compd. 2017, 707, 264–268. [Google Scholar] [CrossRef]
- Zadorozhnyy, M.Y.; Chukov, D.I.; Churyukanova, M.N.; Gorshenkov, M.V.; Zadorozhnyy, V.Y.; Stepashkin, A.A.; Tsarkov, A.A.; Louzguine-Luzgin, D.V.; Kaloshkin, S.D. Investigation of contact surfaces between polymer matrix and metallic glasses in composite materials based on high-density polyethylene. Mater. Des. 2016, 92, 306–312. [Google Scholar] [CrossRef]
- Sharma, A.; Zadorozhnyy, M.; Stepashkin, A.; Kvaratskheliya, A.; Korol, A.; Moskovskikh, D.; Kaloskin, S.; Zadorozhnyy, V. Investigation of Thermophysical Properties of Zr-Based Metallic Glass-Polymer Composite. Metals 2021, 11, 1412. [Google Scholar] [CrossRef]
- Nowosielski, R.; Gramatyka, P.; Sakiewicz, P.; Babilas, R. Ferromagnetic composites with polymer matrix consisted of nanocrystalline Fe-based filler. J. Magn. Magn. Mater. 2015, 387, 179–185. [Google Scholar] [CrossRef]
- Gizaw, E.T.; Yeh, H.-H.; Chu, J.P.; Hu, C.-C. Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation. Sep. Purif. Technol. 2020, 237, 116340. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Gu, X.; Wraith, M.; Uhl, J.T.; Dahmen, K.A.; Greer, J.R. Suppression of Catastrophic Failure in Metallic Glass-Polyisoprene Nanolaminate Containing Nanopillars. Adv. Funct. Mater. 2012, 22, 1972–1980. [Google Scholar] [CrossRef]
- Lasheras, A.; Gutiérrez, J.; Reis, S.; Sousa, D.; Silva, M.; Martins, P.; Lanceros-Mendez, S.; Barandiarán, J.M.; Shishkin, D.A.; Potapov, A.P. Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Mater. Struct. 2015, 24. [Google Scholar] [CrossRef]
- Eckert, J.; Das, J.; Pauly, S.; Duhamel, C. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 2007, 22, 285–301. [Google Scholar] [CrossRef]
- Lin, S.; Ge, S.; Li, W.; Li, H.; Fu, H.; Wang, A.; Zhuang, Y.; Zhang, H.; Zhu, Z. Work-hardenable TiZr-based multilayered bulk metallic glass composites through the solid solution strengthening in ex-situ Ti layers. J. Non-Cryst. Solids 2021, 553, 120508. [Google Scholar] [CrossRef]
- Lin, S.; Zhu, Z.; Ge, S.; Zhang, L.; Liu, D.; Zhuang, Y.; Fu, H.; Li, H.; Wang, A.; Zhang, H. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy. J. Mater. Sci. Technol. 2020, 50, 128–138. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.; Hu, X.; Cheng, Y.; Liu, S.; Chen, P.; Cui, C. Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles. Materials 2017, 10, 1371. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Han, X.; Song, K.; Wang, L.; Cheng, Y.; Zhang, Z.; Xue, Q.; Sun, N.; Wang, J.; Sun, B.; et al. Stability of shear banding process in bulk metallic glasses and composites. J. Mater. Res. 2017, 32, 2560–2569. [Google Scholar] [CrossRef]
- Guo, W.; Wada, T.; Kato, H. Work-hardenable Mg-based bulk metallic glass matrix composites reinforced by ex-situ porous shape-memory-alloy particles. Mater. Lett. 2016, 183, 454–458. [Google Scholar] [CrossRef]
- Li, T.H.; Tsai, P.H.; Hsu, K.T.; Liu, Y.C.; Jang, J.S.C.; Huang, J.C. Significantly enhanced drilling ability of the orthopedic drill made of Zr-based bulk metallic glass composite. Intermetallics 2016, 78, 17–20. [Google Scholar] [CrossRef]
- Wang, H.-S.; Wu, J.-Y.; Liu, Y.-T. Effect of the volume fraction of the ex-situ reinforced Ta additions on the microstructure and properties of laser-welded Zr-based bulk metallic glass composites. Intermetallics 2016, 68, 87–94. [Google Scholar] [CrossRef]
- Wang, H.-S.; Chen, H.-G.; Jang, J.S.-C.; Lin, D.-Y.; Gu, J.-W. Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite. Mater. Charact. 2013, 86, 242–249. [Google Scholar] [CrossRef]
- Madge, S.V.; Louzguine-Luzgin, D.V.; Inoue, A.; Greer, A.L. Large Compressive Plasticity in a La-Based Glass-Crystal Composite. Metals 2013, 3, 41–48. [Google Scholar] [CrossRef]
- Jang, J.S.C.; Li, J.B.; Lee, S.L.; Chang, Y.S.; Jian, S.R.; Huang, J.C.; Nieh, T.G. Prominent plasticity of Mg-based bulk metallic glass composites by ex-situ spherical Ti particles. Intermetallics 2012, 30, 25–29. [Google Scholar] [CrossRef]
- Li, J.B.; Jang, J.S.C.; Li, C.; Jian, S.R.; Tsai, P.H.; Hwang, J.D.; Huang, J.C.; Nieh, T.G. Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles. Mater. Sci. Eng. A 2012, 551, 249–254. [Google Scholar] [CrossRef]
- Li, J.B.; Jang, J.S.C.; Jian, S.R.; Chen, K.W.; Lin, J.F.; Huang, J.C. Plasticity improvement of ZrCu-based bulk metallic glass by ex situ dispersed Ta particles. Mater. Sci. Eng. A 2011, 528, 8244–8248. [Google Scholar] [CrossRef]
- Qiao, J.; Jia, H.; Liaw, P.K. Metallic glass matrix composites. Mater. Sci. Eng. R: Rep. 2016, 100, 1–69. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Ge, S.; Zhu, Z.; Li, W.; Li, Z.; Li, H.; Fu, H.; Wang, A.; Zhuang, Y.; Zhang, H. Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering. Appl. Mater. Today 2021, 22, 100944. [Google Scholar] [CrossRef]
- Ren, Z.Q.; Churakova, A.A.; Wang, X.; Goel, S.; Liu, S.N.; You, Z.S.; Liu, Y.; Lan, S.; Gunderov, D.V.; Wang, J.T.; et al. Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion. Mater. Sci. Eng. A 2020, 803, 140485. [Google Scholar] [CrossRef]
- Jin, Y.; Xi, G.; Li, R.; Li, Z.-A.; Chen, X.-B.; Zhang, T. Nanoporous metallic-glass electrocatalysts for highly efficient oxygen evolution reaction. J. Alloys Compd. 2021, 852, 156876. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Yang, H.; Ren, Y.; Cui, L.; Jiang, D.; Wu, Z.; Ma, Z.; Guo, F.; Bakhtiari, S.; et al. Achieving 5.9% elastic strain in kilograms of metallic glasses: Nanoscopic strain engineering goes macro. Mater. Today 2020, 37, 18–26. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Sarhan, A.A.D.; Kuo, T.Y.; Yusof, F.; Hamdi, M.; Lee, T.M. Developing a new laser cladded FeCrMoCB metallic glass layer on nickel-free stainless-steel as a potential superior wear-resistant coating for joint replacement implants. Surf. Coat. Technol. 2020, 392, 125755. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Hasiak, M.; Kaleta, J.; Dragnevski, K.I. Microstructural investigation and mechanical properties of rapidly solidified bulk nanocrystalline Fe-based alloys. Mater. Today: Proc. 2020, 33, 1775–1780. [Google Scholar] [CrossRef]
- Huang, L.J.; Wang, H.; Liu, J.W.; Zhang, C.; Ouyang, L.Z.; Zhu, M. Low temperature de/hydrogenation in the partially crystallized Mg60Ce10Ni20Cu10 metallic glasses induced by milling with process control agents. J. Alloys Compd. 2019, 792, 835–843. [Google Scholar] [CrossRef]
- Hasani, S.; Ansariniya, M.; Seifoddini, A. Enhancement of mechanical properties of a soft magnetic Fe-based metallic glass. Mater. Sci. Technol. 2019, 35, 865–871. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, Y.; Du, Y.; Han, W.; Hua, D.; Zhai, H.; Huang, P.; Wang, F.; Wang, H. Identifying the significance of Sn addition on the tribological performance of Ti-based bulk metallic glass composites. J. Alloys Compd. 2019, 780, 671–679. [Google Scholar] [CrossRef]
- Yao, A.; Yang, H.; Wang, J.-Q.; Xu, W.; Huo, J.; Li, R.-W.; Qiu, H.; Chen, M. Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses. J. Alloys Compd. 2019, 772, 164–172. [Google Scholar] [CrossRef]
- Monson, T.C.; Zheng, B.; Delany, R.E.; Pearce, C.J.; Langlois, E.D.; Lepkowski, S.M.; Stevens, T.E.; Zhou, Y.; Atcitty, S.; Lavernia, E.J. Soft Magnetic Multilayered FeSiCrB-FexN Metallic Glass Composites Fabricated by Spark Plasma Sintering. IEEE Magn. Lett. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Codrean, C.; Cosma, C.; Toșa, D.; Buzdugan, D.; Dume, A.I. Composite Materials Fabricated of Amorphous and Nanocrystalline Metallic Powders. Mater. Plast. 2019, 56, 744–749. [Google Scholar] [CrossRef]
- Ji, X.; Wu, J.; Pi, J.; Cheng, J.; Shan, Y.; Zhang, Y. Slurry erosion induced surface nanocrystallization of bulk metallic glass. Appl. Surf. Sci. 2018, 440, 1204–1210. [Google Scholar] [CrossRef]
- Hoppe, M.; Ababii, N.; Postica, V.; Lupan, O.; Polonskyi, O.; Schütt, F.; Kaps, S.; Sukhodub, L.F.; Sontea, V.; Strunskus, T.; et al. (CuO-Cu2O)/ZnO:Al heterojunctions for volatile organic compound detection. Sens. Actuators B: Chem. 2018, 255, 1362–1375. [Google Scholar] [CrossRef]
- Jian, W.-R.; Wang, L.; Yao, X.H.; Luo, S.-N. Balancing strength, hardness and ductility of Cu64Zr36 nanoglasses via embedded nanocrystals. Nanotechnology 2018, 29, 025701. [Google Scholar] [CrossRef] [PubMed]
- Tlili, A.; Pailhès, S.; Debord, R.; Ruta, B.; Gravier, S.; Blandin, J.-J.; Blanchard, N.; Gomès, S.; Assy, A.; Tanguy, A.; et al. Thermal transport properties in amorphous/nanocrystalline metallic composites: A microscopic insight. Acta Mater. 2017, 136, 425–435. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hong, S.H.; Park, H.J.; Kim, J.T.; Jeong, H.J.; Na, Y.S.; Lim, K.R.; Park, J.M.; Kim, K.B. Crystallization and phase transformation behavior of TiCu-based bulk metallic glass composite with B2 particles. J. Alloys Compd. 2017, 707, 87–91. [Google Scholar] [CrossRef]
- Dusoe, K.J.; Vijayan, S.; Bissell, T.R.; Chen, J.; Morley, J.E.; Valencia, L.; Dongare, A.M.; Aindow, M.; Lee, S.-W. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites. Sci. Rep. 2017, 7, 40409. [Google Scholar] [CrossRef]
- Lan, X.; Wu, H.; Liu, Y.; Zhang, W.; Li, R.; Chen, S.; Zai, X.; Hu, T. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings. Mater. Charact. 2016, 120, 82–89. [Google Scholar] [CrossRef]
- Lee, J.-K.; Kim, S.-Y.; Ott, R.T.; Kim, J.-Y.; Eckert, J.; Lee, M.-H. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2016, 54, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kyeong, J.S.; Ham, M.-H.; Minor, A.M.; Kim, D.H.; Park, E.S. Development of Mo-Ni-Si-B metallic glass with high thermal stability and H versus E ratios. Mater. Des. 2016, 98, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Drescher, P.; Witte, K.; Yang, B.; Steuer, R.; Kessler, O.; Burkel, E.; Schick, C.; Seitz, H. Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering. J. Alloys Compd. 2016, 667, 109–114. [Google Scholar] [CrossRef]
- Veligatla, M.; Das, S.; Lee, W.K.; Hwang, J.; Thumthan, O.; Hao, Y.; Mukherjee, S. Tuning the Magnetic Properties of Cobalt-Based Metallic Glass Nanocomposites. JOM 2016, 68, 336–340. [Google Scholar] [CrossRef]
- Xing, Q.; Zhang, K.; Wang, Y.; Leng, J.; Jia, H.; Liaw, P.K.; Wang, Y. Effects of pre-compression on the microstructure, mechanical properties and corrosion resistance of RE65Co25Al10 (RE = Ce, La, Pr, Sm and Gd) bulk metallic glasses. Intermetallics 2015, 67, 94–101. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Li, L.; Kou, H.; Li, J. Thermal Stability and the Matrix Induced Brittleness in a Ti-based Bulk Metallic Glass Composite. Mater. Res. 2015, 18, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Babilas, R.; Nowosielski, R.; Pawlyta, M.; Fitch, A.; Burian, A. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite. Mater. Charact. 2015, 102, 156–164. [Google Scholar] [CrossRef]
- Kuan, S.Y.; Huang, J.C. Improving the ductility of thin film metallic glasses via nano-twinning. Thin Solid Film. 2014, 561, 43–47. [Google Scholar] [CrossRef]
- Abdi, S.; Khoshkhoo, M.S.; Shuleshova, O.; Bönisch, M.; Calin, M.; Schultz, L.; Eckert, J.; Baró, M.D.; Sort, J.; Gebert, A. Effect of Nb addition on microstructure evolution and nanomechanical properties of a glass-forming Ti-Zr-Si alloy. Intermetallics 2014, 46, 156–163. [Google Scholar] [CrossRef]
- Zhu, S.; Xie, G.; Wang, H.; Yang, X.; Cui, Z.; Inoue, A. Zr-based bulk metallic glass composite with in situ precipitated nanocrystals. J. Alloys Compd. 2014, 586, 155–158. [Google Scholar] [CrossRef]
- Zou, L.M.; Li, Y.H.; Yang, C.; Qu, S.G.; Li, Y.Y. Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100−xFex alloy synthesized by mechanical alloying. J. Alloys Compd. 2013, 553, 40–47. [Google Scholar] [CrossRef]
- Wang, D.J.; Huang, Y.J.; Wu, L.Z.; Shen, J. Mechanical, acoustic and electrical properties of porous Ti-based metallic glassy/nanocrystalline composites. Mater. Des. 2013, 44, 69–73. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Inoue, A.; Louzguine-Luzgin, D.V. Formation and investigation of the structure and mechanical properties of bulk metallic glassy composite (Ti-Zr)-(Cu-Ni-Co) alloys. Intermetallics 2012, 31, 173–176. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Inoue, A.; Louzguine-Luzgin, D.V. Formation and investigation of the structure and mechanical properties of bulk metallic glassy composite (Ti-Zr)-(Cu-Ni-Co) alloys with the addition of Boron. Mater. Sci. Eng. A 2012, 558, 472–477. [Google Scholar] [CrossRef]
- Churyumov, A.Y.; Bazlov, A.; Solonin, A.N.; Zadorozhnyi, V.Y.; Xie, G.Q.; Li, S.; Louzguine-Luzgin, D.V. Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase. Phys. Met. Metallogr. 2013, 114, 773–778. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Inoue, A.; Louzguine-Luzgin, D.V. Investigation of the structure and mechanical properties of as-cast Ti-Cu-based alloys. Mater. Sci. Eng. A 2013, 573, 175–182. [Google Scholar] [CrossRef]
- Golovin, I.S.; Zadorozhnyy, V.Y.; Churyumov, A.Y.; Louzguine-Luzgin, D.; Louzguine-Luzgin, D. Internal friction in a Ni–Ti-based glassy-crystal alloy. J. Alloys Compd. 2013, 579, 633–637. [Google Scholar] [CrossRef]
- Tsarkov, A.A.; Churyumov, A.Y.; Zadorozhnyy, V.Y.; Louzguine-Luzgin, D.V. High-strength and ductile (Ti-Ni)-(Cu-Zr) crystalline/amorphous composite materials with superelasticity and TRIP effect. J. Alloys Compd. 2016, 658, 402–407. [Google Scholar] [CrossRef]
- Sergiienko, R.A.; Shcheretskyi, O.A.; Zadorozhnyy, V.Y.; Verkhovliuk, A.M.; Louzguine-Luzgin, D.V. Investigation of Zr55Cu30Al10Ni5 bulk amorphous alloy crystallization. J. Alloys Compd. 2019, 791, 477–482. [Google Scholar] [CrossRef]
- Tsarkov, A.A.; Zadorozhnyy, V.Y.; Solonin, A.N.; Louzguine-Luzgin, D.V. Effect of Aluminum, Iron and Chromium Alloying on the Structure and Mechanical Properties of (Ti-Ni)-(Cu-Zr) Crystalline/Amorphous Composite Materials. Metals 2020, 10, 874. [Google Scholar] [CrossRef]
- Duan, G.H.; Jiang, M.Q.; Liu, X.F.; Dai, L.H.; Li, J.X. In situ observations on shear-banding process during tension of a Zr-based bulk metallic glass composite with dendrites. J. Non-Cryst. Solids 2021, 565, 120841. [Google Scholar] [CrossRef]
- Bordeenithikasem, P.; Hofmann, D.C.; Firdosy, S.; Ury, N.; Vogli, E.; East, D.R. Controlling microstructure of FeCrMoBC amorphous metal matrix composites via laser directed energy deposition. J. Alloys Compd. 2021, 857, 157537. [Google Scholar] [CrossRef]
- Lee, J.I.; Wat, A.; Kim, J.; Ryu, C.W.; Chang, H.J.; Park, E.S.; Ritchie, R.O. Synthesis of bioinspired ice-templated bulk metallic glass-alumina composites with intertwined dendritic structure. Scr. Mater. 2019, 172, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, J.; He, Y.; Lai, M.; Zhu, M.; Wang, W.Y.; Kou, H.; Wang, J. A new microscopic, coordinated deformation model of Ti-based bulk metallic composites during tensile deformation. Scr. Mater. 2019, 172, 23–27. [Google Scholar] [CrossRef]
- Zhang, L.; Narayan, R.L.; Fu, H.M.; Ramamurty, U.; Li, W.R.; Li, Y.D.; Zhang, H.F. Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites. Acta Mater. 2019, 168, 24–36. [Google Scholar] [CrossRef]
- Wang, Y.S.; Tian, F.; Qiao, B.B.; Ma, S.M.; Wang, X.T.; Wang, X.M.; Lan, A.D. Mechanical property and serration behavior of Ti-based metallic glassy composites reinforced by an in situ dendritic phase. Mater. Sci. Eng. A 2019, 743, 301–308. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.C.; Wei, R.; Meng, M.; He, L.; Zhang, S.F. Deformation characteristic of a Ti-based bulk metallic glass composite with fine microstructure. Mater. Sci. Eng. A 2018, 733, 224–231. [Google Scholar] [CrossRef]
- Kim, W.C.; Kim, K.C.; Na, M.Y.; Jeong, S.H.; Kim, W.T.; Kim, D.H. Formation of crystalline phase in the glass matrix of Zr-Co-Al glass-matrix composites and its effect on their mechanical properties. Met. Mater. Int. 2017, 23, 1216–1222. [Google Scholar] [CrossRef]
- Hua, N.; Yue, F. Ultrafine-structured Ni-based bulk alloys with high strength and enhanced ductility. Mater. Sci. Eng. A 2017, 692, 17–23. [Google Scholar] [CrossRef]
- Okulov, I.V.; Bönisch, M.; Volegov, A.S.; Shahabi, H.S.; Wendrock, H.; Gemming, T.; Eckert, J. Micro-to-nano-scale deformation mechanism of a Ti-based dendritic-ultrafine eutectic alloy exhibiting large tensile ductility. Mater. Sci. Eng. A 2017, 682, 673–678. [Google Scholar] [CrossRef]
- Bu, F.; Wang, J.; Li, L.; Kou, H.; Xue, X.; Li, J. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite. Metals 2016, 6, 274. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, D.; Wang, X.S.; Guo, J.W.; Zhang, S.F.; He, L. Mechanical behavior and wear performance of a Ti-based bulk metallic glass composite containing dendritic and intermetallic phases. Mater. Sci. Eng. A 2016, 672, 135–142. [Google Scholar] [CrossRef]
- Gargarella, P.; Pauly, S.; Khoshkhoo, M.S.; Kiminami, C.S.; Kühn, U.; Eckert, J. Improving the glass-forming ability and plasticity of a TiCu-based bulk metallic glass composite by minor additions of Si. J. Alloys Compd. 2016, 663, 531–539. [Google Scholar] [CrossRef]
- Cui, J.; Li, J.S.; Wang, J.; Kou, H.C. Microstructure Evolution and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite. J. Mater. Eng. Perform. 2015, 24, 2354–2358. [Google Scholar] [CrossRef]
- Li, Y.L.; Kou, H.; Wang, J.; Li, J.; Hu, R. Enhanced mechanical properties of Ti-based metallic glass composites prepared under medium vacuum system. J. Non-Cryst. Solids 2015, 413, 15–19. [Google Scholar] [CrossRef]
- Ma, D.Q.; Jiao, W.T.; Zhang, Y.F.; Wang, B.A.; Li, J.; Zhang, X.Y.; Ma, M.Z.; Liu, R.P. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites. J. Alloys Compd. 2015, 624, 9–16. [Google Scholar] [CrossRef]
- Okulov, I.; Wendrock, H.; Volegov, A.; Attar, H.; Kühn, U.; Skrotzki, W.; Eckert, J. High strength beta titanium alloys: New design approach. Mater. Sci. Eng. A 2015, 628, 297–302. [Google Scholar] [CrossRef]
- Arora, H.S.; Mridha, S.; Grewal, H.S.; Singh, H.; Hofmann, D.C.; Mukherjee, S. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing. Sci. Technol. Adv. Mater. 2014, 15, 035011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.H.; Jiang, M.Q.; Chen, Y.; Dai, L.H. Strain rate dependent shear banding behavior of a Zr-based bulk metallic glass composite. Mater. Sci. Eng. A 2013, 576, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.-W.; Zhang, Y.; Yang, H.-J.; Sang, S.-B. Dendritic and spherical crystal reinforced metallic glass matrix composites. Int. J. Miner. Metall. Mater. 2013, 20, 386–392. [Google Scholar] [CrossRef]
- Antonysamy, A.A.; Pauly, S.; Dhindaw, B.K.; Eckert, J. Influence of Superheat on Microstructure and Mechanical Properties of Ductile Cu47.5Zr47.5Al5 Bulk Metallic Glass-Matrix Composite. J. Mater. Eng. Perform. 2011, 20, 1196–1205. [Google Scholar] [CrossRef]
- Liu, B.-C.; Zhang, Q.-D.; Wang, H.-J.; Li, X.-Y.; Zu, F.-Q. Significantly improved plasticity of bulk metallic glasses by introducing quasicrystal within high energy glass matrix. Intermetallics 2019, 111, 106504. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Men, H.; Estevez, D.; Liu, Y.; Wang, X.; Li, R.-W.; Chang, C. Mg-based bulk metallic glass composite containing in situ microsized quasicrystalline particles. Scr. Mater. 2014, 78-79, 21–24. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wang, Y.M.; Shek, C.H. Correlation between structures and properties in (Zr65Cu15Ni10Al10)90Nb10 alloys. J. Mater. Res. 2013, 28, 1218–1223. [Google Scholar] [CrossRef]
Metallic Glass | Rc (K s−1) | References |
---|---|---|
Au55Cu25Si20 | 3.4 × 104 | [41] |
Fe48Cr15Mo14Y2C15B6 | 140–190 | [42] |
Co75Si15B10 | 3.8 × 108 | [43] |
Fe79Si10B11 | 3.7 × 108 | [43] |
Ni75Si8B17 | 2.4 × 108 | [43] |
Pd77.5Cu6Si16.5 | 1.5 × 108 | [43] |
Pd40Ni40P20 | 1.4 × 107 | [43] |
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 | ≤10 | [44] |
Al51Ge35Ni14 | 104 | [45] |
Fe76Si9B10P5 | ≤550 | [46] |
Pd40Cu30Ni10P20 | 2.08 × 10−5 | [47] |
Au49Ag5.5Pd2.3Cu26.9Si16.3 | 600 | [48] |
Zr52.5Ti5Al10Ni14.6Cu17.9 | 103–105 | [49] |
Fe67Mo4.5Cr2.3Al2Si3C7P8.7B5.5 | 9.3 × 104 | [50] |
Al86Ni6Y4.5Co2La1.5 | 3.01 × 103 | [51] |
Chemical Composition | Preparation Method | Young’s Modulus (GPa) | Compressive strength (MPa) | Corrosion Values Ecorr(V)/Icorr (A·m−2) | Reference |
---|---|---|---|---|---|
Ti45Zr10Cu31Pd10Sn4 | Gas atomization | 100 ± 3.2 | 2060 ± 85 | Ecorr = −0.206 | [75] |
Ti45Zr10Cu31Pd10Sn4 | Spark Plasma sintering | 10–30 | 2060 | – | [76] |
Ti51Zr5Cu41Sn3 | Laser Cladding | – | – | Icorr = 10−5 | [77] |
Ti45Zr5Cu41Ni6Sn3 | Pulsed laser deposition | – | – | Icorr = 1.33 | [78] |
Ti45Zr20Cu35 (high-Cu) | Ti45Zr20Cu35 (high-Cu) | 77 | – | Ecorr = –0.259 ± 0.041 | [79] |
Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Tax (x = 1–4) | Copper mold casting | 100 | 2028 ± 32 | – | [80] |
Ti47Cu38Zr7.5Fe2.5Sn2Si1Nb2 | Laser surface remelting | 153.6 | – | Icorr = 12 × 10−6 | [81] |
Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Nbx (x = 0, 1,2; at%) | Melt spinning Process | 100.4 ± 0.1 | 2010 ± 66 | Icorr = 0.1 Am−2 | [82] |
Ti40Zr10Cu36Pd14 | Tilt copper mold-casting | 96 | 1930 | Icorr = 6 × 10−9 | [83] |
Ti60Zr10Nb15Si15 | Melt spinning | – | – | Ecorr = −0.195 ± 0.025 | [84] |
Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 | Induction heating | 150.4 ± 4.7 | 2000 ± 78 | Icorr = 10−5 | [85] |
Chemical Composition | Preparation Method | Young’s Modulus (GPa) | Compressive Strength (MPa) | Corrosion Values Ecorr(V)/Icorr (A·m−2) | Reference |
---|---|---|---|---|---|
Zr44Ti11Cu10Ni11Be2 | Ceramic conversion treatments | 145.70 ± 3.13 | – | Ecorr = −0.02 V | [88] |
Zr48Cu36Al8Ag8 | Magnetron sputtering | 113.92 | – | Icorr = 7.24 × 10−6 | [91] |
Zr60 + xTi2.5Al10Fe12.5− xCu10Ag5 (at.%, x = 0, 2.5, 5) | Copper mold casting | 70–78 | 240–255 ± 3 | Icorr = 0.86–1.23 | [93] |
Chemical Composition | Preparation Method | Compressive Strength (MPa) | Corrosion Rates Ecorr (V)/Rcorr(w/sqt) | Reference |
---|---|---|---|---|
Relaxed Mg70Zn26Ca4 ribbon/Crystallized Mg70Zn26Ca4 ribbon | Melt spinning | – | Ecorr = (−1.21 ± 0.065/−1.38 ± 0.087 | [99] |
Mg65Zn30Ca5 | Melt pinning/ball-on-disk reciprocating sliding | 715–854 | Ecorr = −1.23 | [100] |
Mg66Zn30Ca4xSrx(x = 0, 0.5, 1, and 1.5 at.%) | Induction-melting | 787 ± 22–847 ± 24 | Rcorr = 8.76 × 104 | [104] |
Mg67Zn27Ca4 | Induction-melting | 545–364 | −1.116 | [106] |
Chemical Composition | Preparation Method | Yield Strength (MPa) | Fracture Strength (MPa) | Plastic Strain (%) | Reference |
---|---|---|---|---|---|
Carbon fiber/Ti37.3Zr22.7Be25.5Fe5.5Cu9 | Vacuum pressure infiltration processing | 1880 ± 80 | – | 4.8 ± 1.0% | [113] |
Tungsten fiber/Zr41.2Ti13.8Cu10Ni12.5Be22.5 | Forward melt infiltrating method | – | 1600 | 11.7% | [114] |
Tungsten fiber/(Zr40.08Ti13.30Cu11.84Ni10.07Be24.71)99Nb1 | Quasi-static compression | 2200–2500 | – | 26% | [115] |
TiNi fiber/Zr47Ti13Cu11Ni10-Be16Nb3 | Pressure infiltration casting. | 2100 | – | 14% | [116] |
Tungsten fiber/Zr41.2Ti13.8Ni10.0Cu12.5Be22.5 | Infiltration and rapid solidification | – | – | 37% | [117] |
Tungsten strings/(Zr40.08Ti13.30Ni11.84Cu10.07Be24.71)99Nb | Infiltration and rapid solidification method | 1680 | 2505 | 27.1% | [118] |
Tungsten fiber/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 | Resistive furnace and quenching | 2100 | – | 20% | [120] |
Al matrix composites/Fe74Mo4P10C7.5B2.5Si2(at.%) metallic glass fibers | Ball milling/Hot pressing | 115 ± 8 | 4200 | 40% | [122] |
Tungsten fiber/Zr41.2Ti13.8Cu12.5Ni10Be22.5 | Infiltration and rapid solidification | – | – | 23% | [124] |
Tungsten fiber/Zr41.2Ti13.8Ni12.5Cu10Be22.5 | Infiltration and rapid solidification method | 433 | – | 12.6% | [127] |
Tungsten fiber/Zr41.25Ti13.75Cu12.5Ni10Be22.5 | Continuous infiltration process | 1230 | – | 0.75% | [128] |
Wf(60% vol)/Zr41.25Ti13.75Cu12.5Ni10Be22.5 | Melt infiltration casting | 2300 | – | 24% | [130] |
Wf/(Zr41.2Ti13.8Cu12.5Ni10Be22.5)100-xNbx composites with x = 1, 3, 5 and 7. | Melt infiltration casting | 2450 | – | 20% | [132] |
Chemical Composition | Preparation Method | Yield Strength (MPa) | Fracture Strength (MPa) | Plastic Strain (%) | Reference |
---|---|---|---|---|---|
Ti63 − xZrxNi5.3Cu9 Be22.7 (at.%, x = 52) | Melt spinning/Ex situ method | 1552 ± 20 | 1956 ± 20 | 8.4 ± 0.2% | [144] |
(Ti0.328Zr0.302Ni0.053Cu0.09Be0.227)100 − xNbx | Melt spinning/Quenching | 1078 ± 10 | 1112 ± 5 | 5.10 ± 0 | [145] |
20%TiNi/Mg59.5Cu22.9Gd11Ag6.6 | Ex situ | – | 1173 | 12.1% | [148] |
La55Al25Cu10Ni10/35 mesh Ta particles | Melt spinning/Injection cast melting | 720 | – | 40% | [152] |
Mg58Cu28.5Gd11Ag2.5/Ti particles | Injection casting | 800 | – | 25% | [153] |
Zr47.3Cu32Ag8Al8Ta4Si0.7/ex situ Ta particles | Two-step arc melting process and suction casting | 1770–1800 | 1800 | 44% | [154] |
Zr48Cu36Al8Ag8)99.25Si0.75/Ta particles | Suction casting | 1800 | 1850 | 22% | [155] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Zadorozhnyy, V. Review of the Recent Development in Metallic Glass and Its Composites. Metals 2021, 11, 1933. https://doi.org/10.3390/met11121933
Sharma A, Zadorozhnyy V. Review of the Recent Development in Metallic Glass and Its Composites. Metals. 2021; 11(12):1933. https://doi.org/10.3390/met11121933
Chicago/Turabian StyleSharma, Adit, and Vladislav Zadorozhnyy. 2021. "Review of the Recent Development in Metallic Glass and Its Composites" Metals 11, no. 12: 1933. https://doi.org/10.3390/met11121933
APA StyleSharma, A., & Zadorozhnyy, V. (2021). Review of the Recent Development in Metallic Glass and Its Composites. Metals, 11(12), 1933. https://doi.org/10.3390/met11121933